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Abstract

Our goal is to develop models that allow a robot
to understand or “ground” natural language instruc-
tions in the context of its world model. Contempo-
rary approaches estimate correspondences between
an instruction and possible candidate groundings
such as objects, regions and goals for a robot’s ac-
tion. However, these approaches are unable to rea-
son about abstract or hierarchical concepts such as
rows, columns and groups that are relevant in a ma-
nipulation domain, Figure 1. We introduce a proba-
bilistic model that incorporates an expressive space
of abstract spatial concepts as well as notions of
cardinality and ordinality. Abstract concepts are in-
troduced as explicit hierarchical symbols correlated
with concrete groundings. Crucially, the abstract
groundings form a Markov boundary over concrete
groundings, effectively de-correlating them from
the remaining variables in the graph which reduces
the complexity of training and inference in the
model. Empirical evaluation demonstrates accurate
grounding of abstract concepts embedded in com-
plex natural language instructions commanding a
robot manipulator. The proposed inference method
leads to significant efficiency gains compared to the
baseline, with minimal trade-off in accuracy.

1 Introduction
Natural language communication with robots has been a long
standing goal in robotics and AI. As robots to enter our facto-
ries, workplaces and homes where effective communication
between humans and robots is vital. Natural language pro-
vides a rich, intuitive and flexible medium for humans and
robots to interact and share information. The problem of
“grounding” or understanding natural language instructions
involves determining the higher-order semantic concepts ex-
pressed in the utterance and relating these concepts with en-
tities perceived in the world. Inspired by statistical machine
translation, recent approaches [Howard et al., 2014b; Tellex
et al., 2011; Boularias et al., 2015; Matuszek et al., 2012;
Oh et al., 2015] pose the grounding problem as inference on
a graphical model structured according to the well studied

Figure 1: Robot following the instruction, “pick up the middle block
in the row of five blocks on the right”. The grounding for an ag-
gregative concept (“rows”) is abstract and linked with the expres-
sion of constituent concrete groundings (“blocks”). The space of ab-
stract concepts is exponentially-large in the number of constituents,
17.3×106 symbols in this setup. We present a probabilistic model to
efficiently ground abstract concepts in natural language instructions.

parse structure of language. These models estimate corre-
spondences between linguistic constituents in an instructions
and semantic entities perceived in the world. Present models
can only ground concrete entities such as objects/regions, and
cannot model abstract semantic concepts. E.g., spatial aggre-
gations like “rows, columns or groups” common in human
language, Figure 1.

We present the Adaptive Distributed Correspondence
Graph (ADCG) model that enables grounding of abstract
concepts referenced in language utterances. The model in-
troduces a factorization over concrete and abstract symbols
such that reflects the hierarchical structure of abstractions and
allows efficient approximate inference in the exponentially-
large space of abstractions. Empirical evaluation revealed
significantly lower inference runtime with equivalent accu-
racy compared to the state of the art baseline. This work ap-
peared in [Paul et al., 2016]. Here, we present an abridged
version elucidating the central contribution.
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(a) DCG Model
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(b) Introducing Abstractions
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(c) Proposed ADCG Model

Figure 2: Factor graph representations. Input instruction is parsed into (N) phrases where (λl) represents a child phrase for parent (λi).
Superscripts (C) and (A) denote concrete and abstract variables. Unknown variable nodes appear in grey. (a) The DCG model includes
concrete correspondences (“objects”, “regions”, “actions” etc.) conditioned on child correspondences relating phrases with groundings. (b)
Modeling abstract concepts. (Left) introduction of a joint factor between concrete correspondences (φC) expresses all possible abstractions but
fully correlates parent groundings. (Right) Introduction of explicit abstract correspondence variables form a Markov boundary over concrete
groundings decoupling them from remaining variables. (c) The proposed ADCG model introduces factors for abstract concepts (“rows”,
“columns”, “groups” etc.) that are hierarchically linked with concrete groundings and correspondences from child phrases.

