
nanoCoP: Natural Non-clausal Theorem Proving

Jens Otten
Department of Informatics, University of Oslo, Norway

jeotten@ifi.uio.no

Abstract
Most efficient fully automated theorem provers im-
plement proof search calculi that require the in-
put formula to be in a clausal form, i.e. disjunc-
tive or conjunctive normal form. The translation
into clausal form introduces a significant overhead
to the proof search and modifies the structure of
the original formula. Translating a proof in clausal
form back into a more readable non-clausal proof
of the original formula is not straightforward. This
paper presents a non-clausal automated theorem
prover for classical first-order logic. It is based on
a non-clausal connection calculus and implemented
with a few lines of Prolog code. Working entirely
on the original structure of the input formula yields
not only a speed up of the proof search, but the re-
sulting non-clausal proofs are also shorter.

1 Introduction
Automated Theorem Proving (ATP) in classical first-order
logic is a core research area in the field of Automated Rea-
soning (see [Robinson and Voronkov, 2001] for an overview).
It is concerned with the question whether a conjecture H is
a logical consequence of a given set of axioms G1, . . . , Gn,
written G1, . . . , Gn |= H , in which G1, . . . , Gn, H are first-
order formulae. More specifically the objective in ATP is
to find a proof for the validity of a given formula F . A
formula F is valid if and only if it evaluates to true for all
possible interpretation of its function and predicate symbols.
According to the Deduction Theorem (for classical logic),
G1, . . . , Gn |= H holds if and only if there is a proof for
the validity of the formula (G1 ∧ . . . ∧Gn) ⇒ H . A formal
description of the proof search algorithm is usually specified
in form of a proof (search) calculus consisting of axioms and
rules. Implementations of such proof calculi are called ATP
systems or (automated theorem) provers.

Most efficient fully automated theorem provers implement
proof calculi that require the input formula to be in a clausal
form, i.e. disjunctive or conjunctive normal form. Formulae
that are not in clausal form are translated into clausal form in
a preprocessing step. For example, the formula F#

P (a)∧(∀y(P (y)⇒P (g(y)))∨(Q⇒Q)∨(R⇒R))⇒P (g(g(a)))

has the disjunctive normal form (quantifiers are eliminated)

¬P (a)∨ (P (y)∧¬P (g(y))∧Q∧R)∨ (P (y)∧¬P (g(y))∧Q∧¬R)
∨ (P (y)∧¬P (g(y))∧¬Q∧R) ∨ (P (y)∧¬P (g(y))∧¬Q∧¬R)
∨ P (g(g(a))) .

While the use of a clausal form technically simplifies the
proof calculi and their implementations, it has some funda-
mental disadvantages. The standard translation into clausal
form as well as the definitional translation [Plaisted and
Greenbaum, 1986; Eder, 1992], which introduces definitions
for subformulae, cause a significant overhead for the proof
search [Otten, 2010]. For example, the disjunctive normal
form of F#, in which some parts of the formula are copied,
has more than twice the size of the original formula. Further-
more, a translation into clausal form modifies the structure
of the formula, hence, a translation of the clausal proof back
into one of the original formula is not straightforward [Reis,
2015]. On the other hand, proof search with more “natural”
non-clausal calculi, such as sequent or standard tableau cal-
culi [Gentzen, 1935; Hähnle, 2001] is less efficient.

