
Efficient Mechanism Design for Online Scheduling (Extended Abstract)∗

Xujin Chen1, Xiaodong Hu1, Tie-Yan Liu2, Weidong Ma2,
Tao Qin2, Pingzhong Tang3, Changjun Wang4, Bo Zheng3

1 AMSS, Chinese Academy of Sciences, 2 Microsoft Research
3 Tsinghua University, 4 Beijing University of Technology

{xchen, xdhu}@amss.ac.cn, {tyliu, weima, taoqin}@microsoft.com,
kenshin@mail.tsinghua.edu.cn, wcj@bjut.edu.cn, zhengb10@mails.tsinghua.edu.cn

Abstract
This work concerns the mechanism design for
online scheduling in a strategic setting. In this
setting, each job is owned by a self-interested agent
who may misreport the release time, deadline,
length, and value of her job, while we need to
determine not only the schedule of the jobs, but
also the payment of each agent. We focus on the
design of incentive compatible (IC) mechanisms,
and study the maximization of social welfare (i.e.,
the aggregated value of completed jobs) by com-
petitive analysis. We first derive two lower bounds
on the competitive ratio of any deterministic IC
mechanism to characterize the landscape of our
research: one bound is 5, which holds for equal-
length jobs; the other bound is κ

lnκ + 1 − o(1),
which holds for unequal-length jobs, where κ is the
maximum ratio between lengths of any two jobs.
We then propose a deterministic IC mechanism and
show that such a simple mechanism works very
well for two models: (1) In the preemption-restart
model, the mechanism can achieve the optimal
competitive ratio of 5 for equal-length jobs and
a near optimal ratio of ( 1

(1−ε)2 + o(1)) κ
lnκ for

unequal-length jobs, where 0 < ε < 1 is a small
constant; (2) In the preemption-resume model, the
mechanism can achieve the optimal competitive
ratio of 5 for equal-length jobs and a near optimal
competitive ratio (within factor 2) for unequal-
length jobs.

1 Introduction
Online scheduling has been widely studied in the litera-
ture [Baruah et al., 1992; 1994; Porter, 2004; Zheng et al.,
2006; Ting, 2008], where each job is characterized by a
release time, a deadline, a length, and a value for its success-
ful completion by the deadline. Inspired by emerging areas
like computational economics and cloud computing [Azar
et al., 2013; Lucier et al., 2013; Mashayekhy et al., 2014;
Wu et al., 2014], we consider a strategic setting of the online

∗This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [Chen et al., 2016]

scheduling problem, where each job is owned by a self-
interested agent and she may have the incentive to manipulate
the scheduling algorithm in order to be better off [Friedman
and Parkes, 2003; Porter, 2004; Hajiaghayi et al., 2005;
Parkes, 2007]. To be specific, the agent may deliberately
delay the release time of her job, inflate its length, and
misreport its value and deadline.

Given this situation, a carefully designed online scheduling
mechanism is needed to regulate the strategic behaviors of
the agents and to (approximately) optimize some system
objectives. In this work, we focus on the maximization of
social welfare, i.e., the total value of completed jobs. We
use competitive analysis [Lavi and Nisan, 2004] to evaluate
the performance of such a mechanism, which compares the
social welfare implemented by the mechanism (without any
knowledge of all future jobs) with that of the optimal offline
allocation (with the knowledge of future jobs).

In this work, we consider two scheduling models: the
preemption-restart model [Ting, 2008] and the preemption-
resume model [Porter, 2004]. Once preempted, jobs in the
first model have to restart from the beginning; while jobs in
the second model can resume from the break point. Since
preemption is always assumed in this work, the two models
are also referred to as restart model and resume model,
respectively, and their involved jobs are called non-resumable
and resumable, respectively.

1.1 Problem Formulation
We consider online scheduling models with infinite time
period T = R≥0. Suppose there is a single machine that
processes at most one job at any given time. Jobs come over
time, and we use J to denote the set of jobs. Each job j ∈ J
is owned by a self-interested agent (which is also denoted
as j for simplicity); and it is characterized by a private type
θj = (rj , dj , lj , vj) ∈ T × T × R>0 × R>0, where rj is
the release time, dj is the deadline, lj is the length (i.e., the
processing time), and vj is the value if the job is completed
by its deadline.

A resumable job j is completed if and only if it is processed
for lj time units in total between its release time rj and
deadline dj , while a non-resumable job j is completed if and
only if it is processed for lj consecutive time units between
its release time rj and deadline dj .