2 Grounding Natural Language Instructions
Consider the robot manipulator operating in a workspace Υ
modeled as a collection of rigid bodies. Let, groundings
Γ denote semantic concepts that are conveyed by an input
language instruction Λ. These include notions such as ob-
jects, locations, regions derived from the world model or fu-
ture actions the robot can execute. E.g., the instruction “pick
up the block on the table” include objects for phrases “the
block” and “the table”, the phrase “on” is interpreted as a re-
gion above the “table” and the phrase “pick up” associated
with the intended grasp action to be executed by the robot.
The instruction Λ consists of a set of phrases {λ1, λ2, . . . , λn}

determined from a parse tree τ(Λ). The grounding prob-
lem is posed as estimating the likely set of groundings Γ =
{γ1, γ2, . . . , γn} for each phrase in the input instruction:

arg max
γ1...γn∈Γ

p(Γ|Λ,Υ). (1)

Contemporary techniques such as Distributed Correspon-
dence Graphs (DCG) [Howard et al., 2014a] pose the ground-
ing problem as inference on a factor graph. The grounding
process is mediated by a binary correspondence variable φi j
that expresses the degree to which the phrase λi ∈ Λ corre-
sponds to a possible grounding γi j ∈ Γ. The graph is con-
structed according to the parse structure of the input instruc-
tion such that the latent grounding for a phrase λi is condi-
tioned only on groundings Φci

for child phrases:

arg max
φi j∈Φ

|N|∏
i=1

|C|∏
j=1

p(φi j|γi j, λi,Φci
,Υ). (2)

Next, we introduce Adaptive Distributed Correspondence
Graphs (ADCG) that enable modeling and inference over ab-
stract concepts.

3 Probabilistic Model
In this section, we first define the space of groundings fol-
lowed by detailing the probabilistic model and finally discuss
the inference procedure.

3.1 Generalized Space of Groundings
We define the space of grounding symbols Γ that represent se-
mantic concepts expressed in input language Λ. The robot’s
workspace is represented as the set of objects O each possess-
ing geometric, appearance and pose information, typically
obtained from a perception system. We assume that the robot
is capable of executing a set of manipulation actions (“pick”,
“place”, “clear” etc.) parameterized by the objects under con-
sideration. Additionally, we incorporate symbols expressing
cardinality (“two”, “three”, “four” etc.), ordinality (“fifth”,
“sixth”, “seventh” etc.) and spatial regions (“left”, “center”,
“behind” etc.) associated with objects in the scene. The intro-
duced symbols collectively form the space of concrete sym-
bols ΓC.

Abstract concepts such as “rows”, “columns”, “groups”,
“towers” etc. are introduced as hierarchical symbols com-
posed of concrete entities as conveyed in an instruction like
“the column of red blocks”. Formally, an abstraction η in-
cludes a subset of objects O j ⊆ O possessing a common
spatial characteristic (“linearity”, “circularity”, “directivity”
etc.) denoted by the set Σ: η = {(σi,O j)|σi ∈ Σ,O j ⊆ O}.
The number of possible containers is |Σ| × |P(O)|, where P
denotes the power set. Hence, the symbol space of containers
and associated regions is exponentialO(2NO ) in the number of
objects populating the world model. The symbolic represen-
tation presented above forms the space of abstract groundings
ΓA. Note that the space of concrete groundings grows linearly
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asO(NO). However, the space of abstractions is exponentially
large in the number of concrete groundings O(2NO ). Even in
a simplistic block world setup with 20 objects, Figure 1, re-
sults in an abstract search space that includes 17.3 million
symbols.

