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Abstract

Nonmonotonic inferences are not yet supported by
Description Logic technology, although their po-
tential usefulness is widely recognized. Lack of
support to nonmonotonic reasoning is due to a
number of issues related to expressiveness, compu-
tational complexity, and optimizations. This work
contributes to the practical support of nonmono-
tonic reasoning in description logics by introduc-
ing a new semantics designed to address knowl-
edge engineering needs. The formalism is validated
through extensive comparison with the other non-
monotonic DLs, and systematic scalability tests.

1 Introduction

Many modern applications of description logics (DLs, for
short), such as biomedical ontologies and semantic web poli-
cies, provide fresh motivations for extending DLs with non-
monotonic inferences. Some recent examples stemming
from the biomedical domain are discussed in [Rector, 2004;
Stevens et al., 2007]. There, the goal of supporting default
attributes and exceptions is deemed important enough to look
for alternative representation methods, based on classical rea-
soning and ontology design patterns. However, these solu-
tions do not scale to more complex examples with multiple
exception dimensions, as discussed in [Rector, 2004]: The
number of additional concepts introduced by the patterns may
grow exponentially. Moreover, such auxiliary concepts are
defined using computationally expensive constructs such as
disjunction. So, even if the given knowledge base belongs to
some low-complexity fragment (such as the OWL2 profiles),
its nonmonotonic extension is generally not tractable.

Nonmonotonic DLs natively support default inferences and
exceptions. However none of the standard nonmonotonic se-
mantics produces exactly the set of expected consequences,
and this can be verified on a range of rather simple examples.
Some of the major known drawbacks are the following:

∗This is an extended abstract of the paper [Bonatti et al., 2015a],
integrated with the developments in [Bonatti and Sauro, 2017], con-
ditionally accepted for publication on the AIJ. This research is cur-
rently being funded by the European Unions Horizon 2020 research
and innovation programme under grant agreement N. 731601.

Inheritance blocking: In several nonmonotonic logics a
concept with exceptional properties inherits none of the de-
fault properties of its superclasses. For instance penguins,
that are exceptional birds because they do not fly, do not in-
herit any of the other default properties of birds, such as hav-
ing wings and feathers.

Undesired CWA effects: In some nonmonotonic DLs, an
exceptional concept is shrinked to the individuals that explic-
itly belong to it; it may even become inconsistent. Using the
penguin example again, by default no penguins exist unless
explicitly stated otherwise. After asserting that the individual
Opus is a penguin, the concept Penguin becomes the single-
ton {Opus}.

Limited control on role ranges: In most nonmonotonic
DLs, the knowledge engineer cannot specify whether a role
should range only over normal individuals or not. In the DLs
based on default logic, rational closure, and variants thereof,
default properties never apply to role fillers.

Silent removal of unresolved conflicts: Very frequently,
unresolved conflicts between nonmonotonic assertions are a
symptom of a gap in the axiomatization. The correct res-
olution of such conflicts is typically domain dependent and
should require human intervention (see [Bonatti et al., 2015a;
2015b] for a detailed discussion of this issue). Most non-
monotonic logics hide such conflicts (i.e. they do not have
any visible consequence) thereby hindering their identifica-
tion – a necessary step for the validation and correction of
knowledge bases.

Moreover, the computational complexity of nonmonotonic
DLs is almost always higher than the complexity of the cor-
responding classical DL, and the tractability of the OWL 2
profiles is not preserved. The lack of optimization techniques
for nonmonotonic DL reasoning is a further obstacle to the
practical application of these logics.

