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Abstract
We briefly describe an implementation of a hyper-
resolution-based calculus for the propositional ba-
sic multimodal logic, Kn. The prover, KSP, which
allows for both local and global reasoning, is de-
signed to support experimentation with different
combinations of refinements for its basic calculus.
We present an experimental evaluation that com-
pares KSP with a range of existing reasoners for Kn.

1 Introduction
Modal logics have long been used in Computer Science for
describing and reasoning about complex systems, including
programming languages [Pratt, 1980], knowledge represen-
tation and reasoning [Rao and Georgeff, 1991; Halpern and
Moses, 1992], verification of distributed systems [Hailpern,
1982; Halpern et al., 1983; Halpern, 1987] and terminologi-
cal reasoning [Schild, 1991]. The most basic of such logics
is the multimodal Kn, which extends the classical language
with new operators, �a and ♦a , with a ∈ A = {1, . . . , n}, a
fixed finite set of indexes (Section 2). The local satisfiability
problem for the multimodal propositional case is PSPACE-
complete [Halpern and Moses, 1992]. The global satisfia-
bility and the local satisfiability under global constraint prob-
lems for Kn are EXPTIME-complete [Spaan, 1993]. Given
the inherent intractability of the reasoning problem and also
the wide range of applications to which those logics can be
applied, the development of automatic, efficient tools for the-
orem proving is highly desirable.

Several proof methods and tools for modal reasoning ex-
ist, either in the form of methods applied direct to the modal
language or obtained by translation into more expressive lan-
guages (First-Order Logic, for instance). Here we concen-
trate on a direct method for Kn, the modal resolution proce-
dure described in [Nalon et al., 2015]. Resolution [Robinson,
1965] is a saturation procedure, that is, formulae which are
consequence of a given input set are added to this set un-
til a contradiction is derived or the satisfiability of the set
is evident. Following successful refinements and strategies
used in theorem-provers for classical logic (see [Schulz and
Möhrmann, 2016], for instance), our calculus is designed for
restricting as much as possible the number of clauses pro-
duced during saturation. In particular, we take advantage of

well-known properties for the satisfiability problem for Kn,
namely: a formula ϕ is satisfiable if, and only if, it is satisfi-
able in a finite tree-like model; and also that checking the sat-
isfiability of a subformula associated with levelml of the tree
depends only on the subformulae occurring at levels greater
or equal to ml [Areces et al., 2000]. The procedure, which is
presented in Section 3, requires the translation of a formula ϕ
into a more expressive language, where labels are used to de-
note the level at which ϕ occurs. Labelled resolution is then
applied in order to determine the satisfiability of ϕ.

In this paper, we briefly present KSP, a theorem prover for
the basic multimodal logic Kn which implements the calcu-
lus described in [Nalon et al., 2015] as a variation of the set
of support strategy [Wos et al., 1965]. The prover also imple-
ments several other refinements and simplification techniques
in order to reduce the search space for a proof (Section 4). Be-
sides the set of support strategy, all other refinements of the
calculus are implemented as independent modules, allowing
for a better evaluation of how effective they are. The experi-
mental evaluation indicates that KSP works well on problems
with high nesting of modal operators where the separation of
modal layers can be exploited to improve the efficiency of
reasoning (Section 5). An extended version of this paper can
be found at [Nalon et al., 2016a].

2 Language
Let A = {1, . . . , n}, n ∈ N, be a finite fixed set of indexes
and P = {p, q, s, t, p′, q′, . . .} be a denumerable set of propo-
sitional symbols. The set of modal formulae, WFF , is the
least set such that every p ∈ P is in WFF ; if ϕ and ψ are in
WFF , then so are ¬ϕ, (ϕ∧ψ), and �a ϕ for each a ∈ A. The
formulae false, true, (ϕ ∨ ψ), (ϕ ⇒ ψ), and ♦a ϕ are intro-
duced as the abbreviations for (ϕ∧¬ϕ), ¬false, ¬(¬ϕ∧¬ψ),
(¬ϕ∨ψ), and ¬�a ¬ϕ, respectively (where ϕ,ψ ∈WFF ). A
literal is either a propositional symbol or its negation; the set
of literals is denoted by L. A modal literal is either �a l or
♦a l, where l ∈ L and a ∈ A. The literals (resp. modal lit-
erals) l and ¬l (resp. �a l and ♦a ¬l = ¬�a l) are said to be
complementary. The modal depth of a formula is given by
the maximal number of nested occurrences of modal opera-
tors in that formula. The modal level of a subformula is the
maximal number of nested occurrences of modal operators
in which scope the formula occurs. For instance, in �a ♦a p,
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[ LRES] ml1 : D ∨ l
ml2 : D′ ∨ ¬l
ml : D ∨ D′