This paper describes the non-clausal prover nanoCoP for
classical first-order logic [Otten, 2016]. By performing the
proof search on the original structure of the input formula,
it combines the advantages of more natural non-clausal cal-
culi with the efficiency of a goal-oriented connection-based
proof search. The prover is based on a non-clausal connec-
tion calculus [Otten, 2011] (Section 2) that generalizes the
clausal connection calculus [Bibel, 1983; 1987] and is im-
plemented in a very compact way (Section 3). It follows
the lean methodology already used for the clausal connec-
tion prover leanCoP, whose minimal Prolog source code is
shown in Figure 1. An experimental evaluation (Section 4)
indicates a solid performance of nanoCoP.

prove(I,S):- \+member(scut,S) -> prove([-(#)],[],I,[],S) ;
lit(#,C,_) -> prove(C,[-(#)],I,[],S).

prove(I,S):- member(comp(L),S), I=L -> prove(1,[]) ;
(member(comp(_),S);retract(p)) -> J is I+1, prove(J,S).

prove([],_,_,_,_).
prove([L|C],P,I,Q,S):- \+ (member(A,[L|C]), member(B,P),

A==B), (-N=L;-L=N) -> ( member(D,Q), L==D ;
member(E,P), unify_with_occurs_check(E,N) ; lit(N,F,H),
(H=g -> true ; length(P,K), K<I -> true ;
\+p -> assert(p), fail), prove(F,[L|P],I,Q,S) ),
(member(cut,S) -> ! ; true), prove(C,P,I,[L|Q],S).

Figure 1: Source code of the leanCoP 2.0 core prover

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4924



2 The Non-clausal Connection Calculus
The standard notation for first-order formulae is used. Terms
(denoted by t) are built up from functions (f, g, h, i), con-
stants (a, b, c), and variables (x, y, z). An atomic formula (A)
is built up from predicate symbols (P,Q,R, S) and terms; a
(first-order) formula (F,G,H) is built up from atomic formu-
lae, the connectives ¬, ∧, ∨,⇒, and the first-order quantifiers
∀ and ∃. A literal L has the form A or ¬A. Its complement L
is A if L is of the form ¬A; otherwise L is ¬L.

A term substitution σ assigns terms to variables. A for-
mula in clausal form has the form ∃x1 . . . ∃xn(C1∨. . .∨Cn),
where each clauseCi is a conjunction of literalsL1, . . . , Lmi

.
It is represented as a set of clauses {C1, . . . , Cn}, called a
(clausal) matrix. A polarity 0 or 1 is used to represent nega-
tion, i.e. literals of the form A and ¬A are represented by A0

and A1, respectively, A connection is a set {A0, A1} of liter-
als with the same predicate symbol but different polarities.

In a non-clausal matrix, a clause consists of literals and
(sub)matrices. Let F be a formula and pol be a polarity. The
non-clausal matrix M(F pol) of a formula F pol is a set of
clauses, in which a clause is a set of literals and matrices, and
is defined according to Table 1. In Table 1, x∗ is a new vari-
able, t∗ is the skolem term f∗(x1, . . . , xn) in which f∗ is a
new function symbol and x1, . . . , xn are the free variables in
∀xG or ∃xG. In G[x\t] all free occurrences of x in G are
replaced by t. The non-clausal matrix M(F ) of a formula
F is the matrix M(F 0). In the graphical representation its
clauses are arranged horizontally, while the literals and ma-
trices of each clause are arranged vertically. For example, the
formula F# of Section 1 has the simplified (i.e. redundant
brackets are removed) non-clausal matrix M# =M(F#):

{{P (a)1}, {{{P (y)0, P (g(y))1}}, {{Q0}, {Q1}},
{{R0}, {R1}}}, {P (g(g(a)))0}} .

The graphical representation of the matrix M# is depicted
in Figure 2. It already contains a clause copy with the fresh
variable y′ and represents a non-clausal connection proof us-
ing the term substitution σ with σ(y) = a and σ(y′) = g(a);
literals of each connection are connected with a line.

