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Abstract
A Boolean formula in conjunctive normal form
(CNF) is called matched if the system of sets of
variables which appear in individual clauses has a
system of distinct representatives. We present here
two results for matched CNFs: The first result is
a shorter and simpler proof of the fact that Boolean
minimization remains complete for the second level
of polynomial hierarchy even if the input is re-
stricted to matched CNFs. The second result is
structural — we show that if a Boolean function
f admits a representation by a matched CNF then
every clause minimum CNF representation of f is
matched.

1 Introduction
In this paper we study the class of matched formulas intro-
duced in [Franco and Van Gelder, 2003]. Given a CNF for-
mula ϕ we consider its incidence graph I(ϕ) defined as fol-
lows. I(ϕ) is a bipartite graph with one part consisting of
clauses of ϕ and the other part containing the variables of ϕ.
An edge {C, x} for a clause C and variable x is in I(ϕ) if x
appears in C. It was observed in [Aharoni and Linial, 1986;
Tovey, 1984] that if I(ϕ) admits a matching (i.e. a set of
pairwise disjoint edges) of size m (where m is the number
of clauses in ϕ), then ϕ is satisfiable. Later in [Franco and
Van Gelder, 2003] the formulas satisfying this condition were
called matched formulas. Since a matching of maximum
size in a given graph can be found in polynomial time (see
e.g. [Lovász and Plummer, 1986]), we can check whether a
given formula is matched. Given an arbitrary CNF ϕ we can
measure how far it is from being matched by considering its
maximum deficiency δ∗(ϕ), the number of clauses which re-
main unmatched in a maximum matching of I(ϕ). A formula
ϕ is thus matched iff δ∗(ϕ) = 0. A weaker notion of defi-
ciency δ(ϕ) = m− n (where m is the number of clauses and
n the number of variables in ϕ) is also often being considered.

Since their introduction, matched formulas were consid-
ered as a base class in parameterized algorithms for satis-
fiability (see e.g. [Flum and Grohe, 2006] for an overview

∗This paper is an updated extended abstract of an article in the
Journal of Artificial Intelligence Research [Čepek et al., 2014].

of parameterized algorithms theory). In particular, the au-
thors of [Fleischner et al., 2002] show that satisfiability of
the formulas whose maximum deficiency is bounded by a
constant can be decided in polynomial time. This result was
later improved in [Szeider, 2003] to a an algorithm for sat-
isfiability parameterized with maximum deficiency of a for-
mula. Parameterization based on backdoor sets with respect
to matched formulas were considered in [Szeider, 2007].

Several generalizations of matched formulas were consid-
ered in the literature, too. In [Kullmann, 2000], matched
formulas were generalized into the class of linearly satisfi-
able formulas. Autarkies based on matchings were studied
in [Kullmann, 2003]. Another generalization was considered
in [Szeider, 2005] as classes of bi-clique satisfiable and var-
satisfiable formulas. Unfortunately, for both bi-clique and
var-satisfiable formulas it is hard to check if a formula falls
into one of these classes [Szeider, 2005].

The results listed in the previous paragraphs show that
matched formulas play a significant role in the theory of satis-
fiability solving which is, without any doubt, one of the most
studied problems in theoretical computer science that has
many practical applications. Despite this fact, little is known
about the structure of matched CNFs. It is not hard to come
up with examples of matched CNFs such that logically equiv-
alent prime CNFs are not matched. This is quite a surpris-
ing phenomenon which does not occur in most classes with
polynomial time satisfiability testing such as quadratic CNFs,
Horn CNFs, and their various generalizations, for which once
a CNF is in the class, all logically equivalent prime CNFs are
guaranteed to be in the class as well. This brings an interest-
ing question: given a (nonprime) matched CNF does there ex-
ist at least one equivalent prime CNF which is also matched?
In this paper we give an affirmative answer to this question,
and then use this fact to prove a stronger result: if a Boolean
function f admits a representation by a matched CNF then
every clause minimum CNF representation of f is matched.
This is the main result of the current paper.