Let κ = maxi,j∈J
li
lj

be the maximum ratio between the

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4985



lengths of any two jobs. For simplicity, we assume all job
lengths are normalized, i.e., lj ∈ [1, κ] for all j ∈ J , and
assume κ is known in advance following the practice in the
work of Chan et al. (2004) and Ting (2008).

We study direct revelation mechanisms, in which each
agent participates by simply declaring the type of her job
θ̂j = (r̂j , d̂j , l̂j , v̂j) at time r̂j . We use θ̂ to denote the profile
of reported types of all the agents. Given the declared types
of the agents, a mechanismM is used to schedule/allocate the
jobs and determine the payment of each agent. Here we only
consider “reasonable” mechanisms which (1) do not schedule
a job after its reported deadline and (2) do not schedule a job
once it has been processed for a reported length.

Given a certain mechanism M and a job sequence θ̂, we
use qj(θ̂, t) to denote whether job j is completed by time t
(if it is completed, qj(θ̂, t) = 1; otherwise qj(θ̂, t) = 0).
Then the value that agent j extracts from the mechanism
can be represented by qj(θ̂, dj)vj , and the social welfare
of the mechanism can be represented by W (M, θ) =∑
j qj(θ̂, dj)vj .
Let pj(θ̂) denote the amount of money that the mechanism

charges agent j. We assume that agents have quasi-linear
preferences [Nisan, 2007], i.e., the utility of agent j is
uj(θ̂, θj) = qj(θ̂, dj)vj − pj(θ̂).

Since agents are self-interested, they may misreport their
types in a strategic way. It is easy to see that the misreport
of a shorter length is a dominated strategy; otherwise, her job
cannot be completed even if it is scheduled by the mechanism
(since l̂j < lj). Therefore, the agents will not underreport the
lengths of their jobs. Similar to the work of Porter (2004),
we assume that the system will not return a completed job to
agent j until d̂j . In this way, we restrict the agent’s report
to be d̂j ≤ dj . In addition, we assume that no agent has
knowledge about her job before its release time, so we also
have r̂j ≥ rj .

Considering the potential misreport of the agents, we
are concerned with incentive compatible and individually
rational mechanisms. A mechanism is incentive compatible
(IC) if, for any agent j, regardless of the behaviors of
other agents, truthful reporting her own type maximizes
her utility. A mechanism is individually rational (IR) if
for each job j, truthful reporting leads to a non-negative
utility. In addition, we would also like the mechanism
to (approximately) maximize social welfare. We say a
mechanism M is (strictly) c-competitive if there does not
exist any job sequence θ such that c ·W (M, θ) < W (opt, θ),
where opt denotes the optimal offline mechanism. Sometimes
we also say that M has a competitive ratio of c.

1.2 Our Results
For the restart and resume model, we first give the lower
bounds of the competitive ratio for any online IC mechanism
is 5 when κ = 1 and κ

lnκ + 1 − o(1) when κ is big.
Then we design a simple IC mechanism that have very good
performances with respect to the competitive ratios. For
the restart model, our mechanism has a competitive ratio of
κ+ 2 + (1 + 1

κ )κ when κ is small, and ( 1
(1−ε)2 + o(1)) · κ

lnκ

when κ is large, where 0 < ε < 1 is a small constant.
For the resume model, our model has a competitive ratio of
(κ + 1)(1 + 1

κ )κ + 1 when κ is small, and ( 2
(1−ε)2 + o(1)) ·

κ
lnκ when κ is large. Comparing to the lower bounds, the
competitive ratios we obtained about our mechanism show
that our mechanism is nearly the best possible.

2 Lower bounds
In this section, we give the lower bounds of the competitive
ratio for any online IC mechanism of this problem. Detailed
proofs can be found in the full version [Chen et al., 2016].

Theorem 2.1. When κ = 1, no deterministic IC mechanism
can obtain a competitive ratio less than 5.

Theorem 2.2. When κ is sufficiently large, no deterministic
IC mechanism can obtain a competitive ratio less than κ

lnκ +
1 − o(1). In particular, no deterministic IC mechanism can
obtain a competitive ratio less than κ

lnκ + 0.94 for κ ≥ 16.

