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Abstract

We consider settings where electric vehicle drivers
participate in a market mechanism to charge their
vehicles. Existing work typically assumes that
participants are fully rational and can report their
charging preferences accurately. However, this
may not be reasonable in settings with non-experts.
To explore this, we design a novel game called
Bid2Charge and compare a fully expressive inter-
face that covers the entire space of preferences to
two restricted interfaces that offer fewer possible
reports. We show that restricting the users’ prefer-
ences significantly reduces deliberation times while
also leading to an increase in utility by up to 70%.

1 Introduction

Market mechanisms designed for multi-agent systems hold
considerable promise for addressing emerging challenges in
future electricity networks, where supply will increasingly
be generated from intermittent and unreliable renewables,
and where demand will rise due to the electrification of
transportation [Ipakchi and Albuyeh, 2009; Ramchurn et al.,
2012]. In particular, previous work has proposed auction-
like mechanisms for scheduling the charging of electric ve-
hicles (EVs) within supply constraints [Mets er al., 2012;
Robu et al., 2013; Hayakawa et al., 2015]. These achieve
a high efficiency because they consider the preferences of
drivers (i.e., availability and willingness to pay). Other work
relies on real-time prices to incentivise autonomous charg-
ing agents to shift or curtail consumption when supply is low
[Ramchurn et al., 2011; Flath et al., 2014].

However, such approaches assume that the human end-
users have perfect knowledge of their preferences, i.e., they
can reason accurately about the value of electricity, consider-
ing all possible, often uncertain future opportunities of using
it. Such perfect rationality is often not realistic [Simon, 1972;
Kahneman, 2000]. Moreover, providing the complete prefer-
ences is tedious and the associated cost could outweigh the
benefits [Larson and Sandholm, 2005].

*This paper is an abridged version of a paper presented at
AAMAS 2016 [Stein et al., 2016]. A more comprehensive journal
paper is also available [Stein et al., 2017].
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To address this challenge, there has been some work on
auctions with restricted reporting, i.e., where bidders do not
report their full preferences, but rather choose from a re-
stricted messaging space [Milgrom, 2010; Diitting et al.,
2011; Bergemann et al., 2012; Blumrosen and Feldman,
2013]. However, these approaches all assume rational agents
and do not evaluate the auctions with real bidders.

Other work explicitly considers non-expert market partic-
ipants. Specifically, research on hidden market design has
looked at building simple interfaces that hide the rules and
pricing mechanisms of a complex market [Seuken et al.,
2010]. Related to this, Seuken ef al. (2012) investigated mar-
ket user interface design, which focuses on simplifying com-
plex market interactions by asking users to select from a dis-
crete set of options. However, they consider significantly dif-
ferent domains from the EV setting and neither work pro-
vides a direct comparison to fully expressive interfaces, leav-
ing their relative benefits unclear.

To address these limitations, we conduct the first thorough
study of how to design market interfaces for the EV charging
setting. Specifically, we formalise the EV charging setting
and develop a novel game called Bid2Charge based on this.
We then use this game to experimentally compare a fully ex-
pressive interface for reporting user preferences (as assumed
by existing work) to two restricted interfaces: one that re-
duces the dimensionality of the reporting space (but retains
infinitely many options) and one that restricts the reporting
space to a discrete set of options. In two large user stud-
ies involving a total of over 300 participants, we show that
the restricted interfaces significantly reduce user deliberation
time. More surprisingly, they also improve performance (up
to 70%). Furthermore, we show that the choice of restriction
can influence the energy consumption of participants without
decreasing their utility. Finally, we show that a reinforce-
ment learning agent displays similar behaviour trends to hu-
man players, potentially enabling the optimisation of market
interfaces without expensive user trials.