Another problem we study in this paper is Boolean min-
imization of matched CNFs. Boolean minimization prob-
lem (BM) can be stated as follows: given a CNF find a
logically equivalent CNF with a minimum possible number
of clauses. This natural optimization version can be turned
into a decision version by adding a number k and asking
whether there exists a logically equivalent CNF with at most
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k clauses. The decision version of BM was shown to be Σp
2-

complete [Umans, 2001] for general CNFs (where Σp
2 de-

notes the second level of polynomial hierarchy). It is also
long known that for some classes of CNFs where SAT is
solvable in polynomial time, BM is Σp

1-complete (where Σp
1

denotes the first level of polynomial hierarchy which is bet-
ter known as class NP), i.e. easier than in the general case.
Maybe the best known example is the class of Horn CNFs (a
CNF is Horn if every clause in it contains at most one pos-
itive literal). NP-completeness of BM for Horn CNFs was
proved independently in several papers [Ausiello et al., 1986;
Čepek, 1995; Hammer and Kogan, 1993; Maier, 1980; Boros
et al., 2013]. For some classes of CNFs BM is even easier:
there exists a hierarchy of tractable subclasses of Horn CNFs
for which there are polynomial time minimization algorithms,
namely acyclic and quasi-acyclic Horn CNFs [Hammer and
Kogan, 1995], and CQ Horn CNFs [Boros et al., 2009].
There are also few heuristic minimization algorithms for
Horn CNFs [Boros et al., 1998].

The complexity of BM for matched CNFs does not fit
the above picture. Despite the fact that SAT is trivial for
matched CNFs, BM for this class is Σp

2-complete, i.e. as
hard as for the general case. This fact was proved in [Gurský,
2011], where the proof modifies the proof for the general case
from [Umans, 2001]. In this paper we give a much simpler
proof of the same fact which is based on an observation, that
equivalence testing is co-NP-complete for matched CNFs.

2 Preliminaries
In this section we shall give the necessary definitions and re-
call several results we shall use in this paper.

2.1 Boolean Functions
An n-variable Boolean function is a mapping f : {0, 1}n →
{0, 1}. A literal is either a variable or its negation. A clause
is a disjunction of literals. Formula ϕ is in conjuntive normal
form (CNF) if it is a conjuction of clauses (we also say that
ϕ is a CNF formula). We shall often treat a clause as a set of
its literals and a CNF formula as a set of its clauses. Thus |ϕ|
will denote the number of clauses in ϕ. If two CNF formu-
las ϕ1 and ϕ2 define the same function, we say that they are
equivalent and we denote this fact with ϕ1 ≡ ϕ2. A CNF ψ
is called clause minimum if for every CNF ϕ such that ψ ≡ ϕ
we have |ψ| ≤ |ϕ|.

Clause C is called an implicate of f if every assignment
~x ∈ {0, 1}n satisfying f (i.e. f(~x) = 1) also satisfies C (i.e.
C(~x) = 1). We say that a clause C1 subsumes a clause C2,
if every literal from C1 occurs also in C2 (i.e. C1 ⊆ C2).
C is a prime implicate of a function f if it is an implicate
of f and there is no other implicate C ′ of f subsuming C
(i.e. C is a set-minimal implicate of f ). We say that CNF
formula ϕ is prime if it contains only prime implicates. A
CNF formula ϕ is irredundant if there is no sub-CNF ϕ′ ⊂ ϕ
which represents the same function as ϕ.

An assignment t which assigns values to only a subset of
(possibly to all) variables of a function f on n is called a par-
tial assignment. Formally, partial assignment can be viewed
as a mapping t : Y 7→ {0, 1} where Y is a subset of variables

of f . Given a CNF ϕ, ϕ(t) denotes the CNF after applying a
partial assignment t.