Compared to the formal clausal connection calculus [Otten
and Bibel, 2003], a decomposition rule is added to the non-
clausal calculus and the extension rule is slightly modified.

type F pol M(F pol)

atomic Apol {{Apol}}
α (¬G)pol M(G1−pol)

(G ∧H)1 {{M(G1)}, {M(H1)}}
(G ∨H)0 {{M(G0)}, {M(H0)}}
(G⇒ H)0 {{M(G1)}, {M(H0)}}

β (G ∧H)0 {{M(G0),M(H0)}}
(G ∨H)1 {{M(G1),M(H1)}}
(G⇒ H)1 {{M(G0),M(H1)}}

γ (∀xG)1 M(G[x\x∗]1)
(∃xG)0 M(G[x\x∗]0)

δ (∀xG)0 M(G[x\t∗]0)
(∃xG)1 M(G[x\t∗]1)

Table 1: The definition of the non-clausal matrix

[P (a)1
]

[[

P (y)0

P (g(y))1

] copy︷ ︸︸ ︷[
P (y′)0

P (g(y′))1

]]
[ [

Q0
] [

Q1
] ][ [

R0
] [

R1
] ]

 [P (g(g(a)))0
]


Figure 2: Graphical representation of a non-clausal matrix and its
non-clausal connection proof

A clause C contains a literal L if and only if (iff) L∈C or
C ′ contains L for M ′ ∈C, C ′∈M ′. A clause C is α-related
to a literal L iff it contains a matrix M ′ with {C ′, C ′′}⊆M ′
for clauses C ′, C ′′, such that C ′ contains L and C ′′ contains
C (or C=C ′′). A copy of the clause C in the matrix M is
made by renaming all free variables inC. M [C1\C2] denotes
the matrix M , in which the clause C1 is replaced by C2. C ′
is a parent clause of C iff M ′ ∈C ′ and C ∈M ′ for some M ′.

Let M be a matrix and Path be a set of literals. C is an
extension clause (e-clause) of the matrix M with respect to a
set of literals Path iff either (a) C contains a literal of Path,
or (b)C is α-related to all literals of Path occurring inM and
ifC has a parent clause, it contains a literal of Path. In the β-
clause of C2 with respect to L2, denoted by β-clauseL2

(C2),
L2 and clauses that are α-related to L2 are deleted from C2.

The non-clausal connection calculus [Otten, 2011], which
is sound and complete, is shown in Figure 3. Therein, M is
a non-clausal matrix, C is a (subgoal) clause or ε (a special
empty symbol) and (the active) Path is a set of literals or ε;
σ is a term substitution. A non-clausal connection proof of
M is a non-clausal connection proof of ε,M, ε.

The analytic, i.e. bottom-up, proof search is carried out in
the same way as in the clausal calculus. Additional backtrack-
ing might be required when selectingC1 in the decomposition
rule, but no backtracking is required when selecting M1. The
rigid, i.e. single, term substitution σ is calculated whenever a
connection is identified in a reduction or extension rule. On
formulae in clausal form, the non-clausal connection calculus
coincides with the clausal connection calculus.

Axiom (A) {},M, Path

Start (S)
C2,M, {}
ε, M, ε

and C2 is copy of C1∈M

Reduction (R)
C,M,Path∪{L2}

C∪{L1},M, Path∪{L2} and σ(L1)=σ(L2)

Extension (E)
C3,M [C1\C2], Path∪{L1} C,M,Path

C∪{L1},M, Path

and C3:=β-clauseL2(C2), C2 is copy of C1, C1 is e-clause
of M wrt. Path∪{L1}, C2 contains L2 with σ(L1)=σ(L2)

Decomposition (D)
C ∪ C1,M, Path
C∪{M1},M, Path

and C1∈M1

Figure 3: The non-clausal connection calculus

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4925



3 The nanoCoP Theorem Prover
The implementation of the non-clausal connection calcu-
lus of Figure 3 follows the lean methodology [Beckert and
Posegga, 1995], which is already used for the clausal con-
nection prover leanCoP [Otten and Bibel, 2003]. It uses
very compact Prolog code to implement the basic calcu-
lus and adds a few essential optimization techniques in
order to prune the search space. The resulting natural
nonclausal connection prover nanoCoP is available under
the GNU General Public License and can be downloaded at
http://www.leancop.de/nanocop/ .

