
New Canonical Representations by Augmenting OBDDs with Conjunctive
Decomposition (Extended Abstract)∗

Yong Lai and Dayou Liu
College of Computer Science and Technology

Jilin University, China
{laiy, dyliu}@jlu.edu.cn

Minghao Yin
Department of Computer Science

Northeast Normal University, China
ymh@nenu.edu.cn

Abstract
We identify two families of canonical representa-
tions called ROBDD[∧î]C and ROBDD[∧T̂ ,i]T by
augmenting ROBDD with two types of conjunc-
tive decompositions. These representations cov-
er the three existing languages ROBDD, ROBDD
with as many implied literals as possible (ROBDD-
L∞), and AND/OR BDD. We introduce a new time
efficiency criterion called rapidity which reflects
the idea that exponential operations may be prefer-
able if the language can be exponentially more suc-
cinct. Then we demonstrate that the expressivi-
ty, succinctness and operation rapidity do not de-
crease from ROBDD[∧T̂ ,i]T to ROBDD[∧î]C , and
then to ROBDD[∧

î+1
]C . We also demonstrate that

ROBDD[∧î]C (i > 1) and ROBDD[∧T̂ ,i]T are
not less tractable than ROBDD-L∞ and ROBDD,
respectively. Finally, we develop a compiler for
ROBDD[∧∞̂]C which significantly advances the
compiling efficiency of canonical representations.

1 Introduction
Canonicity, an important property of knowledge compila-
tion (KC) languages, provides equivalence tests with constant
time complexity and plays a critical role in the performance
of compiling methods [Darwiche, 2011; Van den Broeck and
Darwiche, 2015]. The reduced ordered binary decision dia-
gram (ROBDD) [Bryant, 1986] is one of the most influential
canonical languages in the KC literature.

Despite its current success, ROBDD has a well-known
weakness in succinctness, which reflects the explosion in size
for many types of knowledge bases in practice. Determin-
istic, decomposable negation normal form (d-DNNF) [Dar-
wiche, 2001] is a strict non-canonical superset of ROBDD,
and most efficient compilers (e.g., OBDD compilers) can be
seen as special d-DNNF compilers [Huang and Darwiche,
∗This paper is an extended abstract of an article in the Journal of

Artificial Intelligence Research [Lai et al., 2017], and was supported
by the National Natural Science Foundation of China under grants
61402195 and 61370156, the China Postdoctoral Science Founda-
tion under grant 2014M561292, and Key Laboratory of Symbolic
Computation and Knowledge Engineering of Ministry of Education.

2007]. A recent trend in the KC field is to identify new canon-
ical representations in d-DNNF to mitigate the size explo-
sion problem of ROBDD without sacrificing its main advan-
tages. Researchers has proposed many canonical languages,
including AND/OR BDD (AOBDD) [Mateescu et al., 2008],
compressed and trimmed SDD over a fixed vtree V (CSDDV)
[Darwiche, 2011], ROBDD with as many implied literals as
possible (ROBDD-L∞) [Lai et al., 2013]. However, the cor-
responding compilers cannot yet compile many problems that
the state-of-the-art d-DNNF compiler DSHARP can compile
[Muise et al., 2012]. Furthermore, the relationships between
these canonical representations, which are indispensable for
choosing appropriate representations in practical application-
s, are not well studied.

Decomposability is an important factor behind the strong
succinctness and tractability of d-DNNF. The ideas of
ROBDD-L∞ and AOBDD are to use two special type-
s of conjunctive decomposability to relax the linear vari-
able ordering of ROBDD. We generalize these two types
of ∧-decompositions to propose bounded ∧-decomposition
parameterized by integer i (∧i-decomposition), and ∧i-
decomposition respecting tree T (∧T ,i-decomposition).
Then we identify a family of canonical languages in d-
DNNF called ROBDD[∧î]C by imposing reducedness, the
finest ∧i-decomposability, and ordered decision respecting a
chain C; and another family of canonical languages called
ROBDD[∧T̂ ,i]T by imposing reducedness, the finest ∧T ,i-
decomposability, and ordered decision respecting T . We
demonstrate that these two families of languages cover the
three previous languages ROBDD, AOBDD and ROBDD-
L∞, as depicted in Figure 1.

