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Abstract
Deep neural networks have become increasingly
successful at solving classic perception problems
(e.g., recognizing objects), often reaching or sur-
passing human-level accuracy. In this abridged re-
port of Peterson et al. [2016], we examine the rela-
tionship between the image representations learned
by these networks and those of humans. We find
that deep features learned in service of object clas-
sification account for a significant amount of the
variance in human similarity judgments for a set of
animal images. However, these features do not ap-
pear to capture some key qualitative aspects of hu-
man representations. To close this gap, we present a
method for adapting deep features to align with hu-
man similarity judgments, resulting in image rep-
resentations that can potentially be used to extend
the scope of psychological experiments and inform
human-centric AI.

1 Introduction
The resurgence of neural networks in the form of deep learn-
ing has continued to dominate object recognition benchmarks
in the field of computer vision, often attaining near or above
human-level accuracy for a variety of perceptual tasks, most
notably through recent advances in classifying thousands of
objects within natural images [Krizhevsky et al., 2012; He
et al., 2015]. Part of the success of these models is due
to their ability to learn effective feature representations of
high-dimensional inputs (e.g., complex color images); a chal-
lenge that human perception must also confront [Austerweil
and Griffiths, 2013]. As a result, cognitive scientists have
started to explore how the representations learned by these
networks can be used in models of human behavior for per-
ceptual tasks such as predicting the memorability of objects
in images [Dubey et al., 2015] and predicting judgments of
category typicality [Lake et al., 2015].

While deep learning models continue to mimic a growing
list of human-like abilities, a number of core questions remain
unanswered about the relevance of these models to actual hu-
man cognition and perception. For instance, features of the
input learned using these networks excel in predicting certain
human judgments, but how are these feature representations

related to human psychological representations? For decades,
psychologists have studied the underlying structures that sup-
port mental representations such as geometric spaces and hi-
erarchies [Shepard, 1980] that are known to aid crucial learn-
ing and inference strategies [Griffiths et al., 2010; Tenenbaum
et al., 2011]. For this reason, one should expect any satisfac-
torily human-like representation to mirror these structures. At
first glance, it would seem that the ability of these represen-
tations to predict typicality judgments and stimulus memora-
bility would constitute robust evidence of their relevance to
people, however recent work has shown that neural networks
that classify images can be systematically deceived by imper-
ceptible image transformations [Szegedy et al., 2013], casting
doubt on their similarity to humans.

Understanding the relationship between the representations
found by deep learning and those of humans is an important
question in cognitive science. Simply having a good approxi-
mation to how people represent images would allow cognitive
scientists to test psychological theories using complex, real-
istic stimuli. Indeed, tasks such as creating stimulus sets that
uniformly span psychological space are far from trivial. In
addition, since human generalization and categorization be-
havior is still the standard for solving such problems in artifi-
cially intelligent systems, it is imperative to understand where
the two diverge.

In this abridged report of Peterson et al. [2016], we ad-
dress this question directly by examining how well features
extracted from state-of-the-art deep neural networks predict
human similarity judgments. An initial evaluation shows that
these features account for a significant amount of variance in
human judgments, but fail to capture qualitative distinctions
that are key to human representations. We then develop a
method for adapting deep network features to better predict
human similarity judgments, and show that this approach can
reproduce those qualitative distinctions. These results sug-
gest that while raw features produced by deep learning may
not be suitable for use in modeling cognition, they can be
modified to bring them into close alignment with human rep-
resentations.

2 Deep Representations
In general, deep neural networks (DNNs) are neural networks
that have depth in terms of their number of hidden layers be-
tween input and output [Bengio, 2009]. In the past few years,
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training such networks to understand aspects of large, com-
plex data sets has led to a number of advances in vision and
language applications [LeCun et al., 2015].

In computer vision, the majority of this progress has been
driven by a particular DNN called a convolutional neural net-
work (CNN) [LeCun et al., 1989]. CNNs get their name from
the use of convolutional layers, which learn a set of image fil-
ters that produce feature maps of spatially-organized inputs
like images. This allows for a drastic decrease in the number
of parameters the network must learn, which would other-
wise explode exponentially in a fully connected network with
high-dimensional inputs. The typical CNN architecture in-
cludes a series of hidden convolutional layers, followed by a
smaller number of fully connected layers, and finally a layer
that generates the final output or classification. While CNNs
were initially developed over two decades ago, they came to
mainstream popularity in 2012 when a 7-layer architecture
named AlexNet [Krizhevsky et al., 2012] won the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC), reduc-
ing the previous winner’s error rate by an uncommonly large
margin. Since then, a deeper CNN has won the contest every
year, currently dominated by Microsoft’s 150-layer network
which obtained a best-of-top-5 error rate of 4.94%, surpass-
ing the accuracy of non-expert humans at 5.1% [He et al.,
2015].