3 Mechanism Design
In this section, we describe a simple mechanism Γ1 (whose
allocation and payment rules are given in Algorithm 1),
which works surprisingly well for both the restart and resume
models, and handles the settings with different values of κ in
a unified framework. In contrast, previous works [Dürr et al.,
2012] need to design separate and very different algorithms
to deal with different values of κ.

3.1 The Mechanism Γ1

Before introducing our mechanism, we first introduce the
concept of the valid active time of an uncompleted job j, until
time t, denoted as

ej(t) =

{
t−min{s|x(t′) = j, ∀t′ ∈ [s, t)}, for restart model∫ t
0
µ(x(s) = j)ds, for resume model

(1)
where x(t) is the mechanism’s allocation function, which
maps each time point to an available job, or to 0 if the
machine is idle. And µ(·) is an indicator function that returns
1 if the argument is true, and zero otherwise. Note that ej(·)
can also take a vector θ as an argument. For example, ej(θ, t)
is shorthand for the ej(t) for the job sequence θ.

It can be seen that in the restart model, at time t, if a job
j has received an allocation at time t′ < t and has not been
preempted after that, then ej(t) = t−t′. In the resume model,
ej(t) is the accumulated processing time of job j until time t.

We say that a job j is feasible at time t if (1) its reported
release time is before t; (2) it has not been completed yet;
and (3) it has enough time to be completed before its reported
deadline, i.e., d̂j− t ≥ l̂j−ej(t). We use JF (t) to denote the
set of all feasible jobs at time t.

According to Algorithm 1, at any time t, Γ1 assigns a
priority score, v̂j · β l̂j−ej(θ̂,t), to each feasible job j ∈ JF (t),
and always processes the feasible job with the highest priority
(ties are broken in favor of the job with the smaller r̂j). Here
β is located in (0, 1) and will be determined later during the

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4986



competitive analysis. The payment rule of Γ1 is essentially
the critical-value payment [Parkes, 2007], which is similar
to that of the second-price auction. Hence, the payment is
equal to the minimum bid the agents have to make to remain
allocated. In the following pseudocode, θ̂−j denotes the
reported types of all jobs other than j.

Algorithm 1:
Allocation Rule:

for all time t do
if JF (t) 6= ∅ then
x(t)← arg maxj∈JF (t)(v̂j · β l̂j−ej(θ̂,t))

else
x(t)← 0

end
Payment Rule:

for all job j do
if qj(θ̂, d̂j) = 1 then
pj(θ̂) = min(v′j |qj(((r̂j , d̂j , l̂j , v′j), θ̂−j), d̂j) = 1)

else
pj(θ̂) = 0

end

Theorem 3.1. Mechanism Γ1 is incentive compatible, in both
the restart model and resume model.

4 Competitive Analysis

In this section, we show that mechanism Γ1 performs quite
well in terms of social welfare by comparison with the
optimal offline allocation, which has full knowledge of the
future jobs at the beginning of the execution.

To perform the competitive analysis, we need to design
virtual charging schemes. Under a certain virtual charging
scheme, for every job j completed by the optimal allocation
opt, we charge its value (or partial value) to some job f
completed by Γ1. If this virtual charging scheme satisfies
the property that every job f completed by Γ1 receives a total
charge of at most cvf , then we succeed in showing that Γ1

has a competitive ratio of at most c. Designing an ingenious
virtual charging scheme is crucial to the competitive analysis.
In the following, we will design different virtual charging
schemes to obtain the competitive ratio of Γ1 for the restart
model and the resume model respectively.

As we use a parameter β in the priority function of
mechanism Γ1, we first derive competitive ratios as functions
of β. We will specify later (in Section 4.3) how to choose a
suitable β (with respect to κ) to optimize the performance of
Γ1, and derive competitive ratios in terms of κ.

Here, we introduce some notation which will be used in
both Section 4.1 and Section 4.2. Denote by (1, 2, . . . , F ) the
sequence of jobs completed by Γ1 over time. For each job f
in this sequence, let tf be the time when job f is completed,
and for convenience denote t0 = 0. Divide the time into F+1
intervals If = [tf−1, tf ), f = 1, 2, . . . , F , and [tF ,+∞).

4.1 Analysis of the Restart Model
We study the restart model first. We assume, without loss of
generality, that the optimal allocation opt does not interrupt
any allocation, since all interrupted jobs are non-resumable.
We have the following theorem.

Theorem 4.1. For the restart model, Γ1 has a competitive
ratio of 1

1−β + 1
βκ + 1.