We evaluate the theoretical properties of the two families
of canonical languages from four aspects, and the obtained
results significantly extend the current KC map:
(a) We analyze the expressivity and demonstrate that

ROBDD[∧î]C is complete while ROBDD[∧T̂ ,i]T is
incomplete. We also demonstrate that if i ≤
j, ROBDD[∧T̂ ,i]T is not more expressive than
ROBDD[∧T̂ ,j]T (resp. CSDDV).

(b) We analyze the succinctness and demonstrate that
ROBDD[∧î]C (resp. MODS) is strictly less succinc-
t than ROBDD[∧ĵ]C if i < j. We also demonstrate that
ROBDD[∧T̂ ,i]T is at most as succinct as ROBDD[∧î]C .

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5010

1ROBDD[] ROBDD-L¥ » 

 ,ROBDD[] AOBDD
¥

 »

ROBDD[]i 

 ,ROBDD[]i  ,1ROBDD[] 

 ,0ROBDD[] 

0ROBDD[] ROBDD =  ROBDD[]
¥

 

CSDD

MODS

Figure 1: The relationship between many canonical representations
in d-DNNF, where each formula in MODS is a set of models, T
is not a chain, C is a topological order of T , and V is the vtree
corresponding to T

(c) We analyze the time efficiency in terms of tractability.
We demonstrate that ROBDD[∧T̂ ,i]T is not less tractable
than ROBDD. We also demonstrate that ROBDD[∧î]C
(i ≥ 2) maintains the same tractability as ROBDD-L∞,
which is more tractable than d-DNNF.

(d) We also analyze the time efficiency in terms of a new
notion called rapidity. We prove that each operation on
ROBDD[∧î]C (resp. ROBDD[∧T̂ ,j]T and MODS) is at
most as rapid as the same operation on ROBDD[∧ĵ]C .

For practical purposes, we developed an ROBDD[∧∞̂]C
compiler with high efficiency. Preliminary experimental re-
sults indicate that our compiler is significantly more effi-
cient than the state-of-the-art compilers of ROBDD-L∞ and
CSDDV ; moreover, only our compiler is comparable to D-
SHARP in both compiling time and resulting sizes.

2 Basic Concepts
This paper uses x to denote a propositional or Boolean vari-
able, and PV = {x1, . . . , xn, . . .} to denote a countably in-
finite set of variables. A formula ϕ is constructed from con-
stants true, false and variables in PV using negation opera-
tor ¬, conjunction operator ∧, disjunction operator ∨, equal-
ity operator↔ and decision operator ψ �x ψ′ = (¬x ∧ ψ) ∨
(x ∧ ψ′), and we use V ars(ϕ) to denote the set of variables
appearing in ϕ.

We assume that PV is associated with some strict (partial)
order ≺. We focus on the tree-structured orders which are
defined as the ancestor-descendant relationships on trees of
variables. Given a tree T over variables, we denote its depth
by dep(T), and the corresponding order by ≺T .

Definition 1 (∧-decomposition, ∧i-decomposition and
∧T -decomposition). Given a formula ϕ, a formula set Ψ is its
∧-decomposition, iff ϕ ≡

∧
ψ∈Ψ ψ and {V ars(ψ) : ψ ∈ Ψ}

partitions V ars(ϕ). Ψ is bounded by an integer 0 ≤ i ≤ ∞
(∧i-decomposition) iff there exists at most one ψ ∈ Ψ with
|V ars(ψ)| > i. Ψ respects a tree T over variables (∧T -
decomposition), iff any two formulas ψ,ψ′ ∈ Ψ satisfy that
V ars(ψ) and V ars(ψ′) are from two disjoint subtrees.