In a first step, the input formula F is translated into a non-
clausal (indexed) matrix M(F ) according to Table 1; redun-
dant brackets are removed [Otten, 2011]. Additionally, ev-
ery (sub-)clause (I, V ) :C and (sub-)matrix J :M is marked
with a unique index I or J ; clause C is also marked with a set
of variables V that are newly introduced in C but not in any
subclause of C. Atomic formulae are represented by Prolog
atoms, term variables by Prolog variables and the polarity 1
by “-”. Sets, e.g. clauses and matrices, are represented by
Prolog lists (representing multisets). For example, the matrix
M# from Section 2 is represented by the Prolog term

[(0ˆK)ˆ[]:[-(p(a))],
(1ˆK)ˆ[]:[2ˆK:[(3ˆK)ˆ[Y]:[p(Y),-(p(g(Y)))]],

4ˆK:[(5ˆK)ˆ[]:[q],(6ˆK)ˆ[]:[-q]],
7ˆK:[(8ˆK)ˆ[]:[r],(9ˆK)ˆ[]:[-r]]],

(10ˆK)ˆ[]:[p(g(g(a)))]]

in which the Prolog variable K is used to enumerate clause
copies. In the second step, the matrix M = M(F ) is written
into Prolog’s database. For every literal Lit in M the fact

lit(Lit,ClaB,ClaC,Grnd)

is asserted into the database where ClaC ∈M is the (largest)
clause in which Lit occurs and ClaB is the β-clause of ClaC
with respect to Lit. Grnd is set to g if the smallest clause
in which Lit occurs is ground, i.e. does not contain any vari-
ables; otherwise Grnd is set to n. Storing literals of M in the
database in this way is called lean Prolog technology [Otten,
2010] and integrates the advantages of the Prolog technology
approach [Stickel, 1988] into the lean theorem proving frame-
work. No other modifications or simplifications of the origi-
nal formula are done during these two preprocessing steps.

The nanoCoP source code is shown in Figure 4. As an
optimization, it uses positive start clauses [Otten, 2011], cal-
culated by the predicate positiveC(Cla,Cla1).

The predicate prove(Mat,PathLim,Set,Proof) im-
plements the start rule. Mat is the matrix generated in the
preprocessing step, PathLim is the maximum size of the ac-
tive path used for iterative deepening, and Proof contains
the returned connection proof. Set is a list of options used
to control the restricted backtracking technique [Otten, 2010]
and may contain “cut” and “comp(I)” for I ∈ IN . In or-
der to achieve completeness, nanoCoP performs an iterative
deepening on the size of the active path implemented within
the second Prolog clause of this prove predicate.

The predicate prove(Cla,Mat,Path,PathI,PathLim,
Lem,Set,Proof) implements the axiom, the decomposi-
tion rule, the reduction rule, and the extension rule of the

non-clausal connection calculus of Figure 3. Cla, Mat, and
Path represent the subgoal clause C, the (indexed) matrix
M and the (active) Path. The term substitution σ is stored
implicitly by Prolog. The indexed path PathI contains the
indices of all clauses and matrices that contain literals of
Path; it is used for calculating extension clauses. The list
Lem is used for the lemmata rule and contains all literals
that have already been “solved” [Otten, 2010]. This prove
predicate succeeds iff there is a connection proof for the
tuple Cla, Mat, Path with |Path|< PathLim. In this case
Proof returns a connection proof. The input matrix Mat has
to be stored in Prolog’s database as explained above.

Finally, the last predicate prove_ec(ClaB,Cla1,Mat,
PathI,ClaB1,Mat1) is used to calculate extension clauses.
Starting with the (largest possible) extension clause Cla1, its
β-clause ClaB, the current (indexed) matrix Mat, and the in-
dexed path PathI, it returns an appropriate extension clause
Cla, copies it into Mat and returns its β-clause ClaB1 and
the new (indexed) matrix Mat1.

nanoCoP uses additional optimization techniques that are
already used in the clausal connection prover leanCoP: regu-
larity, lemmata, and restricted backtracking [Otten, 2010].