3.2 Factor Graph

Estimating the likely correspondences Φ between the input
natural language instruction Λ and the generalized space of
groundings ΓC ∪ ΓA is posed as inference on a factor graph.
Following the DCG factor graph construction [Howard et
al., 2014a], the concrete correspondence variables φCi j are
introduced that relate a phrase λi with concrete groundings
γCi j. Next, we introduce notions of abstract symbols in the
model. Figure 2(b-left) illustrates an approach that introduces
a shared factor between all concrete correspondences, model-
ing an abstract such as a “row” composed of concrete ground-
ings like “blocks”. Although, this factor expresses the dis-
tribution over possible aggregations of concrete groundings,
the representation possesses the disadvantage that ground-
ing for a parent phrase such as, “the middle block in the
row” becomes correlated with the inference over abstractions
from concrete groundings. Consequently, we introduce ex-
plicit abstract grounding variables γAik and correspondences
φAik , Figure 2(b-right). In this formulation, the abstract cor-
respondences act as indicator functions distinguishing each
expressed aggregation and and form a Markov boundary
for the concrete correspondences. Given the knowledge of
the abstract correspondence variables, a hierarchically linked
grounding, like “the middle block” is de-correlated with the
joint distribution over concrete constituents. Figure 2(b)
presents the factor graph. The joint distribution is modeled
as a product of factor potentials Ψ given as:

arg max
φCi j,φ

A
ik ∈Φ

{ |N|∏
i=1

( |C|∏
j=1

Ψ(φCi j, γ
C
i j, λi, {Φ

C
ci
∪ΦAci

},Υ)

|A|∏
k=1

Ψ(φAik , γ
A
ik , λi, {Φ

C
i ∪Φ

C
ci
∪ΦAci

},Υ)
)}
.

(3)

Each factor in the model relates unknown concrete φCi j or
abstract φAik correspondences between an input phrase λi and
probable groundings γCi j or γAik respectively. The grounding
for a phrase is conditioned on expressed groundings from the
child phrase indicated by correspondences ΦCci

and ΦAci
. An

abstract factor links the input phrase with correspondences
related to abstract groundings. Let the variable setΦCi denote
the concrete correspondences for the current phrase. Each
abstract factor estimates correspondence φAik and jointly rea-
sons with the estimated concrete child groundings ΦCi for the
current phrase. This expresses the probabilistic linkage be-
tween a hierarchical abstract grounding and the set of con-
crete groundings, e.g. “column of blocks on the right”. Factor
potentials Ψ are endowed with a log-linear model composed
of a linear combination of predictive feature function incor-
porating spatial and lexical cues.

3.3 Approximate Inference
Inference in the graphical model is posed as tree-structured
search over possible correspondences between phrases and
groundings given child context. The inclusion of abstract
groundings leads to an exponential increase in the size of the
search space, rendering exhaustive search infeasible. In order
to search efficiently, we leverage a partitioning of the joint
distribution between concrete and abstract factors, Equation
3. For each phrase, factor evaluations are ordered such that
the distribution over concrete symbols given child groundings
is determined first and the set of probable solutions above a
confidence threshold are obtained. The set of possible object
groundings are obtained as:

Ô(i) = {ô j|γ
C
i j = ô j, p(φCi j|γ

C
i j, λi,Φci ) ≥ pT , j ∈ C}. (4)

Instead of exhaustively searching over the entire abstract
search space, the procedure uses the expressed concrete
groundings to selectively instantiate a restricted space of
probable abstract symbols that is then explored for solutions.
The estimated object groundings are used to estimate a re-
duced space of probable abstractions: η̂(i) = {(σi, Ô j)|σi ∈

Σ, Ô j ⊆ O}. Note that each abstract factor is conditioned
on the expressed concrete groundings as well as groundings
from child phrases. Instead of exhaustively searching over
the entire abstract search space, the procedure uses the ex-
pressed concrete groundings to selectively instantiate a re-
stricted space of probable abstract symbols that is then ex-
plored for solutions. The approximate abstract search space
ΓÂ(i) is not fixed, but varies dynamically per phrase λi and is
determined based on the estimated true concrete groundings.
The induced abstract factors constitute the following approx-
imate joint distribution:

arg max
φCi j,φ

A
ik ∈Φ

{ |N|∏
i=1

( |C|∏
j=1

Ψ(φCi j, γ
C
i j, λi, {Φ

C
ci
∪ΦÂci

},Υ)

|Â(i)|∏
k=1

Ψ(φÂ(i)
ik , γÂ(i)

ik , λi, {Φ
C
i ∪Φ

C
ci
∪ΦÂci

},Υ)
)} (5)