[Lai et al., 2013] and [Mateescu et al., 2008] implicitly
discussed ∧1-decomposition and ∧T -decomposition, respec-
tively. Given two ∧-decompositions Ψ and Ψ′ of a formula,

Ψ is strict iff |Ψ| > 1; and Ψ is finer than Ψ′ iff {V ars(ψ) :
ψ ∈ Ψ} is a finer partition than {V ars(ψ) : ψ ∈ Ψ′}.
Proposition 1. From the viewpoint of equivalence, each non-
trivial formula has exactly one finest ∧i-decomposition (resp.
∧T -decomposition).

The finest ∧i-decomposition (resp. ∧T -decomposition)
is hereafter denoted by ∧î-decomposition (resp. ∧T̂ -
decomposition), and a ∧T̂ -decomposition bounded by integer
i is denoted by ∧T̂ ,i-decomposition.

3 ROBDD[∧î]C and ROBDD[∧T̂ ,i]T

We first define binary decision diagram with conjunctive de-
composition (BDD[∧]):

Definition 2 (BDD[∧]). A BDD[∧] is a rooted DAG. Each
vertex v is labeled with a symbol sym(v). If v is a leaf,
sym(v) = ⊥ or >; otherwise, sym(v) is a variable or op-
erator ∧. Each internal vertex v has a set of children Ch(v).
For a vertex labeled with variable, Ch(v) = {lo(v), hi(v)},
where lo(v) and hi(v) are called low and high children, and
are connected by dashed and solid arcs, respectively; for a ∧-
vertex, {ϑ(w) : w ∈ Ch(v)} is a strict ∧-decomposition of
ϑ(v). Each vertex represents a formula defined as follows:

ϑ(v) =


false/true sym(v) = ⊥/>;∧
w∈Ch(v) ϑ(w) sym(v) = ∧;

ϑ(lo(v)) �sym(v) ϑ(hi(v)) otherwise.

The formula represented by the BDD[∧] is defined as the one
represented by its root.

Given two vertices, we say that they are identical with each
other, if they are leaf vertices with the same symbol, or they
are internal vertices with the same symbol and children. Next
we define some constraints on BDD[∧]:

Definition 3 (constraints on BDD[∧]). Given an integer i, a
partial order ≺ over variables, and a tree T over variables,
• A BDD[∧] is ordered over ≺ (OBDD[∧]≺) iff each �-

vertex u and its �-descendant v satisfy sym(u) ≺ sym(v);
• A BDD[∧] is reduced (RBDD[∧]) iff no two vertices are

identical and no �-vertex has two identical children;
• A BDD[∧] is, respectively, ∧i-decomposable and ∧T ,i-

decomposable (BDD[∧i] and BDD[∧T ,i]) iff each ∧-
vertex is a ∧i-decomposition and a ∧T ,i-decomposition;

• A BDD[∧] is, respectively, ∧î-decomposable and ∧T̂ ,i-
decomposable (BDD[∧î] and BDD[∧T̂ ,i]) iff each ∧-
vertex is a ∧î-decomposition and a ∧T̂ ,i-decomposition,
and the ∧î-decomposition and ∧T̂ ,i-decomposition of each
�-vertex v are {ϑ(v)}.
In the subsequent sections, we focus on OBDD[∧]≺ where
≺ is tree-structured: the ancestor-descendant relationship≺T
on a tree T and particularly ≺C over a chain C. We assume
that C and T always satisfy ≺T ⊂≺C , and we sometimes use
C and T to denote ≺C and ≺T , respectively. We will ana-
lyze the canonicity, expressivity, and space-time efficiency of
ROBDD[∧î]C and ROBDD[∧T̂ ,i]T . Note that each ROBDD
over C is an ROBDD[∧0̂]C , and the mutual transformation

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5011

between an ROBDD-L∞ over C (resp. AOBDD over T) and
the equivalent ROBDD[∧1̂]C (resp. ROBDD[∧T̂ ,∞]T) can be
performed in linear time.

