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Abstract
Coherent reasoning under uncertainty can be rep-
resented in a very general manner by coherent sets
of desirable gambles. This leads to a more general
foundation for coherent (imprecise-)probabilistic in-
ference that allows for indecision. In this frame-
work, and for a given finite category set, coherent
predictive inference under exchangeability can be
represented using Bernstein coherent cones of mul-
tivariate polynomials on the simplex generated by
this category set. We define an inference system as
a map that associates a Bernstein coherent cone of
polynomials with every finite category set. Inference
principles can then be represented mathematically
as restrictions on such maps, which allows us to de-
velop a notion of conservative inference under such
inference principles. We discuss, as particular exam-
ples, representation insensitivity and specificity, and
show that there is an infinity of inference systems
that satisfy these two principles.

1 The Setting: Predictive Inference
We deal with predictive inference for categorical variables,
and are therefore concerned with a (possibly infinite) sequence
of variables 𝑋𝑛 that assume values in some finite set of cat-
egories 𝐴. After having observed a number �̌� of them, and
having found that, say 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋�̌� = 𝑥�̌�, we
consider some subject’s belief model for the next �̂� ≥ 1 vari-
ables 𝑋�̌�+1, . . . 𝑋�̌�+�̂�. In the probabilistic tradition that we
build on in the paper, this belief is modelled by a conditional
predictive probability mass function 𝑝�̂�(·|𝑥1, . . . , 𝑥�̌�) on the
set 𝐴�̂� of their possible values. These probability mass func-
tions can be used for prediction or estimation, for statistical
inferences, and in decision making. In this sense, predictive
inference lies at the heart of statistics, and more generally, of
learning under uncertainty. For this reason, it is also of crucial
importance for dealing with uncertainty in Artificial Intelli-
gence. We refer to the synthesis by Geisser [1993] and the
collection of essays by Zabell [2005] for introductions to pre-
dictive inference and the underlying issues that the paper is
also concerned with.

*This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [De Cooman et al., 2015].

The predictive probability mass functions for various val-
ues of �̌�, �̂� and (𝑥1, . . . , 𝑥�̌�) are connected by requirements
of time consistency and coherence. The former requires that
when 𝑛1 ≤ 𝑛2, 𝑝𝑛1(·|𝑥1, . . . , 𝑥�̌�) can be obtained from
𝑝𝑛2(·|𝑥1, . . . , 𝑥�̌�) through marginalisation; the latter essen-
tially demands that these conditional probability mass func-
tions should be connected with time-consistent unconditional
probability mass functions through Bayes’s Rule.

A common assumption about the variables 𝑋𝑛 is that they
are exchangeable, meaning roughly that the subject believes
that the order in which they are observed, or present them-
selves, has no influence on the decisions and inferences she
will make regarding these variables. This assumption, and the
analysis of its consequences, goes back to de Finetti [1937].
His famous Representation Theorem states, in essence, that the
time-consistent and coherent conditional and unconditional
predictive probability mass functions associated with a count-
ably infinite exchangeable sequence of variables in 𝐴 are char-
acterised by, and characterise, a unique probability measure on
the Borel sets of the simplex of all probability mass functions
on 𝐴, called their representation.1

2 The Central Problem of Predictive
Inference

This leads us to the central problem of predictive inference:
since there is an infinity of such probability measures on the
simplex, which one does a subject choose in a particular con-
text, and how can a given choice be motivated and justified?
The subjectivists of de Finetti’s persuasion might answer that
this question needs no answer: a subject’s personal predic-
tive probabilities are entirely hers, and time consistency and
coherence are the only requirements she should heed. Ear-
lier scholars, like Laplace and Bayes, whom we would now
also call subjectivists, invoked the Principle of Indifference

