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Abstract
Branch decomposition is a prominent method for
structurally decomposing a graph, hypergraph or
CNF formula. The width of a branch decomposi-
tion provides a measure of how well the object is
decomposed. For many applications it is crucial to
compute a branch decomposition whose width is as
small as possible. We propose a SAT approach to
finding branch decompositions of small width. The
core of our approach is an efficient SAT encoding
which determines with a single SAT-call whether a
given hypergraph admits a branch decomposition
of certain width. For our encoding we develop a
novel partition-based characterization of branch de-
compositions. The encoding size imposes a limit on
the size of the given hypergraph. In order to break
through this barrier and to scale the SAT approach
to larger instances, we develop a new heuristic ap-
proach where the SAT encoding is used to locally
improve a given candidate decomposition until a
fixed-point is reached. This new method scales now
to instances with several thousands of vertices and
edges.

1 Introduction
Branch decomposition is a prominent method for structurally
decomposing a graph or hypergraph. This decomposition
method was originally introduced by Robertson and Sey-
mour [1991] in their Graph Minors Project and has become
a key notion in discrete mathematics and combinatorial opti-
mization. Branch decompositions can be used to decompose
other combinatorial objects such as matroids, integer-valued
symmetric submodular functions, and propositional CNF for-
mulas (after dropping of negations, clauses can be considered
as hyperedges). The width of a branch decomposition pro-
vides a measure of how well it decomposes the given object;
the smallest width over its branch decompositions denotes the
branchwidth of an object. Many hard computational problems
can be solved efficiently by means of dynamic programming

∗This is a shortened version of a paper that appeared in the Proc.
of SAT 2016 [Lodha et al., 2016]. This work is dedicated to the
memory of Helmut Veith (1971–2016).

along a branch decomposition of small width. Prominent ex-
amples include the traveling salesman problem [Cook and Sey-
mour, 2003], the #P-complete problem of propositional model
counting [Bacchus et al., 2003], and the generation of resolu-
tion refutations for unsatisfiable CNF formulas [Alekhnovich
and Razborov, 2002]. In fact, all decision problems on graphs
that can be expressed in monadic second order logic can be
solved in linear time on graphs that admit a branch decompo-
sition of bounded width [Grohe, 2008].

A bottleneck for all these algorithmic applications is the
space requirement of dynamic programming, which is typi-
cally single or double exponential in the width of the given
branch decomposition. Hence it is crucial to compute first
a branch decomposition whose width is as small as possible.
This is very similar to the situation in the context of treewidth,
where the following was noted about inference on probabilistic
networks [Kask et al., 2011]:

[. . . ] since inference is exponential in the tree-width,
a small reduction in tree-width (say by even by 1 or
2) can amount to one or two orders of magnitude
reduction in inference time.

Hence small improvements in the width can change a dy-
namic programming approach from unfeasible to feasible.
The boundary between unfeasible and feasible width values
strongly depends on the considered problem and the currently
available hardware. For instance, Cook and Seymour [2003]
mention a threshold of 20 for the traveling salesman problem.
Today one might consider a higher threshold. Computing
an optimal branch decomposition is NP-hard [Seymour and
Thomas, 1994].

1.1 Contribution
In this paper we propose a practical SAT-based approach to
finding a branch decomposition of small width. At the core
of our approach is an efficient SAT encoding which takes a
hypergraph H and an integer w as input and produces a propo-
sitional CNF formula which is satisfiable if and only if H
admits a branch decomposition of width ≤ w. By multiple
calls of the solver with various values of w we can determine
the smallest w for which the formula is satisfiable (i.e., the
branchwidth of H), and we can transform the satisfying as-
signment into an optimal branch decomposition. Our encoding
is based on a novel partition-based characterization of branch
decompositions in terms of certain sequences of partitions of
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the set of edges. This characterization together with clauses
that express cardinality constraints allow for an efficient SAT
encoding that scales up to instances with about hundred edges.
The computationally most expensive part in this procedure is
to determine the optimality of w by checking that the formula
corresponding to a width of w − 1 is unsatisfiable. If we do
not insist on optimality and aim at good upper bounds, we
can scale the approach to larger hypergraphs with over two
hundred edges.

The number of clauses in the formula is polynomial in the
size of the hypergraph and the given width w, but the order
of the polynomial can be quintic, hence there is a firm barrier
to the scalability of the approach to larger hypergraphs. In
order to break through this barrier, we develop a new SAT-
based local improvement approach where the encoding is
not applied to the entire hypergraph but to certain smaller
hypergraphs that represent local parts of a current candidate
branch decomposition. The overall procedure thus starts with
a branch decomposition obtained by a heuristic method and
then tries to improve it locally by multiple SAT-calls until a
fixed-point (or timeout) is reached. This method scales now
to instances with several thousands of vertices and edges and
branchwidth upper bounds well over hundred. We believe that
a similar approach using a SAT-based local improvement could
also be developed for other (hyper)graph width measures.