% start rule
prove(Mat,PathLim,Set,[(Iˆ0)ˆV:Cla1|Proof]) :-

member((Iˆ0)ˆV:Cla,Mat), positiveC(Cla,Cla1),
prove(Cla1,Mat,[],[Iˆ0],PathLim,[],Set,Proof).

prove(Mat,PathLim,Set,Proof) :-
retract(pathlim) ->
( member(comp(PathLim),Set) -> prove(Mat,1,[],Proof) ;
PathLim1 is PathLim+1, prove(Mat,PathLim1,Set,Proof) ) ;

member(comp(_),Set) -> prove(Mat,1,[],Proof).

% axiom
prove([],_,_,_,_,_,_,[]).

% decomposition rule
prove([J:Mat1|Cla],MI,Path,PI,PathLim,Lem,Set,Proof) :- !,

member(Iˆ_:Cla1,Mat1),
prove(Cla1,MI,Path,[I,J|PI],PathLim,Lem,Set,Proof1),
prove(Cla,MI,Path,PI,PathLim,Lem,Set,Proof2),
append(Proof1,Proof2,Proof).

% reduction and extension rules
prove([Lit|Cla],MI,Path,PI,PathLim,Lem,Set,Proof) :-

Proof=[[IˆV:[NegLit|ClaB1]|Proof1]|Proof2],
\+ (member(LitC,[Lit|Cla]), member(LitP,Path), LitC==LitP),
(-NegLit=Lit;-Lit=NegLit) ->

( member(LitL,Lem), Lit==LitL, ClaB1=[], Proof1=[]
;
member(NegL,Path), unify_with_occurs_check(NegL,NegLit),
ClaB1=[], Proof1=[]
;
lit(NegLit,ClaB,Cla1,Grnd1),
( Grnd1=g -> true ; length(Path,K), K<PathLim -> true ;
\+ pathlim -> assert(pathlim), fail ),

prove_ec(ClaB,Cla1,MI,PI,IˆV:ClaB1,MI1),
prove(ClaB1,MI1,[Lit|Path],[I|PI],PathLim,Lem,Set,Proof1)

),
( member(cut,Set) -> ! ; true ),
prove(Cla,MI,Path,PI,PathLim,[Lit|Lem],Set,Proof2).

% extension clause (e-clause)
prove_ec((IˆK)ˆV:ClaB,IV:Cla,MI,PI,ClaB1,MI1) :-

append(MIA,[(IˆK1)ˆV1:Cla1|MIB],MI), length(PI,K),
( ClaB=[JˆK:[ClaB2]|_], member(JˆK1,PI),
unify_with_occurs_check(V,V1), Cla=[_:[Cla2|_]|_],
append(ClaD,[JˆK1:MI2|ClaE],Cla1),
prove_ec(ClaB2,Cla2,MI2,PI,ClaB1,MI3),
append(ClaD,[JˆK1:MI3|ClaE],Cla3),
append(MIA,[(IˆK1)ˆV1:Cla3|MIB],MI1)
;
(\+member(IˆK1,PI);V\==V1) ->
ClaB1=(IˆK)ˆV:ClaB, append(MIA,[IV:Cla|MIB],MI1) ).

Figure 4: The source code of the nanoCoP prover

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4926



4 Experimental Evaluation
The following evaluations were conducted on a 3.4 GHz
Xeon system with 4 GB of RAM running Linux 3.13.0 and
ECLiPSe Prolog 5.10. The CPU time limit for all proof at-
tempts was set 100 seconds.