Proof. We introduce the virtual charging scheme as follows.
For any completed job j in opt, if it is also completed in
mechanism Γ1, then its value is charged to itself.

Otherwise (i.e., job j is not completed by Γ1), we consider
the time sj at which j begins execution in opt. Note that
opt does not interrupt any allocation, so j is exactly allocated
to the time period [sj , sj + lj). Then sj must be in some
time interval If (recall If = [tf−1, tf )), and we charge the
value of j to f . Define σj := tf − sj to be the time amount
between sj and tf . As job j is feasible at time sj , according
to Lemma 4.2, we know that the priority jobs j at time sj is
at most vfβtf−sj = vfβ

σj ; in the meanwhile, the priority
of j at time sj is vjβlj . We have vjβlj ≤ vfβ

σj , i,e., vj ≤
vfβ

σj−lj . We defer the formal statement and the proof of
Lemma 4.2 to the end of this subsection.

We now calculate the maximum total value charged to
a completed job f in Γ1. In time interval If , denote by
(1, 2, . . . ,m), the sequence of jobs in opt whose starting time
sj belongs to If and ordered as s1 > s2 > · · · > sm.
Remember that σj is the time amount between sj and tf .
Then it is clear that we have 0 < σ1 < σ2 < · · · < σm
and σj − lj ≥ σj−1 for 2 ≤ j ≤ m, since j is allocated
and completed during time interval [sj , sj−1]. Furthermore,
as the job lengths are normalized, i.e., 1 ≤ lj ≤ κ, we can
deduce that:

σj ≥
{

0 for j = 1

j − 1 for j ≥ 2.
(2)

Recall that β < 1 and f may also be completed in opt.
Therefore the total charge to job f is at most vf +

∑m
j=1 vj ,

which is upper bounded by

vf + vf

m∑
j=1

βσj−lj ≤ vf (1 + β−l1 +

m∑
j=2

βσj−1)

≤ vf (1 + β−l1 +
m−1∑
j=1

βσj ) ≤ vf (1 + β−κ +
∞∑
j=0

βj).

This shows that mechanism Γ1 is ( 1
1−β+ 1

βκ +1)-competitive.

Actually, the competitive ratio obtained in this way is tight,
i.e., the ratio 1

1−β + 1
βκ + 1 is best possible for Γ1. We give

an example in the full version to show tightness.

Lemma 4.2. For any time point sj ∈ If , if job j (6= f )
is feasible at time sj , then the priority of j at sj is at
most vfβtf−sj . Moreover, the value of j, vj , is at most
vfβ

tf−sj−lj .

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4987



Proof. Note that, sj is in time interval If , and according to
the definition of If , we know that f is the unique job that
is completed in If by Γ1. Now we prove the lemma by
enumerating all possible cases.

(1) If the executing job at sj is job f , then we know that
the priority of job f at time sj is exactly vfβtf−sj (because
the priority of job f at time tf is vf ). Clearly, the priority of
j at sj is not larger than that of job f , and thus not larger than
vfβ

tf−sj .
(2) If the executing job at sj is not job f , then we assume

that Γ1 executes job j1, . . . , jk and f successively1 in the
time period [sj , tf ), where k ≥ 1. Since f is the unique
job completed in If , we can deduce that: j1 is preempted
by j2, j2 is preempted by j3,...,jk is preempted by f , and
finally f is completed at time tf . Denote τ1, . . . , τk as the
time points at which j1, . . . , jk are preempted respectively.
We also denote fj(t) as the priority of job j at time t.
We now use backward induction: First, we know that the
priority of job jk at τk is not larger than that of job f , i.e.,
fjk(τk) ≤ vfβ

tf−τk . Then, since jk−1 is preempted by jk at
τk−1, we know that the priority of jk−1 at τk−1 is not larger
than that of jk. Hence, we have fjk−1

(τk−1) ≤ fjk(τk−1) =
fjk(τk)βτk−τk−1 ≤ vfβ

tf−τk−1 . And eventually, we can get
that fj1(τ1) ≤ vfβ

tf−t1 . Since j1 is executed at time sj , we
can deduce that fj1(sj) ≤ vfβ

tf−sj . Clearly, the priority of
j at time sj (i.e., vjβlj ) is not larger than that of j1, thus not
larger than vfβtf−sj .