Given the above motivations (more extensively articulated
in the full paper), in this work we have investigated a new

family of nonmonotonic DLs, called DLN, aimed at address-

ing the above drawbacks. The comparison of DLN with the
major nonmonotonic DLs is summarized in Table 1. Prelim-
inary performance tests have been reported in the full pa-
per and have been later extended in [Bonatti et al., 2015b]

using additional optimization techniques that show unparal-
leled scalability properties over large nonmonotonic knowl-
edge bases, with more than 105 axioms. For instance, sub-
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Table 1: Summary of comparisons with other nonmonotonic DLs

Features CIRC DEF AEL TYP RAT PR DLN

no inheritance
blocking

X X X X X X

no CWA effects X X X X X

fine-grained control
on role ranges

X
(1) X

detects inconsistent
prototypes

(2)
X

(3) X

unique deductive
closure

X X X

preserves tractability (5) (5)
X

(4)

implicit specificity X X X X

other priorities X X X

CIRC, DEF, AEL, TYP, RAT, PR stand, respectively, for Circumscribed DLs [Bonatti et
al., 2009; 2011], Default DLs [Baader and Hollunder, 1995a; 1995b], Autoepistemic DLs
[Donini et al., 2002], DLs with Typicality [Giordano et al., 2009; 2013], DLs with Rational
Closure [Casini and Straccia, 2010; Casini et al., 2013] and their combination with inheri-
tance networks [Casini and Straccia, 2013], and Probabilistic DLs [Lukasiewicz, 2008].

(1) Context dependent, see Example 29 in the full paper.
(2) Only direct conflicts, as in Example 10 in the full paper.
(3) Inconsistency may propagate to the entire KB.
(4) Subsumption and assertion checking only, which suffice for application examples.
(5) Currently proved for EL (Giovanni Casini, personal communication).

sumption/assertion query answering over nonmonotonic vari-
ants of the Gene Ontology with classical role fillers ranges
from 0.25 to 2.46 seconds.

2 The Family DLN

Let DL be any description logic. The language of DLN is
obtained by adding a new concept name NC for each DL
concept C. The new concepts are called normality concepts,
although the term standard would be more appropriate since

DLN– unlike typicality logics and rational closure – has not
been designed to model normality (as formalized by the KLM
postulates, for example).

DLN has a utilitarian purpose, related to McCarthy’s
conventions [McCarthy, 1986], aimed at making knowledge
bases more manageable, e.g. by reducing their size, improv-
ing modularity, and so on. We may want to assert that by
default a drug has contraindication X not because this is nor-
mally so, but rather for mitigating the effects of potential hu-
man errors [Rector, 2004; Stevens et al., 2007]: It is safer
to signal more contraindications than missing some; accord-
ingly, with the above default assertion, forgetting to define
the contraindications of a new drug cannot result in a miss-

ing contraindication. The goal of DLN is supporting such a
variety of knowledge engineering needs in a scalable way.

A DLN knowledge base is a disjoint union KB = S ∪ D
where S is a finite set of DLN inclusions and assertions and
D is a finite set of defeasible inclusions (DIs, for short) that
are expressions C ⊑n D where C is a DL concept and D

a DLN concept. If δ = (C ⊑n D), then pre(δ) and con(δ)
denote C and D, respectively.

The informal meaning of C ⊑n D is: “all standard in-
stances, by default, satisfy C ⊑ D, unless stated otherwise”,
that is, unless some higher priority axioms entail that some
standard instances satisfy C ⊓ ¬D; in that case, C ⊑n D is
overridden. The instances of any concept NE are required to
satisfy all the DIs that are not overridden in NE.

The priority relation over DIs is denoted by ≺. DLN

solves automatically only the conflicts that can be settled us-
ing ≺. Any other conflict should be regarded as a representa-
tion error (cf. the discussion of silent conflict removal in the
introduction) and shall be resolved by the knowledge engi-
neer, typically by adding specific DIs. Unresolved conflicts
yield inconsistent normality concepts, that can be detected by
queries of the form NC ⊑ ⊥.

The priority relation is a parameter of DLN. The full pa-
per considers both the specificity-based priority of rational
closure and a simpler kind of specificity adopted by circum-
scribed DLs [Bonatti et al., 2015a], namely: δ1 ≺ δ2 iff

KB |≈ pre(δ1) ⊑ pre(δ2) and KB 6|≈ pre(δ2) ⊑ pre(δ1) .

