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José Hernández-Orallo
Universitat Politècnica de València,
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Abstract
While some computational models of intelligence
test problems were proposed throughout the sec-
ond half of the XXth century, in the first years of
the XXIst century we have seen an increasing num-
ber of computer systems being able to score well
on particular intelligence test tasks. However, de-
spite this increasing trend there has been no gen-
eral account of all these works in terms of how they
relate to each other and what their real achieve-
ments are. In this paper, we provide some insight
on these issues by giving a comprehensive account
of about thirty computer models, from the 1960s
to nowadays, and their relationships, focussing on
the range of intelligence test tasks they address, the
purpose of the models, how general or specialised
these models are, the AI techniques they use in each
case, their comparison with human performance,
and their evaluation of item difficulty.

1 Introduction
AI research can claim some impressive milestones. For
example, already in 1959 Arthur Samuel presented a self-
learning program which could play checkers (or draughts)
[Samuel, 1959]. In 2002 the 1957 prophecy of Herbert
Simon that within 10 years a computer would be world’s
chess champion came true when Deep Blue won against the
human chess champion Garry Kasparov [Campbell et al.,
2002]. In 2010 IBM’s program Watson [Ferrucci et al., 2010;
Ferrucci et al., 2013] was the winner of the Jeopardy! TV
quiz. In 2016, Alphago [Silver et al., 2016] was the first AI
system able to master the ancient game Go. However, one
can ask whether the mechanism underlying the behaviour of
these programs is the same as or similar to the mechanism
underlying human intelligent behaviour.

In AI research, the Turing test [Turing, 1950; Oppy and
Dowe, 2011] has strongly influenced the philosophical dis-
cussions about what intelligence is and has motivated some
actual implementations (e.g., Loebner’s prize) and many dif-
ferent test variations to tell whether a computer program is in-
telligent. For example, CAPTCHAs (Completely Automated

∗This paper is an extended abstract of an article in the Artificial
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Public Turing test to tell Computers and Humans Apart) [von
Ahn et al., 2004] are used on web pages to tell humans
and machines apart. Typically, CAPTCHAs contain pattern
matching tasks (e.g., distorted numbers and letters) that are
difficult to solve with current AI technology. However, the
tasks that are featured in CAPTCHAs have to be made more
complex regularly, as more sophisticated algorithms are de-
vised to identify the presented patterns. Obviously, when a
bot can break complex CAPTCHAs, we nevertheless hesitate
to ascribe general intelligence to it.

In psychology research, the classical approach to intelli-
gence evaluation is to apply psychometric tests measuring the
intelligence quotient (IQ) [Sternberg (ed.), 2000] and other
cognitive abilities. These tests are standardised in such a way
that humans can be classified as below, about, or above av-
erage intelligence. The IQ test problems address a variety of
reasoning abilities, for example, solving number series prob-
lems, detecting regularities in spatial configurations, or un-
derstanding verbal analogies. Some types of problems are
rather independent of the subject’s educational and cultural
background, others depend on background knowledge.

In the early days of AI, the classical IQ test approach to
human intelligence evaluation was considered useful not only
as a tool for the study of cognitive processes and the devel-
opment of new techniques, but also for the evaluation of AI
systems or even as the goal for AI research. Since then, hu-
man psychometric tests have been repeatedly suggested as a
much better alternative to most task-oriented evaluation ap-
proaches in AI. Thus, the question is whether this measure-
ment of mental developmental capabilities leads to a feasible,
practical evaluation for AI.

In this work we analysed all the computer models taking
intelligence tests (or as many as we could find, about thirty
in total), starting with Evans’s ANALOGY [1965] and going
through to Spaun [Eliasmith et al., 2012], a noteworthy 2.5-
million-neuron artificial model brain. This analysis was moti-
vated by an observed explosion in recent years of the number
of papers featuring computer models addressing intelligence
test problems. We wanted to investigate whether this increase
was casual or was motivated by an increasing need of these
tests and the computer models solving them. Overall, the
main goal of the paper was to understand the meaning, util-
ity, and impact of these computer models taking intelligence
tests, and to explore the progress and implications of this area
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of research.