4 Canonicity and Expressivity
We first state that ROBDD[∧î]C is canonical and complete:
Theorem 1. Fixing integer i and chain C over PV , there is
exactly one ROBDD[∧î]C representing a given formula.

ROBDD[∧T̂ ,i]T is also canonical, but incomplete:

Theorem 2. Fixing tree T over PV , there is at most
one ROBDD[∧T̂ ,i]T to represent a given formula, and
ROBDD[∧T̂ ,i]T is incomplete when T is not a chain.

Due to the incompleteness of ROBDD[∧T̂]T , we draw the
expressivity relation between different ROBDD[∧T̂ ,i]T :

Theorem 3. Given a tree T over variables and two inte-
gers i and j, ROBDD[∧T̂ ,i]T is at most as expressive as
ROBDD[∧T̂ ,j]T if i ≤ j.

Given a vtree V corresponding to T , ROBDD[∧T̂ ,i]T is at
most as expressive as CSDDV , because the former is a subset
of the latter.

5 Succinctness
In this section, we first analyze the succinctness relationship
between ROBDD[∧î]C and ROBDD[∧ĵ]C , and we then ana-
lyze the succinctness relationship between ROBDD[∧î]C and
ROBDD[∧T̂ ,i]T . Note that the standard definition of suc-
cinctness in the KC map only applies to complete languages.
We can extend it to handle the case of incomplete languages
by only comparing the sizes of formulas that can be repre-
sented in both languages.

We can present an algorithm (see Algorithm DECOMPOSE
in [Lai et al., 2017]) to transform an OBDD[∧i]C into the e-
quivalent ROBDD[∧î]C . Along with some counter-examples,
we can state the following succinctness results:
Theorem 4. ROBDD[∧î]C is at most as succinct as
ROBDD[∧ĵ]C iff i ≤ j.

The above theorem indicates that ROBDD[∧î]C can fur-
ther mitigate the size explosion problem of ROBDD from a
theoretical perspective. We then analyze the succinctness re-
lationship between ROBDD[∧T̂ ,i]T and ROBDD[∧î]C :

Theorem 5. ROBDD[∧T̂ ,i]T is as succinct as ROBDD[∧î]C
if i = 0 or dep(T) < ∞, and ROBDD[∧T̂ ,i]T is strictly less
succinct than ROBDD[∧î]C otherwise.

The succinctness relationship between ROBDD[∧î]C (resp.
ROBDD[∧T̂ ,i]T) and the ones in {ROBDD, ROBDD-L∞,
AOBDD} is immediate from Theorems 4–5. The succinct-
ness relationship between ROBDD[∧î]C (i ≥ 1) and CSDDV
is incomparable, because some class of circular bit-shift func-
tions can be represented in ROBDD[∧î]C but not in CSDDV
in polysize [Pipatsrisawat, 2010]. Finally, ROBDD[∧T̂ ,i]T is
strictly more succinct than MODS if some variable in T has
an infinite number of disjoint subtrees each of which has at
least two vertices.

Table 1: Polytime queries and transformations of ROBDD[∧î]C and
ROBDD[∧T̂ ,i]T , where C and T are over PV ,

√
means “satisfies”,

• means “does not satisfy”, and ◦ means “does not satisfy unless P
= NP”

L CO VA CE IM EQ SE CT ME
ROBDD[∧0̂]C

√ √ √ √ √ √ √ √

ROBDD[∧î]C (i > 0)
√ √ √ √ √

◦
√ √

ROBDD[∧T̂ ,i]T
√ √ √ √ √ √ √ √

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C
ROBDD[∧0̂]C

√
•

√
•

√
•

√ √

ROBDD[∧î]C (i > 0)
√

◦ ◦ ◦ ◦ ◦ ◦ ◦
ROBDD[∧T̂ ,i]T (dep(T) <∞)

√
◦

√ √ √
◦

√ √

ROBDD[∧T̂ ,i]T (dep(T) =∞)
√

◦
√

◦
√

◦
√ √

6 Operating Efficiency
We now analyze the time efficiency of operating
ROBDD[∧î]C and ROBDD[∧T̂ ,i]T in terms of tractability
and a new notion called rapidity. We can write an operation
as a set of triples with the form (ϕ1, . . . , ϕn, α, β), where
ϕ1, . . . , ϕn represent the input formulas, α represents the
supplementary input, and β represents the output.