1.2 Related Work
There exist SAT-based encodings for other width parameters
such as treewidth [Samer and Veith, 2009; Berg and Järvisalo,
2014] and clique-width [Heule and Szeider, 2015].

For finding branch decompositions of smallest width,
Robertson and Seymour [1991] suggested an exponential-time
algorithm which was later implemented by Hicks [2005]. Fur-
ther exponential-time algorithms have been proposed (see,
for instance [Fomin et al., 2009; Hliněný and Oum, 2008])
but there seem to be no implementations. Ulusal [2008] pro-
posed an encoding to integer programming (CPLEX). One
could also find suboptimal branch decompositions based on
the related notion of tree decompositions; however, find-
ing an optimal tree decomposition is again NP-hard, and
by transforming it into a branch decomposition one intro-
duces an approximation error of up to 50% [Robertson and
Seymour, 1991] which makes this approach prohibitive in
practice. For practical purposes one therefore mainly re-
sorts to heuristic methods that compute suboptimal branch
decompositions [Cook and Seymour, 2003; Hicks, 2002;
Overwijk et al., 2011].

2 Preliminaries
2.1 Formulas and Satisfiability
We consider propositional formulas in Conjunctive Normal
Form (CNF formulas, for short), which are conjunctions of
clauses, where a clause is a disjunction of literals, and a literal
is a propositional variable or a negated propositional variable.
A CNF formula is satisfiable if its variables can be assigned
true or false, such that each clause contains either a variable
set to true or a negated variable set to false. The satisfiability
problem (SAT) asks whether a given formula is satisfiable.
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Figure 1: A hypergraph H (left) and an optimal branch decomposi-
tion (T, γ) of H (right). The labels of the leaves of T are the edges
assigned to them by γ and the labels of the edges of T are the cut
vertices of that edge.

2.2 Graphs and Branchwidth
We consider finite hypergraphs and undirected graphs. For ba-
sic terminology on graphs we refer to a standard text book [Di-
estel, 2000]. For a hypergraph H we denote by V (H) the
vertex set ofH and byE(H) the edge set ofH . IfE ⊆ E(H),
we denote by H \E the hypergraph with vertices V (H) and
edges E(H) \ E.

Let H be a hypergraph. Every subset E of E(H) defines a
cut of H , i.e., the pair (E,E(H) \E). We denote by δH(E)
(or just δ(E) if H is clear form the context) the set of cut
vertices of E in H , i.e., δ(E) contains all vertices incident
to both an edge in E and an edge in E(H) \ E. Note that
δ(E) = δ(E(H) \ E).

A branch decomposition B(H) of H is a pair (T, γ),
where T is a ternary tree and γ : L(T ) → E(H) is a bi-
jection between the edges of H and the leaves of T (denoted
by L(T )). For simplicity, we write γ(L) to denote the set
{ γ(l) | l ∈ L } for a set L of leaves of T , and we also write
δ(T ′) instead of δ(γ(L(T ′))) for a subtree T of T ′. For an
edge e of T , we denote by δB(e) (or simply δ(e) if B is clear
from the context), the set of cut vertices of e, i.e., the set
δ(T ′), where T ′ is any of the two components of T \ {e}.
The width of an edge e of T is the number of cut vertices of
e, i.e., |δB(e)| and the width of B is the maximum width of
any edge of T . The branchwidth of H is the minimum width
over all branch decompositions of H (or 0 if |E(G)| = 0 and
H has no branch decomposition). Fig. 1 illustrates a branch
decomposition of a small hypergraph. In figures and in the
remainder of the paper we will often denote a set {1, 2, 3, A}
of vertices as 123A.

2.3 Partitions
A partition of a set S is a set P of nonempty subsets of S such
that any two sets in P are disjoint and S is the union of all sets
in P . The elements of P are called equivalence classes. Let
P, P ′ be partitions of S. Then P ′ is a refinement of P if for
any two elements x, y ∈ S that are in the same equivalence
class of P ′ are also in the same equivalence class of P (this
entails the case P = P ′). Moreover, we say that P ′ is a k-ary
refinement of P if additionally it holds that for every p ∈ P
there are p1, . . . , pk in P ′ such that p =

⋃k
i=1 pi.
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3 An Encoding for Branchwidth
One might be tempted to think that the original characteri-
zation of branch decompositions as ternary trees leads to a
very natural and efficient SAT encoding for the existence of
a branch decomposition of a certain width. In particular, one
could encode the branch decomposition as a formula by fixing
all vertices of the tree (as well as the bijection on the leaves)
and then employing variables to guess the children for each
inner vertex of the tree. We have tried this approach, however,
to our surprise the performance of the encoding based on this
characterization of branch decomposition was very poor. We
therefore opted to develop a different encoding based on a
new partition-based characterization of branch decomposition
which we will introduce next.