2.2 Resolution
We say that two clauses have a conflict in variable x if there
is a positive occurrence of x in one clause and a negative
occurrence in the other. Two clauses C1 = (D1 ∨ x) and
C2 = (D2∨x) are resolvable over x ifD1 andD2 do not have
a conflict in any variable. We write R(C1, C2) = D1 ∨ D2

and this disjunction is called a resolvent of the parent clauses
C1 and C2.

2.3 Exclusive Sets of Implicates of a Boolean
Function

In this section we follow [Boros et al., 2010]. By Ip(f) we
shall denote the set of all prime implicates of a function f and
by I(f) the resolution closure of Ip(f).
Definition 2.1 ([Boros et al., 2010]) Let f be a Boolean
function and let X ⊆ I(f) be a set of clauses. We shall say,
that X is an exclusive set of clauses of f if for every pair of
resolvable clauses C1, C2 ∈ I(f) the following implication
holds:

R(C1, C2) ∈ X =⇒ C1 ∈ X and C2 ∈ X ,

i.e. the resolvent is in X only if both parent clauses are in X .
Theorem 2.2 ([Boros et al., 2010]) Let f be an arbitrary
Boolean function, let C1, C2 ⊆ I(f) be two distinct sets of
clauses which both represent f , and let X ⊆ I(f) be an ex-
clusive set of clauses. Then C1 ∩ X ≡ C2 ∩ X , i.e. both
represent the same function.

Based on this proposition we define an exclusive compo-
nent of a Boolean function.
Definition 2.3 ([Boros et al., 2010]) Let f be an arbitrary
Boolean function, X ⊆ I(f) be an exclusive set of clauses of
f , and C ⊆ I(f) be a set of clauses which represents f . The
Boolean function fX represented by the set C ∩ X is called
the X -component of the function f . We shall simply call a
function g an exclusive component of f , if g = fX for some
exclusive subset X ⊆ I(f).

Theorem 2.2 guarantees that the X -component fX is well
defined for every exclusive set X ⊆ I(f). Theorem 2.2 has
the following corollary.
Corollary 2.4 ([Boros et al., 2010]) Let C1, C2 ⊆ I(f) be
two distinct sets of clauses such that C1 ≡ C2 ≡ f , i.e. such
that both sets represent f , and let X ⊆ I(f) be an exclusive
set of clauses. Then (C1 \ X ) ∪ (C2 ∩ X ) also represents f .

2.4 Autarkies
Autarky is a special type of partial assignment which satisfies
each clause in which it substitutes a value for some literal.
Definition 2.5 Let ψ be a CNF on the set V of variables, let
Y ⊆ V be a subset of variables, let L = {x | x ∈ Y } ∪
{x | x ∈ Y } be the corresponding set of literals, and let
t : Y 7→ {0, 1} be a partial assignment on ψ. Then t is an
autarky on ψ if for every clause C ∈ ψ either C ∩ L = ∅ or
C is satisfied by t.
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We shall prove two simple lemmas about autarkies which
will be needed later in this paper. The first lemma is
from [Kullmann, 2000] and the second one is proved in
[Čepek et al., 2014].

Lemma 2.6 Let ψ be a CNF on the set V of variables, let
Y ⊆ V be a subset of variables, and let t : Y 7→ {0, 1} be an
autarky on ψ. Then t is an autarky on I(f).

Corollary 2.7 Let ψ be a CNF on the set V of variables, let
Y ⊆ V be a subset of variables, and let t : Y 7→ {0, 1} be an
autarky on ψ. Let ϕ ⊆ I(f) be an arbitrary representation of
f . Then t is an autarky on ϕ.

Let us mention that Corollary 2.7 does not hold without the
assumption ϕ ⊆ I(f). Consider e.g. a CNF ψ = (x ∨ y) ∧ z
and a CNF ϕ = (x∨y)∧(z∨y)∧(z∨y). It should be obvious
that ψ ≡ ϕ, i.e. both CNFs represent the same function f , but
ϕ 6⊆ I(f). Now if t is an assignment which sets y to 1, t is
autarky on ψ. On the other hand t is not autarky on ϕ because
(z ∨ y) is not satisfied by t.