The following formula Fn is a slightly extended version of
the formula F# of Section 1, where fn, gn, hn, and in are
abbreviations for n nested applications of these functions:

Fn ≡ P (a) ∧ ( ¬((Q(fn(c)) ∧ ∀x(Q(f(x))⇒Q(x)))⇒ Q(c))
∨ ¬((R(hn(c)) ∧ ∀x(R(h(x))⇒R(x))) ⇒ R(c))
∨ ¬((S(in(c)) ∧ ∀x(S(i(x))⇒S(x)))⇒ S(c))
∨ ∀y(P (y)⇒P (g(y))) ) ⇒ ∃z P (gn(z)) .

Table 2 shows the timings on this (valid) formula class
for n=10, n=30, and n=90 for the following provers:
the lean (non-clausal) tableau prover leanTAP [Beckert and
Posegga, 1995], the resolution prover Prover9 [McCune,
2005], the superposition prover E [Schulz, 2002] (using
options “--auto --tptp3-format”), the clausal connec-
tion prover leanCoP [Otten and Bibel, 2003; Otten, 2010],
and nanoCoP. The leanCoP core prover with the stan-
dard (“[nodef]”) and the definitional (“[def]”) translation into
clausal form were tested. For nanoCoP restricted backtrack-
ing was switched off (Set=[]). Times are given in seconds;
the size of the returned proof tree, i.e. the number of nodes of
the proof tree, is given in brackets.

The last line of Table 2 shows the number of proved prob-
lems of all 5051 first-order (FOF) problems in the TPTP li-
brary v3.7.0 [Sutcliffe, 2009]. For leanTAP, leanCoP, and
nanoCoP, the required equality axioms were added in a pre-
processing step (which is included in the timings). The
nanoCoP core prover performs significantly better than both
clausal form translations of the leanCoP core prover.

Furthermore, 40%/51% of the proofs found by nanoCoP
are shorter than those of leanCoP [nodef]/[def], respectively;
as many of the problems in the TPTP library are “mostly” in a
clausal form, 56%/47% of the proofs have the same size. The
proofs of nanoCoP are up to 96%/74% shorter than those of
the leanCoP versions [nodef]/[def], respectively.

The “full” leanCoP 2.2 prover, which additionally uses a
strategy scheduling [Otten, 2010], proves 1710 TPTP prob-
lems. The version of nanoCoP using a restricted backtrack-
ing strategy, i.e. Set=[cut,comp(6)], was tested as well; it
proves 1485 TPTP problems.

Tests have also shown that the classical version of the
non-clausal connection prover JProver [Schmitt et al., 2001],
which is the only published non-clausal connection prover so
far, has a lower performance than leanTAP.

leanTAP Prover9 E leanCoP 2.2 nanoCoP
2.3 2009-02A 1.9 [nodef] [def] [ ]

F10 0.17 (128) – 1.22 (2916) – – 0.09 (45)
F30 – – 84.57 (57628) – – 0.12 (125)
F90 – – – – – 0.42 (365)
TPTP 404 1611 2782 1134 1065 1232

Table 2: Results on formula class Fn and the TPTP library

5 Conclusion
Formal reasoning is a fundamental task in mathematics, com-
puter science and many related fields. Since Frege published
the first formal calculus for first-order logic in his Begriffs-
schrift [Frege, 1879], the development and implementation
of efficient proof calculi has made significant progress. But
up to now, most —if not all— efficient fully automated the-
orem provers for classical first-order logic translate the input
formula into a clausal form. By using the standard translation
the size of the resulting formula can grow exponentially with
respect to the size of the original formula. Even a definitional
translation increases the size of the formula, which results in a
significant overhead for the proof search [Otten, 2010]. Both
clausal form translations modify the structure of the formula,
making it difficult to translate the (clausal) proof back into a
proof of the original formula.

This paper introduced nanoCoP, the first efficient non-
clausal connection prover for classical first-order logic. Us-
ing non-clausal matrices the proof search works directly on
the original structure of the input formula and, thus, avoids a
translation into any clausal form. This combines the advan-
tages of more natural non-clausal sequent or tableau provers
with the goal-oriented efficiency of connection provers.