By arranging vjβlj−ej(sj) ≤ vfβ
tf−sj , we can get vj ≤

vfβ
tf−sj−lj+ej(sj) ≤ vfβ

tf−sj−lj , where ej(sj) ≥ 0 is the
valid active time of job j at time sj .

Some remarks on Lemma 4.2: (1) Because f is the unique
job completed by Γ1 in the time interval If , the priorities
of the executing jobs monotonically increase during If . (2)
Lemma 4.2 applies in both the restart model and resume
model. (3) Lemma 4.2 provides a useful tool to relate the
priority of a feasible job (j) at some time point (sj ∈ If ) to
the completed job f .

4.2 Analysis of the Resume Model
Compared with the restart model, the competitive analysis
for the resume model is much more complicated, because in
the resume model, a job can be executed in several disjointed
time intervals.

To analyze the competitive ratio of Γ1 for the resume mod-
el, we propose two new virtual charging schemes (referred to
as integral charging scheme and segmental charging scheme,
respectively). In the integral charging scheme, we charge the
whole value of job j in the optimal allocation opt to some
job completed by mechanism Γ1; while in the segmental
charging scheme, we charge the value of j by segment,
and different segments of the same job may be charged to
different jobs completed by mechanism Γ1. By using these
two schemes, in Theorem 4.3 we upper bound the competitive
ratio of mechanism Γ1 by β−κ

1−β + 1 and 1
βκ + −2

β ln β + 1

respectively. As discussed in Section 4.3, the two ratios work

1Here, j1 can be job j, which does not affect the analysis.

for situations with different κ values, i.e., the first one works
well for small κ and the second one works well for large κ.
The detailed information about the two charging schemes and
its relevant proofs can be found in the full version of this work
[Chen et al., 2016]. Here we just list the main theorem.
Theorem 4.3. For the resume model, the competitive ratio of
Γ1 is at most β

−κ

1−β + 1. In particular, if β satisfies κβκ ≥ β,

the competitive ratio of Γ1 is at most min{β
−κ

1−β + 1, 1
βκ +

−2
β ln β + 1}.

4.3 Discussions
An advantage of our mechanism is that it can handle the
settings with different values of κ in a unified framework. We
only need to set parameter β to different values in Theorem
4.1 and Theorem 4.3 so as to adapt to different settings of job
lengths (as shown in the following corollaries).
Corollary 4.4. By setting β = 1 − (1 − ε)2 · lnκ

κ , where
ε > 0 is an arbitrary small constant, mechanism Γ1 achieves
a competitive ratio ( 1

(1−ε)2 +o(1)) · κ
lnκ for the restart model

and a competitive ratio ( 2
(1−ε)2 + o(1)) · κ

lnκ for the resume
model.

As for Corollary 4.4, we have the following discussions:
(1) For the restart model, mechanism Γ1 achieves a compet-

itive ratio of ( 1
(1−ε)2 +o(1)) · κ

lnκ , which improves upon

the best-known algorithmic result 6κ
log κ + O(κ

5
6 ) [Ting,

2008] for the standard online scheduling without strate-
gic behavior.

(2) For the resume model, when κ is large, mechanism Γ1

achieves a competitive ratio of ( 2
(1−ε)2 + o(1)) · κ

lnκ ,
which is slightly worse than the result obtained for the
restart model (within a factor of 2). Asymptotically
speaking, Γ1 is near optimal, since its competitive ratio
has the same order (w.r.t. κ) as the lower bound shown in
Theorem 2.2. Furthermore, our analysis generalizes the
results obtained by Durr et al. (2012) to the continuous
value of time and the strategic setting.

(3) When κ is relatively small, the ratios given in Corollary
4.4 will become loose. In particular, when κ approaches
1, the above ratios will approach infinity since lnκ
approaches 0. In this case, we need a different setting
of β (see Corollary 4.5).

Corollary 4.5. By choosing β = κ
κ+1 , the competitive ratio

of mechanism Γ1 is κ + 2 + (1 + 1
κ )κ < κ + 2 + e for the

restart model and (κ+ 1)(1 + 1
κ )κ + 1 for the resume model.