1To clarify the connection with our argumentation in the paper,
the essence of de Finetti’s argument is that the representation is a
coherent prevision on the set of all multinomial polynomials on this
simplex [De Cooman et al., 2009b]. As a (finitely additive) coherent
prevision, it can be extended uniquely only so far as to the set of
all lower semicontinuous functions, but it does determine a unique
(countably additive) probability measure on the Borel sets of that
simplex, through the F. Riesz Representation Theorem [De Cooman
and Miranda, 2008; Troffaes and De Cooman, 2014].
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to justify using a specific class of predictive mass functions.
Proponents of the logicist approach to predictive inference
would try enunciating general inference principles in order to
narrow down, and hopefully eliminate entirely, the possible
choices for the representing probability measures on the sim-
plex. The logicians W. E. Johnson [1924] and, in a much more
systematic fashion, Rudolf Carnap [1952] tried to develop an
axiom system for predictive inference based on such reason-
able inference principles. Carnap’s first group of axioms is
related to what we have called coherence, but as we suggested,
these by themselves are too weak to single out a particular
predictive model. His second group consists of invariance ax-
ioms, including exchangeability. He also included an axiom of
instantial relevance, translating the intuitive principle that pre-
dictive inferences should actually learn from experience. His
last axiom, predictive irrelevance, was also proposed earlier
by Johnson and called the sufficientness postulate by Good
[1965]. Armed with these axioms, Carnap was able to derive
a continuum of probabilistic inference rules, closely related to
the Dirichlet multinomial model and to the Imprecise Dirichlet
Multinomial Model (IDMM) proposed by Walley [1996] and
Walley and Bernard [1999].

Our point of view holds the middle ground between the
subjectivist and logicist positions: it ought to be possible for a
subject to make assessments for certain predictive probabili-
ties, and to combine these with certain inference principles she
finds reasonable, or which suit her purpose for the problem at
hand. Indeed, the inference systems we introduce and discuss
in the paper, and the notion of conservative coherent infer-
ence we associate with them, provide an elegant framework
and tools for making conservative coherent predictive infer-
ences that combine (local) subjective probability assessments
with (general) inference principles. And our discussion later
in the paper on characterising the immediate predictions for
the IDMM constitutes an exercise in precisely that.

3 Conservative Probabilistic Inference
This idea of conservative probabilistic inference brings us to
what we believe is our main contribution. It is a central idea
in de Finetti’s [1974] approach to probability that when a sub-
ject makes probability assessments, we can consider them as
bounds on so-called precise probability models. Calculating
such most conservative but tightest bounds is indeed what de
Finetti’s [1974] Fundamental Theorem of Prevision (see also
[Lad, 1996]) is about. The theory of imprecise probabilities,
brought to a synthesis by Williams [1976] and Walley [1991;
2000], looks at conservative probabilistic inference in precisely
this way: how can we calculate efficiently the consequences—
in the sense of most conservative tightest bounds—of making
certain probability assessments. These may be local assess-
ments, such as inequalities imposed on the probabilities or
previsions of certain events or variables, or structural assess-
ments, such as independence, or exchangeability.

One advantage of imprecise probability models is that they
allow for imprecision, or in other words, the use of partial
probability assessments using bounding inequalities rather
than equalities. Another, related, advantage is that they allow
for indecision to be modelled explicitly: loosely stated, if the

imposed bounds on probabilities allow for more than one prob-
ability model as a solution, it may very well be that of two
actions, the first has the higher expected utility for one compat-
ible probability model, and the smaller for another compatible
probability model, meaning that neither action is robustly pre-
ferred over the other. So with this current stated model for her
beliefs, a subject is then undecided between these actions. In
the paper, we give a concise overview of the relevant ideas,
models and techniques in the field of imprecise probabilities.
A much more extensive and detailed recent overview of this
area of research was published by Augustin et al. [2014].

4 So What Do We Aim at, Then?
Our paper, then, can be described as an application of ideas
in imprecise probabilities to predictive inference. Its aim is to
study—and develop a general framework for dealing with—
conservative coherent predictive inference using imprecise
probability models. Using such models also allows us to repre-
sent a subject’s indecision, which we believe is a natural state
to be in when knowing, or having learned, little about the prob-
lem at hand. It seems important that theories of learning under
uncertainty in general, and predictive inference in particular, at
least allow us (i) to start out with conservative, very imprecise
and indecisive models when little has been learned, and (ii) to
become more precise and decisive as more observations come
in. Our abstract notion of an inference system allows for—but
does not force—such behaviour, and we provide examples of
concrete inference systems that display it.

