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Abstract

Redundancy checking is an important task in Al
subfields such as knowledge representation and
constraint solving. This paper considers redundant
topological constraints, defined in the region con-
nection calculus RCC8. We say a constraint in a
set I' of RCC8 constraints is redundant if it is en-
tailed by the rest of I'. A prime subnetwork of T'
is a subset of I" which contains no redundant con-
straints and has the same solution set as I'. It is
natural to ask how to compute such a prime sub-
network, and when it is unique. While this prob-
lem is in general intractable, we show that, if S is
a subalgebra of RCC8 in which weak composition
distributes over nonempty intersections, then I" has
a unique prime subnetwork, which can be obtained
in cubic time by removing all redundant constraints
simultaneously from I'. As a by-product, we show
that any path-consistent network over such a dis-
tributive subalgebra is minimal.

1 Introduction

Qualitative spatial reasoning (QSR) is a common subfield of
artificial intelligence and geographical information science,
and has applications in GIS, cognitive robotics, high-level un-
derstanding of video data etc. The region connection calcu-
lus (RCC) [Randell et al., 1992] is perhaps the most well-
known calculus for representing qualitative spatial informa-
tion. Based on a binary connectedness relation, it defines
a class of binary topological relations between regions in a
connected topological space (e.g., the real plane). The RCC
is an expressive formalism for representing topological infor-
mation, and the computational complexity of reasoning with
RCC has been investigated in depth in the literature. Most of
these works focus on the consistency or satisfiablility of RCC
constraint networks.

In this paper, we consider the important problem of redun-
dant RCC constraints. Given a set I' of RCC constraints, we
say a constraint (zRy) in T is redundant if it can be entailed
by the rest of I, i.e., removing (zRy) from I" will not change

*This is an extended abstract of the same titled article published
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the solution set of I'. It is natural to ask when a network is re-
dundant and how to get an irredundant subset without chang-
ing the solution set. We call a subset of I a prime subnetwork
of I if it contains no redundant constraints but has the same
solution set as I'.

We show that it is in general co-NP hard to determine if a
constraint is redundant in a network of RCC constraints, but
if I' is over a tractable subclass, then a prime subnetwork can
be found in O(n®) time. If in addition weak composition dis-
tributes over non-empty intersections of relations in S, then
I" has a unique prime subnetwork, which is obtained by re-
moving all redundant constraints from I'.

As in the case of propositional logic formulas [Libera-
tore, 2005], redundancy of RCC constraints “often leads to
unnecessary computation, wasted storage, and may obscure
the structure of the problem" [Belov ef al., 2012]. Finding
a prime subnetwork can be useful in at least the following
aspects: a) computing and storing the relationships between
spatial objects and hence saving space for storage and com-
munication; b) facilitating comparison between different con-
straint networks; c¢) unveiling the essential graphical structure
of a network; and d) adjusting geometrical objects to meet
topological constraints [Wallgriin, 2012].

1.1 Motivational Example: Placename Footprints

To motivate our discussion, we focus briefly on one specific
application to illustrate how the use of prime subnetworks can
save space for storage. Figure 1 gives a small example of a set
of spatial regions formed by the geographic “footprints” as-
sociated with placenames in the Southampton area of the UK.
The footprints are derived from crowd-sourced data, formed
from the convex hull of the sets of coordinate locations at
which individuals used the placenames on social media. Us-
ing such data sets in natural language placename searches fre-
quently requires queries over the topological relationships be-
tween footprints (e.g., “is Clarence Pier in Southampton?”).
Computing such relationships on-the-fly requires computa-
tionally intensive and slow geometric operations; by contrast
Web-search queries demand rapid responses.

One potential solution is to cache the topological rela-
tions between all footprints of interest. However, even the
small example in Figure 1, the 84 footprints then require
84 x 83/2 = 3486 stored relations. The moderate-sized
footprint data set from which Figure 1 is adapted contains
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Figure 1: Examples of crowd-sourced geographic placename “foot-
prints” around Southampton, UK

a total of 3443 footprints leads to a constraint network with
5,925,403 relations. It is easy to see that as crowd-sourced
data sources continue to grow, the volumes of such data is set
to explode. In the case of footprints, many of the relation-
ships can be inferred, and computing the prime subnetwork
can reduce the number of stored relationships to be approxi-
mately linear in the number of footprints. In the case of the
Southampton constraint network, 1324 redundant relations
lead to a prime subnetwork with only 2162 relations need-
ing to be stored. For the full data set, 5,604, 200 redundant
relations lead to a prime subnetwork of just 321, 203 relations
(in contrast to the full network of almost 6 million relations).

In Section 2 we recall the RCC constraint language and
then discuss the redundancy and prime subnetwork problem
in general in Section 3. We present our major results and
an efficient algorithm in Section 4, and present the empirical
evaluation in Section 5. The last section concludes the paper.