2 EV Charging Problem

In this section, we briefly summarise an abstract model of the
EV charging problem. The aim of this model is to capture
the following key challenges that are inherent in the domain.
First, electricity has no intrinsic value. Its value instead de-
pends on how it is utilised for journeys. Second, the problem



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

”2_:(;52 vs = $200
r2 =0 rs = 0.05
1.5 2
v = $20 @ o5 \/0\ . @
=1 : N :
Home

Figure 1: Illustrative example with three potential journeys.

is inherently uncertain. On one hand, this is a key feature of
the market itself, as supply and demand fluctuate over time.
On the other hand, there is uncertainty over what journeys
the driver needs to complete in the future. Third, there are
complementarities, i.e., the driver’s preferences are typically
highly nonlinear over the quantity of electricity. For example,
a driver may require a minimum overnight charge of 10 kWh
to drive to work the next day. Receiving any less has no value.

Given this, we consider a general setting where EV drivers
participate in a market mechanism for charging. We abstract
away from the particular market and assume that a driver sim-
ply reports her preferences to an autonomous agent at regular
intervals (e.g., once a day).! The agent then participates in the
market on its owner’s behalf and procures electricity for the
vehicle while it is plugged in (e.g., overnight). At the end of
the charging period, the driver can use the vehicle to complete
journeys and derives value from doing so.

The full formal model can be found in [Stein et al., 2016;
2017]. Next, we briefly summarise it using an example.

3 Illustrative Example

Specifically, Figure 1 shows an example of the information
that is available to an EV driver at the start of a given charg-
ing period — this includes a set of three potential journeys
to different destinations (labelled 1, 2 and 3), which are at
different distances to her home (labelled 0).

There is some uncertainty for each journey ¢, which is de-
scribed by a realisation probability r; (i.e., the probability that
this journey will actually be available on that day), and there
is a value for completing each journey, denoted by v;. In this
example, journey 1 might represent a trip to the driver’s work-
place, which is completely predictable, 1 = 1, and carries a
high value, v; = $20. The second, journey 2, is a visit to the
gym, which is of a medium value, vy = $5, and less likely to
be available, ro = 0.5 (this may be because she only goes to
the gym if she can finish work early). Finally, the third, jour-
ney 3, is an emergency trip to an important customer. This is
unlikely (r3 = 0.05), but carries a high value (v3 = $200).

Furthermore, there are electricity costs associated with
journeys, given by the edge weights. These represent the
drain on the battery for each one-way trip (in kWh). For ex-
ample, going to the office and back (journey 1) requires 5
kWh, while going to the gym and office requires 6 kWh.

This information represents the (typically tacit) knowledge
a driver has about future journeys. As in reality, there are

"For example market mechanisms, see [Ramchurn et al., 2011,
Robu et al., 2013; Hayakawa er al., 2015].
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Figure 2: Drivers’s true willingness to pay.

varying levels of uncertainty and values for these journeys,
but we also make a number of simplifications to keep the
model manageable — specifically, we assume that values and
realisation probabilities are completely independent and that
electricity consumption is deterministic.

Given this information, the driver next reports her max-
imum willingness to pay for each amount of electricity to
an agent that will participate in the market on her behalf.
We assume that it is optimal (in expectation) for her to re-
port truthfully, either because the agent strategises optimally
or because an incentive compatible mechanism is used, e.g.,
[Robu et al., 2013] or [Hayakawa et al., 2015].

However, doing this is challenging, as it requires the driver
to reason about all possible combinations of available jour-
neys, their costs and respective values. To illustrate this, the
solution the setting above is shown in Figure 2, which relates
the amount of electricity to the respective willingness to pay.

Here, the driver has no value for 3 kWh or less, as this is in-
sufficient for any journeys. She values 4 kWh at $2.5, because
that is enough to complete journey 2 for a value of $5, but
the journey’s probability of being available is only ro = 0.5.
However, the value for 5 kWh is significantly higher at $20,
because the driver now has enough charge to reach the of-
fice, yielding a value of $20. The next significant increase in
the driver’s willingness to pay happens for 7 kWh ($31.375),
when she has sufficient charge to complete either journey 3
(if it is available) or both journeys 1 and 2.

Given these valuations, the agent now participates in the
market to charge the EV and with the aim of maximising the
driver’s profit (i.e., the difference between the willingness to
pay for the acquired electricity and the cost for this). When
this phase is complete, the driver then learns how much the
battery was charged and which journeys are actually avail-
able. She then chooses which journeys to complete on that
day, and the setting repeats (possibly with different potential
journeys). The overall aim of the driver is to maximise her ac-
tual profit (i.e., the difference between the total value derived
and the total paid in the electricity market).