Interestingly, CNNs produce much more than just their
outputs (e.g., a category label for an image); they can also
return feature representations at each layer of the network.
The “deep representations” learned by these networks have
proven useful in predicting human behavior. Dubey et al.
[2015] used representations extracted from the last fully-
connected layer of a CNN to predict the intrinsic memora-
bility of objects. That is, the objects that humans are jointly
likely to remember or forget in a large complex natural scene
database. The correlation between estimates of memorability
and the original memorability scores for each object matched
human consistency (i.e. the correlation between memorabil-
ity scores of random splits of the full sample of subjects).
Similarly, Lake et al. [2015] were able to reliably predict
human typicality ratings of eight object categories using the
same network and features, and called for cognitive scien-
tists to pay attention to deep learning since categorization is a
foundational problem in the field.

Deep representations are also beginning to interest the neu-
roscience community. For example, CNN activations have
been used to predict monkey inferotemporal (IT) cortex activ-
ity [Yamins et al., 2014], as well as both low- and high-level
activity in human visual areas [Agrawal et al., 2014]. Delving
deeper, Khaligh-Razavi and Kriegeskorte [2014] found that a
CNN best explained IT cortex representations out of a set of
37 well-known models from both the computer vision and
neuroscience fields, although no model completely explained
all of the variance, unsupervised models being the worst of
all of them.

Although CNN representations currently do the best job of
predicting neural activity as measured by Blood Oxygenation
Level Dependent (BOLD) response, this does not guarantee
that we can explain psychological representations as a result.
In fact, Mur et al. [2013] was partly successful in predicting

human similarity judgments (a classic index of psychologi-
cal representations) from IT cortex representations. However,
the key categorical distinctions in the human representations
were not well predicted: human IT cortex representations
were more similar to monkey IT cortex representations than
they were to human psychological representations. In the re-
mainder of the paper, we use a similar approach to evaluate
how well deep network features align with human psycholog-
ical representations, and to explore how the correspondence
between the two can be increased.

3 Evaluating Representations
Our first step is to evaluate the potential correspondence
between deep network features and psychological repre-
sentations. Unlike neural representations, psychological
representations cannot be measured directly. However, both
spatial and hierarchical psychological representations for N
objects can be recovered given an N ×N matrix of similarity
judgments using methods such as multidimensional scaling
and hierarchical clustering [Shepard, 1980]. We thus reduce
the problem to one of capturing human similarity judgments,
subjecting both human judgments and model predictions to
these different methods of extracting representations. We
approach this problem by taking the inner-product of the deep
feature representations of each pair of images (a measure
of similarity between two vectors). We then compute the
correlation between these pairwise vector similarities and
human similarity judgments for the same stimulus pairs,
which gives us a measure of the correspondence we want to
evaluate.

Behavioral Experiment. We collected pairwise similarity
ratings for 120 color animal photographs (examples shown
in Figure 1) through Amazon Mechanical Turk. Participants
were initially shown 8 diverse examples to help prevent bias
due to the sampling of the pairs, and were then instructed
to rate the similarity of four pairs of animal images on a
scale from 0 (not similar at all) to 10 (very similar). Workers
could repeat the task with new pairs as many times as they
wanted. There were 7, 140 possible comparisons, each of
which we ensured was rated by 10 unique participants, for a
total of 71, 400 ratings from 209 different participants. The
result was a 120× 120 similarity matrix after averaging over
judgments.

Feature Extraction. We extracted features for each image
in our data set using three different popular off-the-shelf
CNNs of varying complexity that were pretrained in Caffe
[Jia et al., 2014]. Specifically, we used CaffeNet (based
on original AlexNet), VGG16 [Simonyan and Zisserman,
2014], and GoogLeNet [Szegedy et al., 2014], the layer
depths of which were 7, 16, and 22 respectively. GoogLeNet
and VGG16 achieve roughly half the error rates of AlexNet.
Each network had already been trained to classify 1000
object categories from previous ILSVRC competitions. A
feedforward pass of each flattened image vector into each
network yields feature responses at each layer. For our
analysis, we extracted the last layer of each network before
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Figure 1: Multidimensional scaling solutions for similarity matrices obtained from human judgments (left), non-transformed deep represen-
tations (center), and transformed deep representations (right).

the classification layer. For CaffeNet and VGG16, this is
a 4096-dimensional fully-connected layer, while the last
layer in GoogleNet is a 1000-dimensional average pooling
layer. Lastly, we also extracted Histograms of Oriented
Gradients (HOG) and Scale-Invariant Feature Transform
(SIFT) representations for comparison since such features
represent the generic representations of choice for tasks in
computer vision prior to the popularity of deep learning.

Results. Correlations (R2) between human and DNN rep-
resentations for each network were: .32 (CaffeNet), .35
(Google), .43 (VGG), and .008 (HOG+SIFT). Raw represen-
tations from all three networks show medium to high correla-
tions with the human data. In general, deeper networks with
better ImageNet classification accuracy like GoogLeNet and
VGG16 did better than CaffeNet, which is considerbly more
shallow. The HOG+SIFT baseline did surprisingly poorly,
explaining very little variance as compared to the deep repre-
sentations, suggesting that while these features are useful for
many computer vision tasks, they differ in large part from the
representations humans employ when judging animal simi-
larity.