Similarly, we have the following discussions:
(1) The competitive ratio of Γ1 is linear in κ, since (1+ 1

κ )κ

is bounded by e.
(2) In particular, when κ = 1, the ratios in the above

corollary become 5 for both the restart and resume mod-
el, which matches the lower bound given in Theorem
2.1. In this regard, we say that Γ1 is optimal. On the
other hand, this also shows that the lower bound of 5 in
Theorem 2.1 is tight.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4988



References
[Azar et al., 2013] Yossi Azar, Naama Ben-Aroya, Nikhil R

Devanur, and Navendu Jain. Cloud scheduling with setup
cost. In Proceedings of the twenty-fifth annual ACM
symposium on Parallelism in algorithms and architectures,
pages 298–304. ACM, 2013.

[Baruah et al., 1992] Sanjoy Baruah, Gilad Koren, Decao
Mao, Bhubaneswar Mishra, Arvind Raghunathan, Louis
Rosier, Dennis Shasha, and Fuxing Wang. On the
competitiveness of on-line real-time task scheduling. Real-
Time Systems, 4(2):125–144, 1992.

[Baruah et al., 1994] Sanjoy K Baruah, Jayant Haritsa, and
Nitin Sharma. On-line scheduling to maximize task
completions. In Proceedings of Real-Time Systems
Symposium, pages 228–236. IEEE, 1994.

[Chen et al., 2016] Xujin Chen, Xiaodong Hu, Tie-Yan Liu,
Weidong Ma, Tao Qin, Pingzhong Tang, Changjun Wang,
and Bo Zheng. Efficient mechanism design for online
scheduling. Journal of Artificial Intelligence Research,
56(1):429–461, May 2016.

[Dürr et al., 2012] Christoph Dürr, Łukasz Jeż, and
Kim Thang Nguyen. Online scheduling of bounded length
jobs to maximize throughput. Journal of Scheduling,
15(5):653–664, 2012.

[Friedman and Parkes, 2003] Eric J Friedman and David C
Parkes. Pricing wifi at starbucks: issues in online
mechanism design. In Proceedings of the 4th ACM
conference on Electronic commerce, pages 240–241.
ACM, 2003.

[Hajiaghayi et al., 2005] Mohammad Hajiaghayi, Robert K-
leinberg, Mohammad Mahdian, and David C Parkes.
Online auctions with re-usable goods. In Proceedings of
the 6th ACM conference on Electronic commerce, pages
165–174. ACM, 2005.

[Lavi and Nisan, 2004] Ron Lavi and Noam Nisan. Com-
petitive analysis of incentive compatible on-line auctions.
Theoretical Computer Science, 310:159–180, 2004.

[Lucier et al., 2013] Brendan Lucier, Ishai Menache,
Joseph Seffi Naor, and Jonathan Yaniv. Efficient online
scheduling for deadline-sensitive jobs. In Proceedings of
the 25th ACM symposium on Parallelism in algorithms
and architectures, pages 305–314. ACM, 2013.

[Mashayekhy et al., 2014] Lena Mashayekhy,
Mahyar Movahed Nejad, Daniel Grosu, and Athanasios V
Vasilakos. Incentive-compatible online mechanisms for
resource provisioning and allocation in clouds. In Cloud
Computing (CLOUD), 2014 IEEE 7th International
Conference on, pages 312–319. IEEE, 2014.

[Nisan, 2007] Noam Nisan. Introduction to mechanism
design (for computer scientists). Algorithmic game theory,
209:242, 2007.

[Parkes, 2007] David C Parkes. Online mechanisms.
Algorithmic Game Theory, ed. N. Nisan, T. Roughgarden,
E. Tardos, and V. Vazirani, Cambridge University Press,
pages 411–439, 2007.

[Porter, 2004] Ryan Porter. Mechanism design for online
real-time scheduling. In Proceedings of the 5th ACM
conference on Electronic commerce, pages 61–70. ACM,
2004.

[Ting, 2008] Hing-Fung Ting. A near optimal scheduler
for on-demand data broadcasts. Theoretical Computer
Science, 401(1):77–84, 2008.

[Wu et al., 2014] Xiaohong Wu, Yonggen Gu, Guoqiang
Li, Jie Tao, Jingyu Chen, and Xiaolong Ma. Online
mechanism design for VMS allocation in private cloud.
In Network and Parallel Computing, pages 234–246.
Springer, 2014.

[Zheng et al., 2006] Feifeng Zheng, Stanley PY Fung, Wun-
Tat Chan, Francis YL Chin, Chung Keung Poon, and Pru-
dence WH Wong. Improved on-line broadcast scheduling
with deadlines. In Computing and Combinatorics, pages
320–329. Springer, 2006.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4989