2 Historical Account
The relation between AI and psychometrics started more than
fifty years ago. As early as 1963, Evans [1965] and Simon
and Kotovsky [1963] devised AI programs able to identify
regularities in patterns (respectively, analogy tasks and letter
series completion problems). Their intention was to better
understand some principles of analogy and its presentation as
well as analyse how humans solved these kinds of problems
and their difficulty.

After the initial interest of AI research in IQ test problems,
this branch of research sank into oblivion for about twenty
years. However, since the 1980s, cognitive science research
recovered this line of research. Hofstadter developed a series
of computational models in the Copycat project [Hofstadter
and Mitchell, 1984] with the major goal of understanding
analogy. In the 1990s some cognitive models were proposed
to simulate the human cognitive processes. Carpenter et al.
[1990] addressed Raven’s Progressive Matrices [Raven et al.,
1992]. Yet again, the goal was to better understand human
intelligence and the nature of the tests. Simon et al. [1991]
addressed some series completion tasks based on the ideas of
Simon and Kotovsky [1963].

In AI, forty years after the work of Evans and of Simon
and Kotovsky, in 2003, computer programs solving intelli-
gence tests became of interest again. On one hand, Sanghi
and Dowe [2003] wanted to make a conclusive point about
how easy it was to make non-intelligent machines pass intel-
ligence tests, which could have dealt a definitive deathblow to
this already ebbing approach. On the other hand, Bringsjord
and Schimanski aimed at resuscitating the role of psychome-
tric tests—including not only intelligence tests but also tests
about personality, artistic creativity, etc.—in AI [Bringsjord
and Schimanski, 2003]. They claimed that psychometric tests
should not be dismissed but placed at a definitional, major
role for what AI is and proposed “psychometric artificial in-
telligence” as a direction of research.

The two previous (opposed) approaches [Bringsjord and
Schimanski, 2003; Sanghi and Dowe, 2003] for solving intel-
ligence tests led to an increasing number of works in the area
(although some of them were possibly unaware of these op-
posed views, as they cite neither Bringsjord and Schimanski’s
paper nor Sanghi and Dowe’s paper). For instance, Tomai et
al. [2005] revisited Evans’s problems but using a more ab-
stract and general approach, based on general-purpose sim-
ulation models. Similar to Tomai et al., Lovett et al. ad-
dressed three visual problem-solving tasks: geometric analo-
gies [Lovett and Forbus, 2012], Raven’s Progressive Matri-
ces [Lovett et al., 2010], and odd-one-out intelligence tests
[Lovett and Forbus, 2011], with a major goal of modelling
human cognition. A different attempt to address a psycho-
metric test with the aim of understanding humans’ cognitive
mechanisms was Phaeaco [Foundalis, 2006], which focussed
on Bongard problems [Bongard, 1970].

A surge of new systems has taken place since 2010. For
instance, Sinapov and Stoytchev [2010] started an approach
where personalised odd-one-out tasks are taken by a robot in

a rich sensorimotor scenario. Schenck et al. [2012] also used
an upper-torso humanoid robot to address order completion
problems. Another attempt to address Raven’s Progressive
Matrices and odd-one-out problems using purely iconic vi-
sual representations was undertaken by McGreggor, Kunda,
and Goel [Kunda et al., 2013]. Klenk et al. [2011] challenged
a new kind of test, Bennett’s Mechanical Comprehension
Tests [Bennett, 1969], with important content about physics
and contextual information, by using a cognitive architec-
ture. Turney [2011] introduced a system for analogy percep-
tion that recognises lexical proportional analogies. Closely
related to the approach of Turney we find the work of Bay-
oudh et al. [2012]. Ragni and Klein [2011] worked on num-
ber series completion applying a general machine learning
method. Ragni and Neubert [2014] presented a system for
Raven’s Progressive Matrices which motivation is to solve the
problems in a cognitive way, i.e., explaining why the system
fails. Prade, Richard, and Correa [Prade and Richard, 2014]
developed a logical representation of the notion of “analogi-
cal proportion” for addressing Raven’s Progressive Matrices
and odd-one-out problems. Both Siebers and Schmid [2012]
and Strannegård et al. [2013a] addressed the number series
problem with a cognitive model based on the idea of lim-
ited working memory. Strannegård et al. [2013b] also ad-
dress Raven’s Progressive Matrices with an anthropomorphic
cognitive model using certain problem solving strategies that
were reported by high-achieving human solvers. The ap-
proach presented by Ohlsson et al. [2013] is one of the few ap-
proaches to verbal intelligence tests. Hofmann, Kitzelmann,
and Schmid [Hofmann et al., 2014] demonstrate that the in-
ductive programming [Gulwani et al., 2015] system IGOR2
can be applied to number series problems. Martı́nez-Plumed
et al. [2017] introduced gErl, a declarative learning system
able to solve several intelligence tests: Raven’s Progressive
Matrices, odd-one-out problems and letter series completion
problems. Finally, with quite a different perspective, Elia-
smith et al. [2012] recently produced a 2.5-million-neuron ar-
tificial model brain having a similar ability on certain aptitude
test questions (some of them similar to the Raven’s Progres-
sive Matrices) to what might be found in some humans.