3.1 Partition-based Reformulation of Branchwidth
Let H be a hypergraph. A derivation P of H of length l is a
sequence (P1, . . . , Pl) of partitions of E(G) such that: (D1)
P1 = { {e} | e ∈ E(H) } and Pl = {E(H)} and (D2) for
every i ∈ {1, . . . , l − 1}, Pi is a 2-ary refinement of Pi+1

and (D3) Pl−1 is a 3-ary refinement of Pl. The width of P is
the maximum size of δH(E) over all sets E ∈

⋃l−1
i=1 Pi. We

will refer to Pi as the i-th level of the derivation P and we
will refer to elements in

⋃l
i=1 Pi as sets of the derivation. We

will show that any branch decomposition can be transformed
into a derivation of the same width and also the other way
around. The following example illustrates the close connection
between branch decompositions and derivations.
Example 1 Consider the branch decomposition B given
in Fig. 1. Then B can, e.g., be translated into the
derivation P = (P1, . . . , P5), where P1 contains {129},
{35}, {45}, {3A}, {14}, {28}, {38}, {29}, P2 contains
{129}, {35}, {45, 3A}, {14}, {28}, {38}, {29}, P3 con-
tains {129}, {35, 45, 3A}, {14}, {28, 38}, {29}, P4 con-
tains {129}, {35, 45, 3A, 14}, {28, 38, 29}, and P5 contains
{129, 35, 45, 3A, 14, 28, 38, 29}. The width of B is equal to
the width of P .

The following theorem shows that derivations provide an
alternative characterization of branch decompositions.

Theorem 1 Let H be a hypergraph, e the maximum size over
all edges of H , and w an integer. Then the branchwidth of H
is at most w if and only if H has a derivation of width at most
w and length at most b|E(H)|/2c − dw/ee+ dlogbw/ece.

3.2 The Encoding
The partitioned-based characterization now gives rise to a
natural encoding of branchwidth in terms of a CNF for-
mula. Namely, we construct a CNF formula F (H,w) that
has O(m3 +m2n2) variables and O(m4n+m2n2) clauses,
which is satisfiable if and only if the hypergraphH has branch-
width at most w.

4 Local Improvement
The encoding presented in the previous section allows us to
compute the exact branchwidth of hypergraphs up to a cer-
tain size. Due to the intrinsic difficulty of the problem one
can hardly hope to go much further beyond this size barrier
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Figure 2: A branch decomposition B of the graph H given in Fig. 4
together with an example of a local branch decomposition BL (bold
edges) chosen by our algorithm.
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Figure 3: The improved branch decomposition B′ obtained from B
after replacing the local branch decomposition BL of H(TL) with an
optimal branch decomposition B′L of H(TL) obtained from our SAT
encoding. See Fig. 2 for an illustration of B and BL.

with an exact method. In this section we therefore propose a
local improvement approach that employs our SAT encoding
to improve small parts of a heuristically obtained branch de-
composition. Our local improvement procedure can be seen
as a kind of local search procedure that, at each step tries to
replace a part of the branch decomposition with a better one
found by means of the SAT encoding and repeats this process
until a fixed-point (or timeout) is reached.

Let H be a hypergraph and B := (T, γ) a branch decom-
position of H . For a connected ternary subtree TL of T we
define the local branch decomposition BL := (TL, γL) of B
by setting γL(l) = δB(e) for every leaf l ∈ L(TL), where e
is the (unique) edge incident to l in TL. We also define the
hypergraph H(TL) as the hypergraph that has one hyperedge
γL(l) for every leaf l of TL and whose vertices are defined
as the union of all these edges. We observe that BL is a
branch decomposition of H(TL). The main idea behind our
approachis that we can obtain a new branch decomposition of
H by replacing the part of B formed by BL with any branch
decomposition of H(TL). In particular, by replacing BL with
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Figure 4: The graph H used to illustrate the main idea behind our
local improvement procedure.
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a branch decomposition of H(TL) of lower width, we will
potentially improve the branch decomposition B. This idea is
illustrated in Fig. 2 and Fig. 3.