Lemma 2.8 Let ψ be a CNF on the set V of variables, let
Y ⊆ V be a subset of variables, let L = {x | x ∈ Y } ∪
{x | x ∈ Y } be the corresponding set of literals, and let
t : Y 7→ {0, 1} be an autarky on ψ. Then ψ(t) represents an
exclusive component fX of f defined by the exclusive set of
clauses

X = {C ∈ I(f) | C ∩ L = ∅}.

2.5 Matched Formulas
Now we shall define the key concept of this paper. Given an
undirected graph G = (V,E), a subset of edges M ⊆ E is
a matching in G if the edges in M are pairwise disjoint. A
bipartite graph G = (A,B,E) is an undirected graph with
disjoint sets of verticesA andB, and the set of edges E satis-
fying E ⊆ A×B. For a setW of vertices ofG, let Γ(W ) de-
note the neighbourhood of W in G, i.e. the set of all vertices
adjacent to some element of W . Before giving the definition
of matched CNFs let us state the following well-known result
on matchings in bipartite graphs:

Theorem 2.9 (Hall’s Theorem [Hall, 1935; Lovász and Plum-
mer, 1986]) Let G = (A,B,E) be a bipartite graph. A
matching M of size |M | = |A| exists if and only if for every
subset S of A we have that |S| ≤ |Γ(S)|.
Definition 2.10 Let ϕ = C1∧ . . .∧Cm be a CNF on n vari-
ablesX = {x1, . . . , xn}. We shall associate a bipartite graph
I(ϕ) = (ϕ,X,E) with ϕ, where the vertices correspond to
clauses in ϕ and the variables in X . A clause Ci is connected
to a variable xj (i.e. {Ci, xj} ∈ E) if Ci contains xj or xj .
A CNF ϕ is matched if I(ϕ) has a matching of size m.

Note that a matching of maximum size in a given graph
can be found in polynomial time (see e.g. [Lovász and Plum-
mer, 1986]) and thus we can test in polynomial time whether
a given CNF is matched. A variable which is matched to
some clause in matching M is called matched in M , it is free
in M otherwise. Note, that a matched CNF is trivially sat-
isfiable. The name “matched” was given to these formulas
in [Franco and Van Gelder, 2003], although they appeared al-
ready in [Aharoni and Linial, 1986; Tovey, 1984].

3 Equivalence Testing and Hardness of
Clause Minimization of Matched Formulas

Following a definition from [Čepek et al., 2012] a class of
CNFs X is called tractable if it satisfies the following four
properties.
• Recognition: Given an arbitrary CNF ϕ it is decidable

in poly-time with respect to |ϕ| whether ϕ ∈ X .
• Satisfiability: For every CNF ϕ ∈ X it is decidable in

poly-time with respect to |ϕ| whether ϕ is satisfiable.
• Partial assignment: Given an arbitrary CNF ϕ ∈ X , if
ψ is produced from ϕ by fixing some variables to 0 or 1
and substituting these values into ϕ, then ψ ∈ X .
• Prime representations: Given an arbitrary CNF ϕ ∈ X ,

if ϕ represents a function f then all prime CNF repre-
sentations of f belong to X .

It was shown in [Čepek et al., 2012] that given two CNFs
from a tractable class, it can be tested in polynomial time,
whether these two CNFs are logically equivalent or not. The
class of matched CNFs satisfies the first two tractability con-
ditions, but fails to satisfy the remaining two. Constructing a
counterexample to the third property is easy. The CNF

(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z)
is clearly matched, but a partial assignment x← 0 gives

(y ∨ z) ∧ (y ∨ z) ∧ (y ∨ z)
that is not matched. We defer the counterexample to the
fourth property to the next section. In the light of these find-
ings it is an interesting question what is the complexity of
equivalence testing for matched CNFs. Surprisingly, despite
the fact that satisfiability is trivial for matched CNFs, equiva-
lence testing is co-NP-complete.