In fact, the past ten (and especially five) years (since 2006
and especially 2011) have seen a boom of computational
models aimed at solving intelligence test problems. The di-
versity of goals and approaches has also widened, including
the use of intelligence tests for the analysis of what intelli-
gence is, for the understanding of certain aspects of human
cognition, for the evaluation of some AI techniques or sys-
tems, including robots, and, simply, to have more insights
about what intelligence tests really represent.

3 Discussion
The analysis has not been restricted to performing a survey
of all models addressing intelligence tests. Through a com-
prehensive account of the models we derived a set of criteria
aiming at understanding the meaning, utility, and impact of
these computer models taking intelligence tests, and explore
the progress and implications of this area of research. Fur-
thermore, this analysis helped us to have a better understand-
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ing of the relevance and (the limited) connections of these
approaches and to draw some conclusions about their useful-
ness.

We have seen that most approaches are very recent. Is it
an indication of relevance? Regarding publication venues,
we have seen that they go from mainstream AI to cognitive
science, or even psychology, and some of them are in lead-
ing conferences and journals in these areas or even in inter-
disciplinary general outlets. However, it seems that most ap-
proaches aim at unveiling general (artificial) intelligence prin-
ciples in ways that are not necessarily connected to the way
humans solve these tests. In fact, there is a wide variety in the
techniques used, from more ad-hoc to more general AI tech-
niques (mostly from machine learning, pattern recognition,
automated reasoning, and natural language processing). This
suggests that there is more interest in artificial intelligence
and cognitive science than in psychology. Overall, some of
these models (anthropomorphic or not) have been useful to
provide insights and valuable information about how human
cognition works. This is especially the case when results of
a model and humans coincidence even though the model was
not conceived to follow exactly what humans do. Nonethe-
less, a systematic disagreement in results or ability correla-
tions may also be very informative. In fact, these studies can
be very useful to better understand what intelligence tests re-
ally measure and to better interpret the correlations between
abilities found in humans.

What about the use of these tests for AI evaluation? Are
they becoming more common? It has been recently argued—
from human intelligence researchers—that intelligence tests
are the right tool to evaluate AI systems [Detterman, 2011].
Nonetheless, we have not seen that artificial intelligence has
changed its evaluation protocols following this increase of
models taking intelligence tests (with a few exceptions such
as [Sinapov and Stoytchev, 2010; Schenck, 2013; Eliasmith
et al., 2012]). Furthermore, we have seen that even for sup-
posedly general tasks that are designed for evaluation, many
approaches have the (understandable) tendency to specialise
to the task and hard-wire parts (or most) of the solution. The
key issue is thus to consider a greater diversity of problems.
Very few approaches address more than one kind of test. Ac-
tually, the more specific a test is the easier it is to develop
specific solutions. Therefore, for intelligence tests to be use-
ful evaluation tools for AI, several things must be considered.
Instead of a collection of problems, a collection of instance
generators developing new problems instances is required.
The collection must consist of many different problems, in
order to avoid the big switch approach, that is having a small
program dispatching problems to extremely specialised ap-
proaches. Moreover, brand-new problems could be generated
by the combination of existing ones or by the development
of more abstract problem generators (instead of instance gen-
erators). Different presentations and difficulty levels should
be explored. The categories and overlaps between problems
could be assessed via theoretical models, instead of using fac-
tor analysis as in psychometrics. In other words, a theoreti-
cal alternative to the classification of mental abilities should
be endeavoured (see [Dowe and Hernández-Orallo, 2014;
Hernández-Orallo, 2016; Hernández-Orallo, 2017].