4 Evaluation
The proposed model was evaluated using a corpus generated
from a user study.

The corpus consisted of natural language descriptions
paired with simulated scenes demonstrating a Baxter robot
carrying out manipulation tasks with varying blocks arrange-
ments, Figure 3. The language descriptions were provided
by human subjects via the Amazon Mechanical Turk plat-
form. The data set consisted of 135 language descriptions,
each paired with spatial context arising from 21 randomized
workspaces resulting in a total of 1672 annotated phrases.
The input instructions were tagged with part-of-speech labels
from the Penn Tagset [Marcus et al., 1993] and parsed us-
ing the Cocke-Kasami-Younger (CKY) algorithm [Younger,
1967]. The proposed ADCG model was compared against the
DCG [Howard et al., 2014b] model as a baseline. For a fair
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Figure 4: Test set accuracy (y-axis) vs. holdout fraction (x-axis) using the root-phrase metric (root phrase correctly grounded) and complete-
tree metric (all phrases correctly grounded). (a) The DCG model accuracy for both root-phrase and complete-tree accuracy metrics. (b) The
ADCG model accuracy using both root-phrase and complete-tree accuracy metrics. (c) The average root-phrase accuracy for both models.
(d) The average complete-tree accuracy for both models. Note the scale on the y-axis. The accuracy of the proposed ADCG model closely
followed the DCG baseline. The holdout fraction varied between 0.2 to 0.8 in increments of 0.05 with 9 runs for each fraction.

Figure 3: Examples of natural language descriptions in our aligned
corpora that were collected using Amazon Mechanical Turk and our
simulation environment.

comparison, the DCG search space was expanded to include
all possible abstract concepts (the power set of concrete con-
stituents) as independent without being hierarchically linked
with concrete groundings. The log-linear model training step,
feature sets and training remained the same for both models.

Figure 4 compares the grounding accuracy for instructions
in the corpus for the proposed ADCG model and the base-
line DCG model. Training was carried out using randomly
sampled subsets and increasing the holdout fraction from
0.2 to 0.8 in increments of 0.05 with 9 runs for each frac-
tion. Maximum probable groundings (above a 0.75 thresh-
old) were determined for each phrase in the parsed instruc-
tion. The ADCG accuracy closely followed the DCG base-
line. The model correctly grounded instructions like, “the
second farthest block to the left in the row of blocks in front
of the robot”. References to abstract concepts in the con-
text of spatial and numeric information like “horizontal line
of four blocks”, “farthest three blocks”, “row of blocks in
front”, “group of eight blocks”, “nearest two blocks” etc. are

Table 1: Average Inference Runtime for Corpus

Runtime (seconds)
Objects Instructions Worlds DCG Proposed ADCG Model
4 4 1 0.14 ± 0.003 0.007 ± 2.3 × 10−4

5 45 9 0.21 ± 0.009 0.009 ± 5.7 × 10−4

7 62 5 0.47 ± 0.033 0.010 ± 7.9 × 10−4

10 10 5 2.96 ± 0.177 0.010 ± 1.0 × 10−4

12 13 1 14.25 ± 0.510 0.011 ± 7.2 × 10−4

Total 134 21 1.89 ± 4.12 0.062 ± 1.0 × 10−3

correctly grounded. References to constituent elements like
“middle”, “second farthest”, “nearest” are also correctly in-
ferred by the system.

Table 1 presents the total average inference runtime nor-
malized by the number of phrases per instruction for the cor-
pus. The ADCG model has significantly lower average run-
time than the DCG baseline. The runtime gain for the ADCG
model is more pronounced with greater scene complexity.
The runtime for grounding abstract concepts is determined
by the total size of the grounding space searched for solu-
tions. The ADCG model is able to determine a reduced space
of probable hypotheses and hence searches an approximate
reduced space compared to the DCG baseline model that ex-
haustively searches for solutions. This approximation leads
to a significant efficiency gain with minimal loss in accuracy,
as demonstrated in Figure 4. We believe that the technique of
ordering factor computations and exploiting the conditional
structure of hierarchical concepts linked with concrete con-
cepts to estimate a smaller space of probable concepts may
have applicability for search in other domains where similar
structure exists.
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