5 Experimental Results
We have implemented the single SAT encoding and the SAT-
based local improvement method and tested them on vari-
ous benchmark instances, including famous named graphs
from the literature [Weisstein, 2016], graphs from Treewidth-
LIB [Bodlander, 2016] which origin from a broad range of
applications. Throughout we used the SAT-solver Glucose 4.0
(with standard parameter setting) as it performed best in our
initial tests compared to other solvers such as GlueMiniSat
2.2.8, Lingeling, and Riss 4.27. We ran the experiments on
a 4-core Intel Xeon CPU E5649, 2.35GHz, 72 GB RAM ma-
chine with Ubuntu 14.04 with each process having access to
at most 8 GB RAM.

5.1 Single SAT Encoding
The size of the encoding is manageable for graphs and hyper-
graphs for up to about 100 edges. The solving time varies and
depends on the structure of the (hyper)graph. We could deter-
mine the exact branchwidth of almost all of the famous graphs,
for some of them the branchwidth was nor known. A precise
comparison to the other two known approaches for comput-
ing branchwidth, i.e., Hick’s [2005] combinatorial algorithm
based on tangles, and Ulusal’s [2008] integer programming
encoding, is difficult since their implementations are not avail-
able to us and their experiments were performed on much older
hardware. It can be inferred that our encoding scales much
better with branchwidth than the other two approaches, which
is crucial for its use within the local improvement approach.

5.2 SAT-Based Local Improvement
We tested our local improvement method on graphs with sev-
eral thousands of vertices and edges and with initial branch
decompositions of width up to hundred and more. In partic-
ular, we tested it on all graphs from TreewidthLIB omitting
graphs that are minors of other graphs as well as small graphs
with 150 or fewer edges (small graphs can be solved with the
single SAT encoding). These are in total 980 graphs with up
to 33810 vertices and 121275 edges. We ran our SAT-based
local improvement algorithm on each graph with a timeout of
6 hours, where each SAT-call had a timeout of 600 seconds.
We computed the initial branch decomposition by a heuristic
provided to us by Hicks [2005].

From the 980 graphs, our SAT-based local improvement
algorithm could improve the width of the initial branch de-
composition for 470 graphs. In some cases the improvement
was significant. Table 1 shows the graphs with the best im-
provement.

In summary, our experiments show that the SAT-based lo-
cal improvement approach scales well to large graphs with
several thousands of vertices and edges, and with an initial
branchwidth over hundred. These are instances that are by far
out of reach for any known exact method, in particular, for
the tangles-based algorithm which cannot handle large branch-
width. The use of our SAT encoding which scales well with

Graph |V | |E| iw w d

bn 51 661 2131 95 75 20
bn 77 1020 2616 40 21 19
bn 18-pp 645 2991 66 51 15
bn 52 661 2131 88 74 14
bn 57-pp 387 1330 65 52 13
graph11 340 1425 105 92 13
d493.tsp-pp 488 1452 34 22 12
bn 60-pp 426 1489 80 69 11
bn 63-pp 426 1489 73 62 11
vm1084.tsp-pp 808 2312 29 19 10
inithx.i.2-pp 363 8897 55 45 10
fl3795.tsp 3795 11326 49 39 10

Table 1: Results for SAT-based local improvement for instances
from TreewidthLIB. Column iw gives the width of the initial branch
decomposition, w the width of the branch decomposition obtained
by local improvement and d is the difference between iw and w.

the branchwidth is therefore essential for these instances. Our
results on TreewidthLIB instances show that in some cases
the obtained improvement can make a difference of whether a
dynamic programming algorithm that uses the obtained branch
decomposition is feasible or not.

6 Final Remarks
We have presented a first SAT encoding for branchwidth and
introduced the new method of SAT-based local improvement
for branch decompositions. Both methods are based on a novel
partition-based formulation of branch decompositions. Our ex-
periments show that the single encoding outperforms a known
integer programming method and performs competitively with
the best known combinatorial method. Our SAT-based local
improvement method provides the means for scaling the SAT-
approach to much larger instances and exhibits a fruitful new
application field for SAT solvers.

For both the single SAT encoding and the SAT-based local
improvement we see several possibilities for further improve-
ment. For the encoding one can try other ways for stating
cardinality constraints and one could apply incremental SAT
solving techniques. Further, one could consider alternative en-
coding techniques based on MaxSAT, which have been shown
effective for related problems [Berg and Järvisalo, 2014]. For
the local improvement we see various directions for further
research. For instance, when a local branch decomposition
cannot be improved, one could use the SAT solver to obtain
an alternative branch decomposition of the same width but
where other parameters are optimized, e.g., a small number
of maximum cuts. This could propagate into adjacent local
improvement steps and yield an overall branch decomposition
of smaller width.
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Vukolic, and Stefan Wolf, editors, SOFSEM 2011: The-
ory and Practice of Computer Science - 37th Conference
on Current Trends in Theory and Practice of Computer
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