Although the VGG representation explained a fair amount
of variance, further analyses revealed that the most crucial
structural aspects of the human representations were not pre-
served. The first and second panels of Figure 1 show multi-
dimensional scaling (MDS) solutions for the original human
data and the predictions from the unaltered deep representa-
tions. While the structure of the MDS solutions for the pre-
dicted judgments looks reasonable (e.g., zebras are next to
other zebras), major categorical divisions are not preserved.
Hierarchical clusterings of the actual and predicted human
judgments (the first and second panels of Figure 2) show a
similar pattern of results: human judgments exhibit several
major categorical divisions, whereas much of this structure is
lost in the predicted data.

4 Adapting Representations
After quantifying the discrepancy between deep and human
representations, we can attempt to bring them into closer

alignment. First, consider that the final hidden layer feature
representation in a neural network can be thought of as
the input to a final linear classification layer, such that
the problem solved by the final weight matrix is a linear
transformation (which is then often scaled by a softmax
function to covert to class probabilities). This can be thought
of as a rescaling of the final stimulus representation to solve
the categorization problem. This suggests that we should not
think about the features extracted by the network as a static
representation, but as the ingredients for a transformation
that solves a problem. Thinking in these terms, we show that
we can easily solve for a linear transformation that better
captures human similarity judgments.

Similarity Model. Any similarity matrix S can be decom-
posed into the matrix product of a feature-by-object matrix
F, its transpose, and a diagonal weight matrix W,

S = FWFT (1)

This formulation is similar to that employed by additive clus-
tering models [Shepard and Arabie, 1979], wherein F repre-
sents a binary feature identity matrix (and is similar to Tver-
sky’s (1977) famous model of similarity). Given an existing
feature-by-object matrix F, the diagonal of W can be solved
for using linear regression where the predictors for each sim-
ilarity sij are the product of the values of each feature for the
objects i and j. When W is the identity matrix, this reduces
to the model evaluated in the previous section.

sij =

Nf∑
i=1

wkfikfjk. (2)

This results in a convex optimization problem that can be
solved straightforwardly, allowing us to find a transformation
of the deep features with a closer correspondence to human
similarity judgments.

Analysis. With such a large number of predictors, regular-
ization is critical to avoid overfitting. We used ridge regres-
sion (L2 regularization) and performed grid search on 6-fold
cross-validated generalization performance to find the best
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Figure 2: Hierarchical clustering of human judgments (top), deep representations (middle), and transformed representations (bottom). Human
judgments resulted in nine interpretable clusters, grouped by color and semantic category label in the top panel. The leaves of the deep and
transformed representation clusterings are color-coded relative to the human judgments.

regularization parameter. As an additional control against
overfitting, we compared model performance with several
baselines. In Baseline 1, we shuffled the rows of the feature
matrix. In Baseline 2, the columns of the feature matrix were
randomly permuted for each row separately. Lastly, Baseline
3 simply combined the shuffling schemes from the first two
baselines. In all three cases, the randomized feature matrices
were subjected to the same set of analyses as the true features,
allowing us to check for spurious correlations.

Results. Performance scores (average cross-validated R2) for
predicting human similarity judgments using the representa-
tions of each network were: .69 (CaffeNet), .72 (Google),
.84 (VGG), and .09 (HOG+SIFT). All five models performed
considerably well, each showing improvement over the non-
weighted models. VGG16 performed best, accounting for
84% of the variance. Training using the estimated regular-
ization parameter on the entire dataset yielded an R2 of 91%.
In contrast, all three baseline models explained essentially no
variance (R2 < 0.01), suggesting that our results were not
spurious correlations due to the number of features. Cru-
cially, the MDS solution for the improved predictions is al-
most identical to the original human spatial representation.
The same improvements were found in hierarchical cluster-
ings of actual and predicted similarity matrices (1st and 3rd
panels of Figure 2), this time largely in the form of top-level
parent nodes.

5 Discussion
The current work constitutes the first formal comparison of
deep representations to human psychological representations.
Initial results using currently high-performing CNN classi-
fiers show that the two representations are moderately corre-
lated, but diverge in terms of crucial structural characteristics,
a problem exhibited by similar experiments using neural rep-
resentations as opposed to deep features [Mur et al., 2013].
Our method of overcoming this problem appears to have been
largely successful: human representations were almost com-
pletely reconstructed by our adjusted CNN features. Using
features extracted from deep CNNs provides an opportunity
to estimate psychological representations from raw sensory
inputs (e.g. pixels). However, one potential limitation of this
work is the generalizability of the transformation learned to
broader sets of concepts beyond animal images. Addressing
this will require replication and transfer across diverse im-
age datasets at varying taxonomic depths. To the extent that
this can be established, we envision our method as a stan-
dard tool for studying cognitive processes with natural im-
ages by leveraging modern machine learning breakthroughs,
and a benchmark for improving non-human systems that take
human intelligence as inspiration.
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