Our work builds on, but manages to reach much further
than, an earlier paper by one of the authors [De Cooman et
al., 2009a]. One reason why it does, is that this earlier work
deals only with immediate prediction models—which focus
on the case �̂� = 1—and as we argue extensively in the paper,
predictive inference using imprecise probabilities is not com-
pletely determined by immediate prediction, contrary to what
we can expect when using precise probabilities. But the main
reason is that we are now in a position to use a very powerful
mathematical language to represent imprecise-probabilistic
inferences: Walley’s [2000] coherent sets of desirable gam-
bles. Earlier imprecise probability models [Boole, 1952; 1847;
Koopman, 1940] centred on lower and upper probability
bounds for events—or propositions. Later on [Walley, 1991,
Section 2.7], it became apparent that this language of events
and lower and upper probabilities is lacking in power of
expression: a much more expressive theory uses random
variables and their lower previsions or expectations. This
successful theory of coherent lower previsions is by now
quite well developed [Walley, 1991; Augustin et al., 2014;
Troffaes and De Cooman, 2014]. But it faces a number of
problems, such as its mathematical as well as conceptual com-
plexity, especially when dealing with conditioning and inde-
pendence, and the fact that, as is the case with many other
approaches to probability, and as we show in the paper, it has
issues with conditioning on sets of (lower) probability zero.

A very attractive solution to these problems was offered by
Walley [2000], in the form of coherent sets of desirable gam-
bles, inspired by earlier ideas [Smith, 1961; Williams, 1975;
Seidenfeld et al., 1995]. Here, the primitive notions are not
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probabilities of events, nor expectations of random variables.
The focus is rather on whether a gamble, or a risky transaction,
is desirable to a subject—strictly preferred to the zero trans-
action, or status quo. And a basic belief model is now not a
probability measure or lower prevision, but a set of desirable
gambles. Of course, stating that a gamble is desirable also
leads to a particular lower prevision assessment: it provides
a lower bound of zero on the prevision of the gamble. We
explain in great detail in the paper why we prefer to use sets
of desirable gambles as our basic uncertainty models.

5 A Walk through the Paper
In summary, then, our aim is to use sets of desirable gambles to
extend the existing probabilistic theory of predictive inference.
How do we go about doing this?

5.1 Setting up the Machinery . . .
We first introduce basic building blocks, and give an overview
of relevant notions and results concerning our imprecise proba-
bility model of choice—coherent sets of desirable gambles. In
particular, we explain how to use them for conservative infer-
ence as well as conditioning; how to derive more commonly
used models, such as lower previsions and lower probabilities,
from them; and how they relate to precise probability models.

Next, we explain how we can describe a subject’s beliefs
about a sequence of variables in terms of predictive sets of
desirable gambles, and the derived notion of predictive lower
previsions. These imprecise probability models generalise
the above-mentioned predictive probability mass functions
𝑝�̂�(·|𝑥1, . . . , 𝑥�̌�), and they constitute the basic tools we work
with. We also explain what are the proper formulations for
the above-mentioned time consistency and coherence require-
ments in this more general context.

We then take a first important step: we discuss a number
of inference principles that we believe could be reasonably
imposed on predictive inferences, and we show how to rep-
resent them mathematically in terms of predictive sets of de-
sirable gambles and lower previsions. Pooling invariance—or
what Walley [1996] has called the Representation Invariance
Principle (RIP)—and renaming invariance seem reasonable
requirements for any type of predictive inference, and cate-
gory permutation invariance seems a natural thing to require
when starting from a state of complete ignorance. Taken to-
gether, they constitute what we call representation insensi-
tivity. It means that predictive inferences remain essentially
unchanged when we transform the set of categories, or in other
words that they are essentially insensitive to the choice of
representation—the category set. Another inference principle
we look at imposes the so-called specificity property: when pre-
dictive inference is specific, then for a certain type of question
involving a restricted number of categories, a more general
model can be replaced by a more specific model that deals
only with the categories of interest, and will produce the same
relevant inferences [Bernard, 1997].