There is also a huge diversity in how performance and dif-
ficulty are assessed. We need to be clear that focussing on the
overall results of a computer model and comparing them with
the results of humans is not very informative about how chal-
lenging the problem is. Humans are general-purpose systems
and it is not fair to compare them with some systems that are
only able to solve one problem—even if the problem comes
from an intelligence test. Furthermore, many of these intel-
ligence test problems have been developed for humans, and
hence it can be unfair to evaluate AI systems’ limitations with
anthropocentric measures. Nonetheless, some of the works
perform an interesting analysis in terms of difficulty. The
purpose is to determine what instances are more difficult, but
this is not very related to how challenging the problem is. In
fact, focussing on the most difficult problems may even make
the system more specialised to the intelligence test task at
hand. Some of the previous works have studied whether dif-
ficulty is related to the size of the working memory, the size
of the pattern, the number of elements that need to be com-
bined or retrieved from background knowledge, or the opera-
tional constructs needed to solve this problems [Simon, 1963;
Carpenter et al., 1990; Strannegård et al., 2013a; Martı́nez-
Plumed et al., 2017]. These notions of difficulty are much
more general and can work independently of the problem and
its representation.

One way or the other, there seems to be an agreement that
there will be an increasing number of machines in the near
future which show a range of cognitive abilities, and that
we will require evaluation mechanisms for them [Hernández-
Orallo, 2017]. These mechanisms will have to give scores
for several cognitive abilities so that we can compare them
with humans and other animals. As a realisation of how
much work needs to be done here, the development of well-
grounded tests for humans, animals, robots, agents, animats,
hybrids, swarms, etc., has been proposed in an emerging new
(but integrating) discipline, dubbed ‘universal psychometrics’
[Dowe and Hernández-Orallo, 2014], which may inherit and
integrate many important concepts from psychometrics, cog-
nition, and AI.

4 Conclusion
This paper was motivated by an observed explosion of the
number of papers featuring computer models addressing in-
telligence test problems. Among the around 30 papers we
have analysed, half of them have appeared since 2011. We
wanted to investigate whether this increase was casual or was
motivated by an increasing need of these tests and the com-
puter models solving them. When we began our investiga-
tion we soon realised that computer models addressing in-
telligence tests have different purposes and applications: to
advance AI by the use of challenging problems (this is the
psychometric AI approach), to use them for the evaluation of
AI systems, to better understand intelligence tests and what
they measure (including item difficulty), and, finally, to bet-
ter understand what (human) intelligence is.

Note that if any or all of the above reasons were spuri-
ous, its negation would still be most interesting. Namely, if
intelligence tests were not challenging, were not useful for
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the evaluation of AI systems, did not measure the purported
abilities beyond humans, or were useless to understand what
human intelligence is, then this would represent important in-
sights for psychometrics, cognitive science, and artificial in-
telligence. In fact, the authors of this paper may have differ-
ent stances on some of these issues, which partially explains
why all of us agree that this area of research is worth being
pursued and empowered in the near future.

Another motivation for this paper was that there seems
to be a limited connection between these works, as many
of them seem to ignore results and ideas already present in
previous approaches. This includes the (mis)understanding
of what a computer model passing an intelligence test really
means. We hope that this work could facilitate and encourage
future computer models taking intelligence test problems to
link with and build upon previous research.

Finally, a very ambitious goal would be to create a reposi-
tory or generator of all these problems. We know that many
intelligence tests are not publicly available, and many of the
approaches we have surveyed here have used alternative for-
mulations because of this. It would be very useful for AI to
arrange these problems, record the results of computer mod-
els and humans over them and organise competitions. This
benchmark should be broad (including a wide range of tests),
standard (using some kind of general protocol for inputs and
outputs), characterised (accompanied with a catalogue of in-
formation about their difficulty, the abilities they cover, etc.),
available (on a web or problem library), and renewed (new
items are generated or disclosed so that systems cannot rote-
learn them).
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