The expression KB |≈ α means that α is a DLN conse-
quence of KB. Due to space limitations, we do not report the
model-theoretic definition of |≈ and present only its reduc-
tion to classical reasoning [Bonatti et al., 2015a]. For all sub-

sumptions and assertions α, KB |≈ α holds iff KBΣ |= α,1

where Σ is the set of normality concepts explicitly occurring

in KB∪{α}, and KBΣ is a classical knowledge base obtained
as follows (recall that KB = S ∪ D):

1In this classical translation, normality concepts are treated like
new concept names.
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DLN complexity

DL
complexity

subsumption and
assertion checking

knowledge base
and concept
consistency

P P P

ExpTime ExpTime ExpTime

N2ExpTime PN2ExpTime PN2ExpTime

All results hold for specificity and other priority relations in
PC , where C is the complexity of subsumption in DL

Table 2: Some complexity results

First, for all DIs δ ∈ D and all NC ∈ Σ, let:

δNC =
(

NC ⊓ pre(δ) ⊑ con(δ)
)

. (1)

The informal meaning of δNC is: “NC’s instances satisfy δ”.
Then, let ↓≺δ be the operator that removes from any axiom

set S ′ ⊇ S all the δNC
0

that do not have higher priority than
δ, preserving the axioms of KB:

S ′ ↓≺δ = S ∪ (S ′ \ {δNC

0
| NC ∈ Σ ∧ δ0 6≺ δ}) .

Third, let δ1, . . . , δ|D| be any linearization of (D,≺).2

Finally, let KBΣ = KBΣ

|D|, where the sequence KBΣ

i (i =

1, 2, . . . , |D|) is inductively defined as follows:

KBΣ

0
= S ∪

{

NC ⊑ C | NC ∈ Σ
}

(2)

KBΣ

i = KBΣ

i−1
∪
{

δNC

i | NC ∈ Σ, and

KBΣ

i−1
↓≺δi ∪ {δNC

i } 6|= NC ⊑ ⊥
}

. (3)

In other words, the above sequence starts with KB’s strong
axioms S , extended with the inclusions NC ⊑ C, then pro-
cesses the DIs δi in non-increasing priority order.

If δi can be consistently added to C’s prototype, given all
higher priority DIs selected so far (which is verified by check-
ing that NC 6⊑ ⊥ in line (3)), then its translation δNC

i
is in-

cluded in KBΣ (i.e. δi “enters C’s prototype”), otherwise δi
is discarded, and we say that δi is overridden in NC.

The original semantics is refined in [Bonatti and Sauro,
2017] in order to infer NC ≡ ND when C ≡ D. The cor-
responding iterative construction of KBΣ is very similar: it
suffices to replace equation (2) with

KBΣ
0 = S∪

{

NC ⊑ C | NC ∈ Σ
}

∪
{

NC ≡ ND | S |= C ≡ D
}

.

Using the construction of KBΣ and the equivalence between

KB |≈ α and KBΣ |= α it is not hard to prove that:

1. If DL belongs to a deterministic time complexity class

C, then DLN preserves its complexity;

2. if C is nondeterministic, then DLN belongs to P C .

In particular, DLN preserves tractability. Some examples –
applying to EL/Dl-lite, ALC, and SROIQ, respectively –
are reported in Table 2.

2That is, {δ1, . . . , δ|D|} = D and for all i, j = 1, . . . , |D|, if

δi ≺ δj then i < j. All linearizations yield the same KBΣ.

Mamm ⊑n ∃ lungs Mamm ⊑n ¬∃fins

SeaAnim ⊑n ∃fins Whales ⊑ Mamm ⊓ SeaAnim

Dolphins ⊑ Mamm ⊓ SeaAnim ⊓ ∃fins

Table 3: The KB formalizing the example

3 Behavior of DLN

A DI δ = (C ⊑n D) is roughly similar to a set of defaults
stating, for each normality concept NE, that the instances of
NE satisfy C ⊑ D unless stated otherwise (equivalently, δNE

holds by default). The full paper and [Bonatti et al., 2015b;
Bonatti and Sauro, 2017] contain several examples inspired
by real applications, but here – due to space limitations – we
resort to an old-fashioned example that illustrates several fea-

tures of DLN at once.