As a next important step, we recall from the literature [De
Cooman et al., 2009b; De Cooman and Quaeghebeur, 2012]
how to deal with exchangeability when our predictive infer-
ence models are imprecise, and show that de Finetti’s Repre-

sentation Theorem can be significantly generalised. In particu-
lar, the time-consistent and coherent predictive sets of desirable
gambles can be characterised completely by a set of (multi-
variate) polynomials on the simplex of all probability mass
functions on the category set.2 This set of polynomials must
satisfy a number of properties, which taken together define the
notion of Bernstein coherence. Without becoming too techni-
cal at this point, our conclusion is that, in our more general
context, the representing probability measure on the simplex of
all probability mass functions is replaced by a Bernstein coher-
ent set of polynomials on this simplex. This set of polynomials
serves completely the same purpose as the representing prob-
ability measure: it completely determines, and conveniently
and densely summarises, all predictive inferences. This is why
all further developments in the paper are expressed in terms of
such Bernstein coherent sets of polynomials.

We next introduce coherent inference systems as maps that
associate with any finite set of categories a Bernstein coher-
ent set of polynomials on the simplex of probability mass
functions on that set. So a coherent inference system is a
way of fixing completely all coherent predictive inferences for
all possible category sets. Our reasons for introducing such
coherent inference systems are twofold. First of all, the above-
mentioned inference principles impose connections between
predictive inferences for different category sets, so we can
represent such inference principles mathematically as restric-
tions on coherent inference systems. Secondly, it allows us to
extend our method of conservative inference to also take into
account principles for predictive inference, or more generally,
predictive inference for multiple category sets at once. This
leads to a method of combining (local) predictive probability
assessments with (global) inference principles to produce the
most conservative predictive inferences compatible with them.

5.2 . . . And Getting It to Work
As a first illustration of the power of our methodology, we then
look at immediate prediction: what implications do representa-
tion insensitivity and specificity have for predictive inference
about the single next observation? Our approach allows us to
streamline, simplify and significantly extend previous attempts
in this direction by De Cooman et al. [2009a].

Then follow several explicit examples, worked out in great
detail, to show that there are quite a few different types—even
uncountable infinities—of coherent inference systems that are
representation insensitive and/or specific. We discuss the vac-
uous and nearly vacuous inference systems, the skeptically
cautious inference system, the family of IDMM inference sys-
tems, the family of skeptical IDMM inference systems, and the
Haldane inference system. Most of these inference systems,
apart from the IDMM, appear in the paper for the first time.
Also, we believe that we are the first to publish a detailed and
explicit—as well as still elegant—proof that the IDMM infer-
ence systems are indeed representation insensitive and specific.
It should already be mentioned here, however, that our IDMM
inference systems are based on a modified, and arguably bet-
ter behaved, version of the models originally introduced by

2In contrast with de Finetti’s version, our version has no problems
with conditioning on observed sequences of (lower) probability zero.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4997



Walley and Bernard [Walley, 1996; Walley and Bernard, 1999;
Bernard, 2005]; we show that the original IDMM is not spe-
cific and that, contrary to what is often claimed, it does not
satisfy the so-called nestedness property.

Our results also disprove the conjecture [Bernard, 2007;
De Cooman et al., 2009a] that the IDMM inference systems—
our version or the original one—are the only ones, or even
the most conservative ones, that satisfy both representation
insensitivity and specificity. But we do show that the IDMM
family of immediate predictions—which are the same for our
version and for the original one—are in a definite sense the
most conservative ones that are representation insensitive and
specific, and satisfy another requirement, which we have called
‘having concave surprise’.

In the conclusions of the paper, we point to a number of
surprising consequences of our results, and discuss avenues
for further research.
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