6.1 Tractability Evaluation
We examine the tractability of ROBDD[∧î]C and
ROBDD[∧T̂ ,i]T with respect to the criteria proposed in
[Darwiche and Marquis, 2002] in Table 1.

According to the results in Table 1, we know that
ROBDD[∧î]C (i ≥ 2) is as tractable as ROBDD-L∞. In oth-
er words, compared with ROBDD-L∞ over C, ROBDD[∧î]C
indeed improves the succinctness under the premise of main-
taining the same tractability. Moreover, we know that
ROBDD[∧T̂ ,i]T is at least as tractable as ROBDD; in particu-
lar, ROBDD[∧T̂ ,i]T even has more tractability than ROBDD
if dep(T) < ∞. Finally, we know that ROBDD[∧î]C is
more tractable than d-DNNF, and ROBDD[∧T̂ ,i]T is more
tractable than CSDDV [Van den Broeck and Darwiche, 2015].

6.2 New Perspective on Time Efficiency
Due to distinct succinctness, it can sometimes be insuffi-
cient to compare the time efficiency of two languages sole-
ly by comparing their tractability. Consider an operation
OP , and two languages L and L′ such that L does not sat-
isfy OP but L′ satisfy OP. Assume that the number of
basic arithmetic operations involved in performing OP on
(ϕ1, . . . , ϕn, α) (resp. (ϕ′1, . . . , ϕ

′
n, α)) be 2m (resp. n),

where ϕi ∈ L (resp. ϕ′i ∈ L′), and m = |α| +
∑

1≤i≤n |ϕi|
(resp. n = |α| +

∑
1≤i≤n |ϕ′i|). Then, performing OP

on (ϕ1, . . . , ϕn, α) can be exponentially (in m) more time-
consuming than performing OP on (ϕ′1, . . . , ϕ

′
n, α) when

n = 2m
2

. To overcome this problem, we define a new no-
tion to compare time efficiency from a different perspective,
supplementing the concept of tractability:

Definition 4 (rapidity). An operation OP on a canonical
language L1 is at most as rapid as OP on another canoni-
cal language L2 (L1 ≤OPr L2), iff for each algorithm ALG

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5012

performing OP on L1, there exists some polynomial p and
some algorithm ALG′ performing OP on L2 such that for
every valid input (ϕ1, . . . , ϕn, α) of OP on L1 and every
valid input (ϕ′1, . . . , ϕ

′
n, α) of OP on L2 satisfying ϕi ≡ ϕ′i,

ALG′(ϕ′1, . . . , ϕ
′
n, α) can be done in time p(t+ |ϕ1|+ · · ·+

|ϕn| + |α|), where α is any element of supplementary infor-
mation and t is the running time of ALG(ϕ1, . . . , ϕn, α).

Assume that an operation OP satisfies L1 ≤OPr L2.
Let (ϕ1, . . . , ϕn, α) be a valid input of OP on L1 and
(ϕ′1, . . . , ϕ

′
n, α) be a valid input of OP on L2, where ϕi ≡

ϕ′i for 1 ≤ i ≤ n. We know that if performing OP
on (ϕ1, . . . , ϕn, α) can be done in polytime, then perform-
ing OP on (ϕ′1, . . . , ϕ

′
n, α) can also be done in polytime

in |α| +
∑

1≤i≤n |ϕi|. Therefore, for applications needing
canonical languages, we suggest that users choose a language
by the following steps rather than by the traditional viewpoint
of the KC map: first, identify the setL of canonical languages
meeting the expressivity requirement; second, identify the set
OP of necessary operations and identify the subset L′ of L
meeting the tractability requirement; third, add each language
L ∈ L satisfying ∃L′ ∈ L′∀OP ∈ OP .L′ ≤OPr L to L′; and
finally, choose one of the most succinct languages in L′.