Even though the non-clausal inferences introduce a slight
overhead, nanoCoP outperforms both clausal form transla-
tions of the leanCoP core prover on a large set of TPTP prob-
lems. About half of the returned non-clausal proofs are up to
96% shorter than their clausal counterparts.

nanoCoP returns a compact non-clausal connection proof.
A connection corresponds to a closed branch in the tableau
calculus [Hähnle, 2001] or an axiom in the sequent calcu-
lus [Gentzen, 1935]. Hence, the translation into, e.g., a se-
quent proof is straightforward. The compact size of nanoCoP
makes it also a suitable tool for the development of verifiably
correct software [Otten and Bibel, 2017], as its correctness
can be proven much more easily than that of an ATP system
consisting of several thousand lines of source code.

Only few research work investigates non-clausal connec-
tion calculi and implementations. Other approaches [An-
drews, 1981; Bibel, 1987; Hähnle et al., 2004; Kreitz and
Otten, 1999] work (efficiently) only for ground formulae or
their implementation is not available anymore [Issar, 1990].

Another important application of nanoCoP is its usage
within non-classical logics, such as (first-order) intuitionistic
or modal logic, for which the use of a clausal form is either
not desirable or not possible. Hence, future work includes the
combination of the non-clausal approach with the prefix (uni-
fication) technique for some non-classical logics, as already
done for leanCoP [Otten, 2008; 2014]. In order to improve
performance, further optimization techniques need to be in-
tegrated into nanoCoP, such as strategy scheduling [Otten,
2010], learning [Kaliszyk and Urban, 2015] or variable split-
ting [Antonsen and Waaler, 2007].

Acknowledgements
The author would like to thank Wolfgang Bibel for his helpful
comments on a preliminary version of this paper.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4927



References
[Andrews, 1981] Peter B. Andrews. Theorem proving via

general matings. J. ACM, 28(2):193–214, 1981.
[Antonsen and Waaler, 2007] Roger Antonsen and Arild

Waaler. Liberalized variable splitting. J. Autom. Reason-
ing, 38(1–3):3–30, 2007.

[Beckert and Posegga, 1995] Bernhard Beckert and Joachim
Posegga. leanTAP: Lean tableau-based deduction. J. Au-
tom. Reasoning, 15(3):339–358, 1995.

[Bibel, 1983] Wolfgang Bibel. Matings in matrices. Com-
mun. ACM, 26(11):844–852, 1983.

[Bibel, 1987] Wolfgang Bibel. Automated theorem proving.
Artificial intelligence. F. Vieweg und Sohn, Wiesbaden,
2nd edition, 1987.

[Eder, 1992] Elmar Eder. Relative Complexities of First Or-
der Calculi. Vieweg, Braunschweig, 1992.

[Frege, 1879] Gottlob Frege. Begriffsschrift: Eine der
arithmetischen nachgebildete Formelsprache des reinen
Denkens. L. Nebert, Halle, 1879.

[Gentzen, 1935] Gerhard Gentzen. Untersuchungen über das
Logische Schließen. Mathematische Zeitschrift, 39:176–
210, 405–431, 1935.

[Hähnle et al., 2004] Reiner Hähnle, Neil. V. Murray, and
Erik Rosenthal. Linearity and regularity with negation nor-
mal form. Theoretical Computer Science, 328:325–354,
2004.

[Hähnle, 2001] Reiner Hähnle. Tableaux and related meth-
ods. In Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, volume I, chapter 3,
pages 101–178. Elsevier Science B.V., 2001.

[Issar, 1990] Sunil Issar. Path-focused duplication: A search
procedure for general matings. In T. S. W. Dietterich, edi-
tor, AAAI-90, pages 221–226. MIT Press, 1990.

[Kaliszyk and Urban, 2015] Cezary Kaliszyk and Josef Ur-
ban. FeMaLeCoP: Fairly efficient machine learning
connection prover. In Martin Davis, Ansgar Fehnker,
Annabelle McIver, and Andrei Voronkov, editors, LPAR-
20, volume 9450 of Lecture Notes in Artificial Intelligence,
pages 88–96. Springer, 2015.