[MRES] ml1 : l1⇒�a l
ml2 : l2⇒♦a ¬l
ml :¬l1 ∨ ¬l2

[GEN2] ml1 : l
′
1 ⇒ �a l1

ml2 : l
′
2 ⇒ �a ¬l1

ml3 : l
′
3 ⇒ ♦a l2

ml : ¬l′1 ∨ ¬l′2 ∨ ¬l′3
[GEN1] ml1 : l

′
1 ⇒ �a ¬l1...

mlm : l′m ⇒ �a ¬lm
mlm+1 : l

′ ⇒ ♦a ¬l
mlm+2 : l1 ∨ . . . ∨ lm ∨ l

ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′

[GEN3] ml1 : l
′
1 ⇒ �a ¬l1...

mlm : l′m ⇒ �a ¬lm
mlm+1 : l

′ ⇒ ♦a l
mlm+2 : l1 ∨ . . . ∨ lm

ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′

Figure 1: Inference rules, where ml = σ({ml1, . . . ,mlm+1,mlm+2 − 1}) in GEN1, GEN3; ml = σ({ml1,ml2}) in LRES, MRES; and
ml = σ({ml1,ml2,ml3}) in GEN2.

the modal depth of p is 0 and its modal level is 2. Formal
definitions can be found in [Nalon et al., 2015].

As our calculus operates on a labelled clausal normal form
that is closely linked to the tree model property of Kripke
models for Kn, we briefly state the semantics of Kn. A tree-
like Kripke model M for n agents over P is given by a tu-
ple (W,w0, R1, . . . , Rn, π), where W is a set of possible
worlds with a distinguished world w0, each accessibility re-
lation Ra is a binary relation on W such that their union is
a tree with root w0, and π : W → (P → {true, false}) is a
function which associates with each world w ∈ W a truth-
assignment to propositional symbols. Satisfaction of a for-
mula at a world w of a model M is defined by:
• 〈M,w〉 |= p iff π(w)(p) = true, where p ∈ P;

• 〈M,w〉 |= ¬ϕ iff 〈M,w〉 6|= ϕ;

• 〈M,w〉 |= (ϕ ∧ ψ) iff 〈M,w〉 |= ϕ and 〈M,w〉 |= ψ;

• 〈M,w〉 |= �a ϕ iff for all w′, if wRaw
′ then 〈M,w′〉 |= ϕ.

LetM = (W,w0, R1, . . . , Rn, π) be a model. A formula ϕ is
locally satisfied inM , denoted byM |=L ϕ, if 〈M,w0〉 |= ϕ.
The formula ϕ is locally satisfiable if there is a modelM such
that 〈M,w0〉 |= ϕ. A formula ϕ is globally satisfied in M ,
if for all w ∈ W , 〈M,w〉 |= ϕ. We denote by depth(w) the
length of the unique path from w0 to w through the union of
the accessibility relations in M . We call a modal layer the
equivalence class of worlds at the same depth in a model.

We note that checking the local satisfiability of a formula
ϕ can be reduced to the problem of checking the local satisfi-
ability of its subformulae at the modal layer of a model which
corresponds to the modal level where those subformulae oc-
cur (see [Areces et al., 2000]). Also, checking the global
satisfiability of ϕ can be reduced to checking the local sat-
isfiability of ϕ at all modal layers (up to an exponential dis-
tance from the root) of a model [Goranko and Passy, 1992;
Spaan, 1993]. Thus, an uniform approach based on modal
levels can be used to deal with both problems, as given in the
next section.

3 A Normal Form and Calculus for Kn

The calculus operates on labelled clauses of the form ml : C
(literal clause), ml : l ⇒ �a l′ (positive a-clause), ml : l ⇒
♦a l′ (negative a-clause) whereml ∈ N∪{∗}, C is a proposi-
tional clause, and l, l′ are literals. The label ml indicates the

depth of the Kripke model at which the clause is true. The
special label ∗ is used if a clause is true at all depths/worlds
in a model and it normally only occurs in the normal form
if we want to check a formula for global satisfiability. Any
formula of Kn can be transformed into an equi-satisfiable set
of labelled clauses. The calculus uses a simple form of unifi-
cation. The partial unification function σ on sets of labels is
given by σ({ml, ∗}) = ml; and σ({ml}) = ml; otherwise,
σ is undefined. The inference rules (Figure 1) can only be
applied if the unification on labels is defined.