We can propose algorithms (see Algorithms CONVERT-
DOWN and CONVERTTREE in [Lai et al., 2017]) which re-
spectively transform ROBDD[∧ĵ]C and ROBDD[∧î]C into
ROBDD[∧î]C and ROBDD[∧T̂ ,i]T (i ≤ j) and whose time
complexities are polynomial in the sizes of outputs. Then we
can obtain the following rapidity results:
Theorem 6. Given two integers i and j, a chain C and
a tree T over variables, and an operation OP , MOD-
S ≤OPr ROBDD[∧î]C ≤

OP
r ROBDD[∧ĵ]C if i ≤ j; and

ROBDD[∧T̂ ,i]T ≤
OP
r ROBDD[∧î]C .

It was mentioned that for the operation OP correspond-
ing to SE, SFO, ∧BC or ∨BC, OP on ROBDD[∧0̂]C can
be performed in polytime but OP on ROBDD[∧î]C (i > 0)
cannot be performed in polytime unless P = NP. There-
fore, if we only consider the tractability of OP , it may cre-
ate the illusion that the time efficiency of performing OP on
ROBDD[∧î]C is pessimistically lower than that of perform-
ing OP on ROBDD[∧0̂]C . Actually, OP on ROBDD[∧î]C
can also be performed in polytime in the sizes of equivalent
ROBDD[∧0̂]Cs. According to this new perspective, an appli-
cation requiring OP prefers ROBDD[∧î]C to ROBDD[∧0̂]C .

7 Preliminary Experimental Results
We developed an ROBDD[∧∞̂]C compiler, and compare it
with three compilers of two canonical languages ROBDD-
L∞ and CSDDV and a non-canonical language d-DNNF.
The three canonical languages can be seen as subsets of d-
DNNF. The state-of-the-art ROBDD-L∞, CSDDV and d-
DNNF compilers are reported in [Lai et al., 2013; Oztok and
Darwiche, 2015; Muise et al., 2012], and called BDDjLu,
miniC2D and DSHARP, respectively. Individual runs were
limited to a one-hour time-out. Table 2 shows the overal-
l performance of the four compilers over the eight domain-
s. The experimental results show that the ROBDD[∧∞̂]C
compiler outperformed both BDDjLu and miniC2D on three

Table 2: Comparative compiling performance between
ROBDD[∧∞̂]C , ROBDD-L∞, CSDDV and d-DNNF

domain (#) ROBDD[∧∞̂]C ROBDD-L∞ CSDDV d-DNNF

Bejing (16) 6 5 4 5

blocksworld (7) 7 7 6 7

emptyroom (28) 28 28 28 28

flat200 (100) 100 100 100 100

grid (33) 31 16 11 33

II (41) 15 14 9 13

iscas89 (35) 24 23 24 24

sortnet (12) 5 5 4 12

total (261) 216 198 186 222

10−310−2 10−1 100 101 102 103 104
10−3
10−2
10−1
100
101
102
103
104

ROBDD[∧
∞̂
]C

d−
D
N
N
F

(a) compiling time

102 103 104 105 106 107 108 109
102
103
104
105
106
107
108
109

ROBDD[∧
∞̂
]C

d−
D
N
N
F

(b) resulting sizes

Figure 2: Compiling time and resulting sizes of non-trivial instances
using d-DNNF and ROBDD[∧∞̂]C compilers

domains; and it succeeded in 18 (resp. 30) instances more
than BDDjLu (resp. miniC2D). The ROBDD[∧∞̂]C compil-
er and DSHARP outperformed each other on two domains.
However, DSHARP succeeded in six more instances than the
ROBDD[∧∞̂]C compiler, since the latter was relatively in-
efficient in sortnet. The reason behind the inefficiency of
ROBDD[∧∞̂]C compiler in sortnet is that the ordering heuris-
tic has a negative effect on this domain. Specifically, the
ROBDD[∧∞̂]C compiler succeeded in all instances in sortnet
when we used the lexicographical order of variables.