MATCHED-EQ

Instance : Two matched CNFs ϕ and ψ

Question : Does ϕ ≡ ψ hold?

Theorem 3.1 MATCHED-EQ is co-NP-complete.
Proof : A nondeterministic polynomial procedure checking
that two CNFs are not equivalent guesses an assignment t and
checks ϕ(t) 6= ψ(t). Thus MATCHED-EQ is in co-NP.

To show co-NP-hardness we use reduction from the prob-
lem of checking that a given CNF α is unsatisfiable. Let α
be an arbitrary CNF on n variables and m clauses, in partic-
ular let α = C1 ∧ C2 ∧ . . . ∧ Cm. Let us define a clause
D = (a1 ∨ a2 ∨ . . . ∨ am) on m new variables not occurring
in α and let us define two CNFs:

ϕ = (C1 ∨D) ∧ (C2 ∨D) ∧ . . . ∧ (Cm ∨D) and ψ = D

Both ϕ and ψ are matched, since each clause C ′i = (Ci ∨D)
can be matched to a variable ai. Because ϕ ≡ α∨D ≡ α∨ψ
we have ϕ ≡ ψ iff α ≡ ⊥, i.e. iff α is unsatisfiable.

The fact, that equivalence testing is co-NP-hard, is likely
the main reason behind the fact proved in [Gurský, 2011]
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that clause minimization of matched CNFs is Σp
2-complete.

The proof in [Gurský, 2011] basically follows the proof
of Σp

2-completeness of general Boolean minimization (BM)
from [Umans, 2001] and is quite long and complicated. Here
we present a much shorter and simpler proof based on a sim-
ilar idea as the proof for the hardness of equivalence testing.

MATCHED-MIN

Instance : A matched CNF ϕ and an integer k

Question : ∃ a CNF ψ such that ψ ≡ ϕ and |ϕ| ≤ k?

Theorem 3.2 MATCHED-MIN is Σp
2-complete.

Proof : Since MATCHED-MIN is a special case of BM
which is known to be Σp

2-complete, MATCHED-MIN is in Σp
2.

For the Σp
2-hardness we reduce the Σp

2-complete BM to it.
Let (α, k) be an instance of BM, α = C1 ∧ . . .∧Cm. Now

let us repeat the construction from the proof of Theorem 3.1.
Let D = (a1 ∨ . . . ∨ am) be a clause on m new variables not
occurring in α, let ϕ = (C1 ∨D) ∧ . . . ∧ (Cm ∨D), and let
(ϕ, k) be an instance of MATCHED-MIN.

Let (α, k) be a positive instance of BM. Then there exists
CNF β = D1∧D2∧. . .∧Dk′ (with k′ ≤ k) that is equivalent
to α. Let ψ be a CNF equivalent to β ∨ (a1 ∨ a2 ∨ . . . ∨ am)
that is let ψ = D′1 ∧D′2 ∧ . . . ∧D′k′ where D′i = Di ∨ a1 ∨
a2∨ . . .∨am for 1 ≤ i ≤ k′. Clearly ψ is equivalent to ϕ and
has at most k clauses. Therefore (ϕ, k) is a positive instance
of MATCHED-MIN.

To see the other direction let (ϕ, k) be a positive instance
of MATCHED-MIN and let ψ be a CNF equivalent to ϕ with
at most k clauses. Let β be a CNF originating from ψ by a
partial assignment that sets all a-variables to zero and sets no
other variable. Since ψ is equivalent to ϕ and that is equiva-
lent to α∨ (a1 ∨ a2 ∨ . . .∨ am), we have that β is equivalent
to α. Clearly |β| ≤ |ψ| ≤ k and since β is equivalent to α we
conclude that (α, k) is a positive instance of BM.