We show next an example of a refutation which uses both
local and global reasoning (from [Nalon et al., 2015], adapted
from [Areces et al., 1999]). Clauses 1 and 2 say that a person
is either female or male. Clauses 3 and 4 say that tall peo-
ple have children with blond hair. The particular situation of
Tom, denoted here by t0, is given in the following clauses.
Clauses 5, 6, and 7 say that Tom’s daughters are tall. Clauses
8 and 9 say that Tom has a grandchild who is not blond. We
want to prove that Tom has a son, which appears negated in
Clause 10. The refutation is given below.
1. ∗ : female ∨male
2. ∗ : ¬female ∨ ¬male
3. ∗ : ¬tall ∨ t1
4. ∗ : t1 ⇒ �c blond
5. 0 : t0
6. 0 : t0 ⇒ �c t2
7. 1 : ¬t2 ∨ ¬female ∨ tall
8. 0 : t0 ⇒ ♦c t3
9. 1 : t3 ⇒ ♦c ¬blond
10. 0 : t0 ⇒ �c ¬male
11. 1 : ¬t1 ∨ ¬t3 [MRES, 9, 4]
12. 1 : ¬tall ∨ ¬t3 [LRES, 11, 3]
13. 1 : ¬t3 ∨ ¬t2 ∨ ¬female [LRES, 7, 12]
14. 1 : male ∨ ¬t2 ∨ ¬t3 [LRES, 13, 1]
15. 0 : ¬t0 [GEN1, 10, 6, 8, 14]
16. 0 : false [LRES, 15, 5]

4 KSP
KSP is an implementation, written in C, of the calculus in
Figure 1. The main loop is based on the given-clause algo-
rithm implemented in Otter [McCune, 2007], a variation of
the set of support strategy [Wos et al., 1965], a refinement
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Figure 2: Benchmarking results for MQBF

which restricts the set of choices of clauses participating in
a derivation step. For the modal calculus, the set of clauses
is partitioned according to the modal layer at which clauses
are true. For each modal level ml, a literal clause is selected
and the prover tries to resolve it with either a literal clause
at the same modal level or with a set of modal clauses in the
previous modal level, ml − 1.

The partitioning of the set of clauses avoids unnecessary
applications of the resolution inference rules. For instance,
the translation of the formula ϕ = ♦a ♦a p ∧ �a ¬p without
considering the modal level at which its subformulae occur
results in the set:

1. t0
2. t0 ⇒ ♦a t1
3. t1 ⇒ ♦a p
4. t0 ⇒ �a ¬p

where t0 and t1 are new propositional symbols. Because ♦a p
and �a ¬p are complementary, resolution applied to Clauses
3 and 4 results in ¬t0 ∨ ¬t1, which cannot be used to find a
contradiction. In contrast, by using labels, the translation of
ϕ results in the set:

1′. 0 : t0
2′. 0 : t0 ⇒ ♦a t1
3′. 1 : t1 ⇒ ♦a p
4′. 0 : t0 ⇒ �a ¬p

As the labels indicate, Clauses 3′ and 4′ occur at different
modal levels and resolution is not applied to those clauses.

As another simple example, consider the formula �a �a p ∧
♦a ♦a ¬p, whose layered normal form is given below.

1. 0 : t0
2. 0 : t0 ⇒ �a t1
3. 1 : t1 ⇒ �a p
4. 0 : t0 ⇒ ♦a t2
5. 1 : t2 ⇒ ♦a ¬p

As clauses 3 and 4 are at the same modal level, MRES can
be applied, resulting in 0 : ¬t1 ∨ ¬t2. By an application of
GEN1 to this clause and Clauses 2 and 4, we obtain 0 : ¬t0.
Applying LRES to 0 : ¬t0 and Clause 1, results in 0 : false,
which shows that the original formula is unsatisfiable.

Besides the basic calculus with a set-of-support strat-
egy, the user can further restrict LRES by choosing or-
dered (clauses can only be resolved on their maximal lit-
erals with respect to an ordering chosen by the prover in
such a way to preserve completeness), negative (one of the
premises is a negative clause, i.e. a clause where all liter-
als are of the form ¬p for some p ∈ P), positive (one
of the premises is a positive clause), or negative + ordered
resolution (both negative and ordered resolution inferences
are performed). The completeness of some of these refine-
ments depends on the particular normal form chosen. The
prover can either perform local or global reasoning. For a
comprehensive description of KSP see [Nalon et al., 2016a;
Nalon et al., 2016b].