This example illustrates that even a simple setting can lead
to complex and complementary valuations. As argued in Sec-
tion 1, existing work typically assumes that these can readily
be reported by drivers. Next, we describe our Bid2Charge
testbed, which will allow us to test this assumption by com-
paring a fully expressive reporting interface with several re-
stricted interfaces when used by non-experts.

To keep this example brief, we assume the battery is initially
empty and there is only a single day. In practice, a driver would also
need to reason about potential journeys on future days.
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Figure 3: Main game view.

4 The Bid2Charge Testbed

To test how human non-experts interact with a variety of
reporting interfaces, and to empirically determine which
one works best, we designed a web-based game called
Bid2Charge, which replicates the EV charging problem.? We
frame this as a game, as this is a low-cost, controlled way of
gathering data from large numbers of users in a short time.

In more detail, in Bid2Charge, the player takes the role of
an EV delivery van driver. This provides an intuitive expla-
nation of what journeys represent (they are delivery tasks re-
sulting in a certain payment), what the objective of the game
is (maximise overall profit) and what the uncertainty means
(delivery tasks may not come up on a given day). We use an
incentive-compatible auction based on the well-known VCG
mechanism [Nisan et al., 2007] as the market mechanism, and
so the players’ reports are framed as bids for this auction.

Figure 3 shows the main game screen. At the top, there
are some general statistics, showing the player’s accumulated
profit, the current day and current state of charge. Below that,
on the left, there is a task planning view, providing informa-
tion about the tasks that are potentially available on the cur-
rent day. Both the value and the realisation probability are
shown for each task. Furthermore, the user can select subsets
of tasks to inspect their total value and electricity cost (pro-
viding similar information as in the example in Figure 1, al-
beit presented slightly differently). Note that interacting with
this view does not affect the game — it simply provides in-
formation about available tasks.

The auction view, which is to the right of the task planning
view, allows the player to submit their bid (i.e., willingness to
pay) for the current day. Importantly, this view supports three
different interfaces, as shown in Figure 4:

FINITE: This is the most restricted interface, offering a
finite set of options. In practice, these can be chosen by an
administrator to trade off the cognitive burden on the player
with the expressivity of the set. Figure 4a shows a version
with three options that correspond to a marginal willingness
to pay of $1, $2 and $3 per kWh, respectively.

Single Marginal Value (SMV): This allows the player to

3The game as experienced by participants in our experiments can
be accessed at http://www.bid2charge.com/1ijcai.
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(a) FINITE:
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Figure 4: Auction Bidding Panels.

specify a marginal willingness to pay for each unit of elec-
tricity, as well as a maximum number of units. While more
expressive than FINITE, it reduces the original problem to re-
porting two values (rather than a function). Figure 4b shows
a player entering the bid corresponding to $1.5 per kWh, but
only up to a maximum of 4 kWh.

Fully expressive: Finally, this interface allows the player
to enter any bid from the full space of possible bids. Here,
Figure 4c shows a bid that assigns a value of $2 for 3 kWh,
$5.5 for 5 kWh and $10.5 for 8 kWh.

On pressing the “Run Auction” button, they are informed
of the outcome and then taken to a task view. Here, the user is
presented with the tasks actually available on the current day
and can select which ones to complete.

5 Experimental Evaluation

We carried out experiments with human users, in order to
compare the three interfaces discussed above, and to deter-
mine whether the choice of a particular interface influences
the performance of users. Our approach was to evaluate this
through randomised, controlled experiments, where we allo-
cate market interfaces randomly to users.

5.1 Experimental Setup

We recruited players from Amazon Mechanical Turk, a plat-
form that allows requesters to advertise tasks to a large audi-
ence of online workers (http://www.mturk.com/). We
paid workers for participating, as well as a variable bonus
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Figure 5: Average profit in first experiment.

that was aligned with a player’s profit during the game. In
total, we collected data from 319 workers and over two sep-
arate experiments. The first focused on general performance
differences in the three interfaces (130 workers), while the
second looked at learning over repeated plays (189 workers).
Due to space reasons, we focus on the first experiment, but
further details are in [Stein et al., 2016].