4 Prime Representations of Matched
Formulas

It is not difficult to see that unlike some well-behaved classes
of CNFs (such as e.g. Horn CNFs or quadratic CNFs) for
which all prime and irredundant CNFs lie inside the class,
this is not the case for matched CNFs. Consider the CNF

(a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a)

which is matched and a logically equivalent CNF

(a ∨ b) ∧ (b ∨ a) ∧ (c ∨ b) ∧ (b ∨ c)

which is not matched despite being prime and irredundant.
Thus it is a legitimate question, whether given a (nonprime)
matched CNF, there exists at least one logically equivalent
prime and irredundant CNF which is also matched. The an-
swer to this question is affirmative, however the proof re-
quires a series of very technical lemmas. Due to the page
limit we provide only the final statement here and refer the
interested reader to [Čepek et al., 2014].

Theorem 4.1 Let ψ be a matched CNF representing func-
tion f . Then there exists a matched CNF ϕ representing f
such that ϕ is prime and irredundant.

5 Minimum Representations of Matched
Formulas

In the previous section we have seen that for a matched CNF
there may be some logically equivalent prime and irredundant
CNFs which are not matched and some which are matched,
the latter set being always non-empty. Here we shall show
that a stronger statement holds for CNFs which are not only
prime and irredundant but also clause minimum, namely that
all such CNFs belong to the latter set.
Theorem 5.1 Letϕ be a matched CNF representing function
f on set of variables V and let ψ be a clause minimum CNF
representation of f . Then ψ is a matched CNF.
Proof : Due to Theorem 4.1 we may assume that ϕ is prime
and irredundant and thus ϕ ⊆ I(f). Let us assume by contra-
diction that ψ is not matched and that ψX ⊆ ψ is a maximal
(under inclusion) sub-CNF violating Hall’s condition (such a
subset must exist due to Theorem 2.9). Let us denote X the
set of variables in the sub-CNF ψX , Y = V \ X the set of
remaining variables in ψ, and ψY = ψ \ ψX the remaining
clauses in ψ (note that clauses in ψY may contain variables
not only from Y but also from X). Now the following holds:
• By the violation of Hall’s condition |ψX | > |X| holds.
• By the maximality of ψX there exists a matching M of

all clauses in ψY to variables in Y , i.e. ψY is a matched
CNF even if we drop all variables in X from its clauses.
This follows from the fact that every subset of ψY must
satisfy Hall’s condition even with respect to the variables
in Y , since otherwise any such violating subset could be
added to ψX contradicting its maximality.

The existence of matchingM implies that ψY can be satisfied
using only variables from Y (each clause can be satisfied by
its matched variable). So let t : Y 7→ {0, 1} be some partial
assignment satisfying all clauses in ψY (t is not necessarily
unique). Clearly, t is an autarky on ψ as it satisfies every
clause containing an assigned literal.

It follows from Lemma 2.8 that ψ(t) = ψX represents an
exclusive component fX of f defined by the exclusive set
X ⊆ I(f), which contains all clauses consisting only of vari-
ables from X . Since ϕ also represents f and we assumed
ϕ ⊆ I(f), it follows from Corollary 2.7 that t is an autarky
also on ϕ. Thus, similarly as for ψ(t) above, we can con-
clude that ϕ(t) is a sub-CNF of ϕ which represents the ex-
clusive component fX of f , i.e. ψ(t) ≡ ϕ(t). However, ϕ
is matched, so every its sub-CNF (and in particular ϕ(t)) is
matched, and thus |ϕ(t)| ≤ |X| while |ψ(t)| = |ψX | > |X|.
But now, since both ϕ(t) and ψ(t) = ψX represent an ex-
clusive component of f , also CNF ψ′ = (ψ \ ψ(t)) ∪ ϕ(t)
represents f by Corollary 2.4. However, we get |ψ′| < |ψ|
contradicting the assumed minimality of ψ.
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