Figure 2 analyzes the detailed compiling time and resulting
size performance between our ROBDD[∧∞̂]C compiler and
DSHARP across the eight domains in Table 2. The experimen-
tal results show that the performance of the ROBDD[∧∞̂]C
compiler is comparable with that of DSHARP.

8 Conclusions
We proposed two families of canonical languages, and ana-
lyzed their theoretical properties in terms of the existing cri-
teria of expressivity, succinctness and tractability, as well as
the new criterion rapidity. These results provide an important
complement to the existing KC map, and the notion of ra-
pidity sheds new light on identifying more succinct canonical
representations without the worry of losing the tractability of
KC languages. We also developed an efficient ROBDD[∧∞̂]C
compiler, which significantly advances the state-of-the-art of
compiling efficiency of canonical representations, and has
compiling efficiency even comparable with that of DSHARP.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5013

References
[Bryant, 1986] Randal E. Bryant. Graph-based algorithms

for boolean function manipulation. IEEE Transactions on
Computers, 35(8):677–691, 1986.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A knowledge compilation map. Journal of Arti-
ficial Intelligence Research, 17:229–264, 2002.

[Darwiche, 2001] Adnan Darwiche. On the tractability of
counting theory models and its application to truth main-
tenance and belief revision. Journal of Applied Non-
Classical Logics, 11(1–2):11–34, 2001.

[Darwiche, 2011] Adnan Darwiche. SDD: A new canonical
representation of propositional knowledge bases. In Pro-
ceedings of the 22nd International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 819–826, 2011.

[Huang and Darwiche, 2007] Jinbo Huang and Adnan Dar-
wiche. The language of search. Journal of Artificial Intel-
ligence Research, 29:191–219, 2007.

[Lai et al., 2013] Yong Lai, Dayou Liu, and Shengsheng
Wang. Reduced ordered binary decision diagram with
implied literals: A new knowledge compilation ap-
proach. Knowledge and Information Systems, 35(3):665–
712, 2013.

[Lai et al., 2017] Yong Lai, Dayou Liu, and Minghao Yin.
New canonical representations by augmenting OBDDs
with conjunctive decomposition. Journal of Artificial In-
telligence Research, 58:in press, 2017.

[Mateescu et al., 2008] Robert Mateescu, Rina Dechter, and
Radu Marinescu. AND/OR Multi-Valued Decision Dia-
grams (AOMDDs) for Graphical Models. Journal of Arti-
ficial Intelligence Research, 33:465–519, 2008.

[Muise et al., 2012] Christian J. Muise, Sheila A. McIlraith,
J. Christopher Beck, and Eric I. Hsu. Dsharp: Fast d-
DNNF compilation with sharpSAT. In Proceedings of
the 25th Canadian Conference on Artificial Intelligence,
pages 356–361, 2012.

[Oztok and Darwiche, 2015] Umut Oztok and Adnan Dar-
wiche. A top-down compiler for sentential decision di-
agrams. In Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI), pages 3141–
3148, 2015.

[Pipatsrisawat, 2010] Thammanit Pipatsrisawat. Reasoning
with Propositional Knowledge: Frameworks for Boolean
Satisfiability and Knowledge Compilation. PhD thesis, U-
niversity of California, Los Angeles, 2010.

[Van den Broeck and Darwiche, 2015] Guy Van den Broeck
and Adnan Darwiche. On the role of canonicity in knowl-
edge compilation. In Proceedings of the 29th AAAI Con-
ference on Artificial Intelligence (AAAI), pages 1641–
1648, 2015.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5014