The game was played for 30 simulated days with between
1-6 tasks available every day. To establish upper and lower
bounds for the possible performance of human players, we
compared them to a number of benchmarks: Optimal is the
optimal strategy assuming a fully expressive interface. Op-
timal (SMV) and Optimal (FINITE) are two variants for
the restricted interfaces. As a lower bound, RandomGreedy
is a benchmark that places a random bid (chosen from the
FINITE options) and then greedily chooses the highest-value
tasks. Similarly, MaxGreedy places a bid that is high enough
to fully charge the EV each day and then greedily chooses
the highest-value tasks. Finally, in order to evaluate a strat-
egy that might better represent how humans make decisions
in this game, we also show results for reinforcement learn-
ing agents using Q-Learning [Watkins and Dayan, 1992] for
all three interfaces, QL()\), QL(SMV,)\) and QL(FINITE,)),
where ) is the number of times the game was played.

5.2 Results

We first consider the overall profit achieved, as this is the
players’ main objective. Figure 5 shows this for the three in-
terfaces with human participants (in red, plain), for the three
optimal policies (in green, hatched), the two baseline bench-
marks (in blue, finely hatched) and the reinforcement learning
agent after 100 and 25000 iterations of the game, which are
representative of early and late stages of learning (in orange,
dotted). All results are shown with 95% confidence intervals
and any significant results are confirmed with appropriate sta-
tistical tests [Stein et al., 2016].

Considering the performance of human players, these
are generally situated between the optimal and the baseline
benchmarks. Unsurprisingly, the humans perform signifi-
cantly worse than a rational agent. However, when compar-
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ing the human players to the baseline benchmarks, there is
a marked improvement, providing evidence that participants
are putting effort into the game.

When comparing the performance of the human players
using different market interfaces, we note that the choice of
interface has a significant influence on performance. Counter-
intuitively, the players using the fully expressive interface
achieve a significantly lower performance, with an average
profit of only $66.96, while players with SMV achieve an av-
erage profit of $91.38 and players with FINITE achieve an
average $91.93. This constitutes an improvement of more
than 35% over the fully expressive interface (in our second
experiment, this reached 70% [Stein et al., 2016]), which is
likely due to the high complexity of the latter.

Considering the reinforcement learning agent, it is interest-
ing to note that after 100 learning episodes, the performance
of the reinforcement learning agent resembles that of human
players. This indicates that it may be useful for predicting hu-
man behaviour (this is further explored in [Stein ez al., 2016]).

Although there is no significant difference in profit be-
tween FINITE and SMYV, players using FINITE spent an av-
erage $208.44 acquiring electricity and achieved an average
reward of $300.37. In contrast, players using SMV spent only
an average of $148.50 and earned $239.89. Thus, while the
profit for both is similar, FINITE induces a very different be-
haviour in the players — they spend significantly more on
acquiring electricity and are then able to use this to complete
a larger number of tasks. This is an interesting result, show-
ing that significant changes in behaviour can be caused by the
right choice of interface.

Finally, we note that players with the fully expressive in-
terface spent the longest time on the auction (689 seconds on
average), while those with FINITE spent the least amount of
time on it (502 seconds on average), confirming the higher
cognitive burden of the fully expressive interface.

6 Conclusions and Future Work

In this paper, we investigated the use of restricted market in-
terfaces to alleviate the cognitive burden on non-expert partic-
ipants in a market-based EV charging setting. Using a novel
framework called Bid2Charge, we showed that such inter-
faces lead to lower deliberation times and higher performance
than fully expressive interfaces. We also found that particular
types of interfaces induce different behaviours in participants,
while achieving the same utility. This could be a promising
tool for nudging people towards desirable behaviours, such
as energy conservation. Last, we found that a reinforcement
learning agent was able to predict broad performance trends.

In future work, we will build on this framework and de-
velop new optimised interfaces that adapt to users. In particu-
lar, we will extend the reinforcement learning agent proposed
here to offer advice and act autonomously where appropriate.
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