5 Evaluation
We have compared KSP with BDDTab [Goré et al.,
2014], FaCT++ 1.6.3 [Tsarkov and Horrocks, 2006],
InKreSAT 1.0 [Kaminski and Tebbi, 2013], Sparta-
cus 1.0 [Götzmann et al., 2010], and a combination of the
optimised functional translation [Horrocks et al., 2006] with
Vampire 3.0 [Kovács and Voronkov, 2013]. Benchmarking
was performed on PCs with an Intel i7-2600 CPU @3.40GHz
and 16GB main memory. For each formula and each prover
we have determined the median run time over five runs with
a time limit of 1000 CPU seconds for each run. The experi-
ments are fully described in [Nalon et al., 2016a], from where
the graphs shown in this section are taken.

Our benchmarks [Nalon et al., 2016b] consist of three col-
lections of modal formulae:
1. The complete set of TANCS-2000 modalised random QBF

(MQBF) formulae [Massacci and Donini, 2000] comple-
mented by the additional MQBF formulae provided by
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(a) Results for LWB (b) Results for 3CNFK

Figure 3: Benchmarking results for LWB and 3CNFK

Tebbi and Kaminski [2013]. This collection consists of
five classes, with a total of 1016 formulae, of which 617
are known to be satisfiable and 399 are known to be unsat-
isfiable (due to the output of one of the provers).

2. Logics Workbench (LWB) basic modal logic benchmark
formulae [Balsiger et al., 2000], with 56 formulae cho-
sen from each of the 18 parameterised classes. The me-
dian value of the maximal parameter value used for the 18
classes is 1880, far beyond what has ever been tested be-
fore. Of the resulting 1008 formulae, half are satisfiable
and half are unsatisfiable by construction of the bench-
mark classes.

3. Randomly generated 3CNFK formulae [Patel-Schneider
and Sebastiani, 2003] over 3 to 10 propositional symbols
with modal depth 1 or 2. The formulae were chosen from
each of the 11 parameter settings given in [Patel-Schneider
and Sebastiani, 2003, page 372]. The resulting collection
contains 1000 formulae, of which 457 are known to be
satisfiable and 464 are known to be unsatisfiable.
Figure 2a compares the impact of different refinements on

the performance of KSP on the MQBF collection. With plain
KSP uses the rules shown in Figure 1, without additional re-
finement. With cord and negative ordered, KSP applies or-
dered resolution and negative + ordered resolution, respec-
tively. The configuration negative (resp. positive) uses neg-
ative (resp. positive) resolution on a set of clauses. For all
configurations, the same preprocessing techniques are used.
The cord configuration offers the best performance. Ordered
resolution restricts the applicability of the rules further than
the other refinements. Not only is this an advantage on satisfi-
able formulae in that a saturation can be found more quickly,
but also on unsatisfiable formulae where with this refinement
KSP finds refutations much more quickly than with any of the
other refinements.

Figure 2b compares the performance of all the provers on
the MQBF collection. It shows that KSP performs better than
any of the other provers. The classes of formulae on which
KSP performs best are those where the number of proposi-

tional symbols is small and/or those symbols are uniformly
distributed over a wide range of modal levels. This reduces
the possibility of inference steps between modal clauses with
complementary literals.

Figure 3 shows the benchmarking results on the LWB and
3CNFK collections. On the LWB collection KSP performs
about as well as BDDTab, FaCT++ and InKreSAT, while
Spartacus performs best and the combination of the optimised
functional translation with Vampire (OFT + Vampire) per-
forms worst. A characteristic of the classes on which KSP
performs best is again that atomic subformulae are evenly
spread over a wide range of modal levels.

Finally, on the 3CNFK collection, InKreSAT is the best per-
forming prover and KSP the worst one. This should now not
come as a surprise. For 3CNFK we specifically restricted our-
selves to formulae with low modal depth which in turn means
that the layered normal form has little positive effect.

6 Conclusions and Future Work
KSP implements a variation of the set-of-support strategy by
restricting further the application of inference rules to clauses
whose literals are at the same modal level. The evaluation
indicates that KSP works well on problems with high modal
depth where the separation of modal layers can be exploited
to improve the efficiency of reasoning.

The prover implements both local and global reasoning,
and the implementation of the local satisfiability under global
constraint procedure is ongoing work. We are are also work-
ing on the extension of the calculus for dealing with differ-
ent modal logics. The calculi for Tn and 4n, which can be
combined to provide a calculus for S4n, have already been
implemented.

Several refinements and redundancy elimination tech-
niques have been implemented. The choice of strategies and
optimisations are, by now, all left to the user. The develop-
ment of an “auto mode” in which the prover makes a choice
of its own, based on an analysis of the given formula, is left
for future work.
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