[Kreitz and Otten, 1999] Christoph Kreitz and Jens Otten.
Connection-based theorem proving in classical and non-
classical logics. J. UCS, 5(3):88–112, 1999.

[McCune, 2005] William McCune. Release of Prover9.
2005. Mile high conference on quasigroups, loops and
nonassociative systems.

[Otten and Bibel, 2003] Jens Otten and Wolfgang Bibel.
leanCoP: lean connection-based theorem proving. Jour-
nal of Symbolic Computation, 36(1–2):139–161, 2003.

[Otten and Bibel, 2017] Jens Otten and Wolfgang Bibel. Ad-
vances in connection-based automated theorem proving.
In J. Bowen, M. Hinchey, and E.-R. Olderog, editors,
Provably Correct Systems. Springer, 2017.

[Otten, 2008] Jens Otten. leanCoP 2.0 and ileanCoP 1.2:
High performance lean theorem proving in classical and
intuitionistic logic. In Alessandro Armando, Peter Baum-
gartner, and Gilles Dowek, editors, IJCAR 2008, volume
5195 of Lecture Notes in Artificial Intelligence, pages
283–291. Springer, 2008.

[Otten, 2010] Jens Otten. Restricting backtracking in con-
nection calculi. AI Commun., 23(2–3):159–182, 2010.

[Otten, 2011] Jens Otten. A non-clausal connection calculus.
In Kai Brünnler and George Metcalfe, editors, TABLEAUX
2011, volume 6793 of Lecture Notes in Artificial Intelli-
gence, pages 226–241. Springer, 2011.

[Otten, 2014] Jens Otten. MleanCoP: A connection prover
for first-order modal logic. In Stéphane Demri, Deepak
Kapur, and Christoph Weidenbach, editors, IJCAR 2014,
volume 8562 of Lecture Notes in Artificial Intelligence,
pages 269–276. Springer, 2014.

[Otten, 2016] Jens Otten. nanoCoP: A non-clausal connec-
tion prover. In Nicola Olivetti and Ashish Tiwari, editors,
IJCAR 2016, volume 9706 of Lecture Notes in Artificial
Intelligence, pages 302–312. Springer, 2016.

[Plaisted and Greenbaum, 1986] David A. Plaisted and
Steven Greenbaum. A structure-preserving clause form
translation. J. Symbolic Computation, 2(3):293–304,
1986.

[Reis, 2015] Giselle Reis. Importing SMT and connection
proofs as expansion trees. In Proof Exchange for Theorem
Proving (PxTP), volume 186 of EPTCS, pages 3–10, 2015.

[Robinson and Voronkov, 2001] John Alan Robinson and
Andrei Voronkov, editors. Handbook of Automated Rea-
soning. Elsevier Science Publishers, Amsterdam, 2001.

[Schmitt et al., 2001] Stephan Schmitt, Lori Lorigo,
Christoph Kreitz, and Aleksey Nogin. JProver: Integrat-
ing connection-based theorem proving into interactive
proof assistants. In Rajeev Goré, Alexander Leitsch, and
Tobias Nipkow, editors, IJCAR 2001, volume 2083 of
Lecture Notes in Artificial Intelligence, pages 421–426.
Springer, 2001.

[Schulz, 2002] Stephan Schulz. E – a brainiac theorem
prover. AI Commun., 15(2–3):111–126, 2002.

[Stickel, 1988] Mark E. Stickel. A PROLOG technology the-
orem prover: Implementation by an extended PROLOG
compiler. J. Autom. Reasoning, 4(4):353–380, 1988.

[Sutcliffe, 2009] Geoff Sutcliffe. The TPTP problem library
and associated infrastructure: The FOF and CNF parts,
v3.5.0. J. Autom. Reasoning, 43(4):337–362, 2009.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4928