Example 1 Let us formalize a domain where “by default,
mammals have lungs and not fins, by default sea animals have
fins, whales are both mammals and sea animals, dolphins are
both mammals and sea animals and have fins”. The axioma-

tization in DLN is reported in Table 3. The priority relation
on DIs is specificity.

Both Dolphins and Whales are in the intersection of
Mamm and SeaAnim , that have conflicting default proper-
ties concerning fins. Since Mamm and SeaAnim are incom-
parable, specificity does not settle the conflict.

However, dolphins are explicitly asserted to have fins; this
assertion overrides the second default property of mammals
thereby resolving the conflict. Still, Dolphins inherit the other

default property of mammals (since DLN is not affected by
inheritance blocking) so the attributes of standard dolphins
are captured by the following inference, stating in formal
terms that standard dolphins have both fins and lungs:

KB |≈ NDolphins ⊑ ∃fins ⊓ ∃ lungs .

The definition of Whales , instead, is incomplete: the knowl-
edge engineer forgot to settle the conflict. However, the need
for additional knowledge can be easily identified by looking

for inconsistent normality concepts: in DLN (where unre-
solved conflicts are not silently removed because a DI can
be overridden only by axioms with strictly higher priority)
whales inherit all the (mutually inconsistent) default proper-
ties of mammals and sea animals, therefore:

KB |≈ NWhales ⊑ ⊥ .

In other words, the standard concept consistency tests carried
out during KB validation point out also unresolved conflicts.

In some logics, like circumscribed DLs and typicality DLs,
the fact that dolphins are exceptional mammals would cause
the set of such exceptional individuals to be minimized. So, in
the direct equivalents of the above knowledge base, Dolphins
would be inconsistent (Dolphins ⊑ ⊥). On the contrary, in

DLN neither Dolphins nor NDolphins are inconsistent. If
we further asserted that Moby is a whale, then circumscribed
DLs and typicality DLs would infer Whales ≡ {Moby}

while DLN would not.
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(A)
KB |≈ α KB |≈ γ
KB ∪ {α} |≈ γ

α, γ are inclusions/assertions

(B)
C ⊑n D C ⊑n E

C ⊓D ⊑n E
(C)

NC ⊑ D NC ⊑ E
N(C ⊓D) ⊑ E

Table 4: Variants of cautious monotony in DLN

Even if DLN has not been built with the KLM postulates in
mind (because it has different goals), it often behaves in a

quite similar way. In DLN there exist several analogues of
the postulates; Table 4 illustrates the three variants investi-
gated in [Bonatti and Sauro, 2017]3 through the correspond-
ing versions of cautious monotony.

With respect to version (A) of the postulates, DLN is cu-
mulative. Moreover, if each consistent DL concept has at

least one standard instance, then DLN satisfies all postu-
lates. Interestingly, the same precondition is hardwired in the
semantics of typicality logics through the smoothness condi-
tion, and a similar assumption was made in a first-order ex-
tension of the postulates [Lehmann and Magidor, 1990]. The
cumulativity property shows that DIs significantly differ from
default rules, since default logic is not cumulative.

Version (B) is affected by overriding. For instance, if the
second premise of this variant of cautious monotony were
overridden, then the conclusion would not be supported. On
the other hand, if the premises are not overridden, then all the

postulates of type (B) are valid in DLN. A first interesting re-
mark is that a similar behavior can be observed in Lehmann’s
account of default reasoning [Lehmann, 1995]: there the pos-
tulates hold only if overridden defaults are ignored. The sec-
ond interesting remark is that two of these postulates uncon-
ditionally hold in most practically interesting cases: (i) the
OR rule holds if the priority relation is specificity; (ii) LLE
(left logical equivalence) holds whenever the priority relation
treats logically equivalent DIs in the same way (like speci-
ficity does).

Version (C) of the postulates is analogous to the postulates
satisfied by typicality logics. It can be shown that typicality
DLs satisfy these postulates because the normality criterion is
assumed to be concept-independent (i.e. if John is more typi-
cal than Mary as a parent, then he must also be more typical
than Mary as a driver, as a worker, as a tax payer, and so on).

DLN does not embrace this strong assumption and – conse-
quently – does not universally satisfy version (C) of Cut and
Cautious Monotony. The latter interferes also with inconsis-

tent prototypes (and the characteristic way DLN deals with
unresolved conflicts):

Example 2 Consider the simple N-free KB consisting of:

D ⊑ ¬E (4)

C ⊑n D (5)

C ⊑n E . (6)

Here the defeasible inclusions (5) and (6) together contra-
dict the strong inclusion (4), but they have the same priority,

3Version (B) is already studied in the full paper.

therefore the conflict cannot be resolved in C, and its pro-
totype is inconsistent (i.e. NC ⊑ ⊥). On the contrary, the
instances of C ⊓D, by definition, satisfy D (be they normal
or not); then they belong to ¬E, by (4), so (6) is overridden
and N(C ⊓ D) is consistent. This shows that version (C) of
cautious monotony does not hold. If it were applied, then
N(C ⊓D) would be made inconsistent, too, which is difficult
to justify: it is not clear why the strong facts N(C ⊓D) ⊑ D
and (4) should not override (6) in the prototype of C ⊓D.

If N does not explicitly occur in KB (which in practice means,
as explained in the full paper, that role fillers are not required
to be normal, similarly to what inevitably happens in rational
closure and default DLs) then all postulates in version (C)
hold but cautious monotony (cf. Example 2); if there are no
unresolved conflicts, then cautious monotony holds, too. So

DLN is almost rational also with respect to version (C).

Given these results, it is not surprising that DLN returns
the standard expected conclusions in many artificial exam-
ples occurring in the literature. Over a set of examples due to

Sandewall, DLN and the DL introduced in [Casini and Strac-
cia, 2013] (that combines rational closure and inheritance net-
works) make the same inferences if the same priority relation
is used, with the exception of the examples involving unre-

solved conflicts. In these cases, of course, DLN highlights
the conflicts while the other logic silently removes them (cf.
Section 6.5 of the full paper).

4 Further Properties and Results

The following contents of the full paper could not be de-
scribed in this abstract due to space limitations.

Usage and representation methodologies. We show how
to deal with a variety of representation needs, introducing
some nonmonotonic design patterns for fine-grained control
on overriding and role ranges. The latter address a charac-

teristic property of DLN not discussed here (but reported in
Table 1), namely, the ability to specify whether role filler
may include both standard and nonstandard individuals, or
whether roles should range on standard individuals only.

Test case generation and validation. Benchmarking tech-
niques and tools for nonmonotonic DL reasoners are still in
a pretty early stage. We propose some general criteria for
guiding the generation of benchmark tests, and some ex-post
validation metrics to assess the quality of the synthetic test
cases. These principles apply to all nonmonotonic DLs.

Inferring DIs. The model theoretic semantics of DLN

provides a natural way of inferring further DIs from those
explicitly contained in a KB. This feature might turn out to
be helpful in optimizing inferences, e.g. by identifying re-
dundant DIs or restructuring DIs in a way that speeds up
automated reasoning. We prove that DI inference is in gen-
eral more expensive than assertion/subsumption inference; its
complexity in the general case is still unknown.

The work on implementations and optimizations is cur-
rently being completed with refined modularization, incre-
mentality, and parallelization techniques. Additional experi-
ments with knowledge bases of increasing size are being car-

ried out to complete the assessment of the scalability of DLN.
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