2 RCC Constraint Language

The RCC was introduced in [Randell et al., 1992]. Let U be
the set of nonempty regular closed sets of R?. We call each
element in U a region. For two regions a, b, we say a is a part
of b, written aPb, if a C b; say a is connected to b, written
aCb,ifanb # @. Using C and P, we define

2PPy=azPyA-(yPux)
20y = (F2)zPz A 2zPy)
z DRy = ~(x0y)
xrPOy=20yA—-(zPy)A-(yPx)
rEQyu=zPyAnyPzx
xDCy = —(zCy)
zECy =2CyA—(z0y)
ctTPPy=2PPyA (3z)(: ECz A zECy)
sNTPPy=2PPy A —-(zTPPy)

Write PP, TPP ! and N~! for the converses of PP,
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Figure 2: RCC5/8 basic relations

TPP and NTPP, respectively. Then
Bs; = {DR,PO,EQ,PP,PP '}

Bs = {DC,EC,PO,EQ, TPP, NTPP, TPP~! N}

are two jointly exhaustive and pairwise disjoint (JEPD) sets of
relations, i.e., for any two regions a,b € U, a, b is related by
exactly one relation in B; (I = 5, 8). Figure 2 illustrates these
basic RCC5/8 relations. We call the Boolean algebra gener-
ated by relations in 3; the RCCI algebra, which consists all
relations that are unions of the basic relations in [3;. For con-
venience, we denote a non-basic RCCI relation R as the sub-
set of B; it contains. For example, we write { DR, PO, PP}
for the relation DR U PO U PP, and write x5 and g for the
correponding universal relation in RCC5 and RCCS8.

The composition of two basic RCC5/8 relations is not nec-
essarily a relation in RCC5/8. For two RCC5/8 relations
R and S, we call the smallest relation in RCC5/8 that con-
tains R o S the weak composition of R and S, written R ¢ S
[Diintsch et al., 2001; Li and Ying, 2003].

2.1 RCC5/8 Constraint Network

An RCC5/8 constraint has the form (zRy), where z,y are
variables taking values from U, the set of regions, R is an
RCC5/8 relation (not necessarily basic). Given a set I' of
RCC5/8 constraints over variables V' = {v1,vg, ..., v, }, we
say I is consistent or satisfiable if there is an assignment o :
V' — U such that (o(v;),0(v;)) satisfies the constraint in T’
that relates v; to v;.

Without loss of generality, we assume I' has the form
{ziRijw;}7;_y, where, for any 1 < 4,5 < n, there is a
unique constraint 2;;, and R;; = RZ-_]-1 and R;; = EQ.
In this sense, we call I' a constraint network. Let I' =
{xiRijxj};szl and IV = {xiR;jxj}ijl be two RCC5/8
constraint networks. We say I' and TV are equivalent if
they have the same set of solutions; and say I refines T if
Ri; C Rj; for all (4, 7). We say an RCC5/8 network I is a
basic network if each constraint is either the universe relation
or a basic relation; and say a basic network complete if there
are no universal relations.

Suppose S is a subset of RCC5/8. We say an RCC5/8 net-
work I' = {v;R;;v;} is over S if R;; € S for every pair
of variables v;,v;. The consistency problem over S, writ-
ten as CSP(S), is the decision problem of the consistency of
an arbitrary constraint network over S. It is well known that
the consistency problem over RCC5/8, i.e., CSP(RCC5/8),
is NP-complete and RCCS8 has three maximal tractable sub-
classes that contain all basic relations [Renz, 1999] and RCC5
has only one [Jonsson and Drakengren, 1997].

We say a network I' = {v;R;;v;} path-consistent if for
every 1 < 14,5,k < n, we have R;; C R;, ¢ Ri;. A cubic
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algorithm, henceforth called the path-consistency algorithm
or PCA, has been devised to enforce path-consistency. For
any RCC5/8 network I', the PCA either detects inconsistency
of I' or returns a path-consistent network, written I';,, which
is equivalent to I and known as the algebraic closure or a-
closure of T [Ligozat and Renz, 2004]. It is easy to see that
in this case I, also refines I', i.e., we have S;; C R;; for each
constraint (x;5;;x;) in '),

Proposition 1. Let S be a tractable subclass of RCC5/8
which contains all basic relations. An RCC5/8 network T’

over S is consistent if applying PCA to I does not result in-
consistency.

This is particularly true for basic RCC5/8 networks.

2.2 Distributive Subalgebra

Write B for the closure of B5 under converse, intersection,

and weak composition in RCC5. Then gg, contains the basic
relations as well as

{PO,PP},{PO,PP '}, {PO,PP,PP ! EQ},
{DR,PO,PP},{DR,PO,PP '} {DR,PO}, s,

where x5 = {DR, PO, PP, PP~ EQ)}. Itis interesting to
note that in 35 the weak composition operation is distributive
over nonempty intersections in the following sense.

Lemma 2. Let R, S,T be three relations in l§5. Suppose
S NT is nonempty. Then we have

Ro(SNT)=RoSNRoT (1)
(SNT)oR=SoRNToR. 2)

In general, we have the following definition.

Definition 1. Let S be a subclass of RCC5/8. We say S is
a subalgebra if S contains all basic relations, and is closed
under converse, weak composition, and intersection. We say
a subalgebra S is distributive if weak composition distributes
over nonempty intersections of relations in S.

Clearly, every distributive subalgebra of RCCI contains [?l
The following lemma shows that relations in a distributive
subalgebra have the Helly property.

Lemma 3. Let S be a distributive subalgebra of RCC5/8.
Suppose R, S, T are three relations in S. Then RNSNT = @
iffRNS =0, o0r RNT =2,0rSNT = @.

Actually, the inverse of the above result is also true (see
[Long and Li, 2015]). We say a distributive subalgebra S is
maximal if there is no other distributive subalgebra that prop-
erly contains S. To find all maximal distributive subalgebras,
we start with l§l and then try to add other relations to this sub-
algebra to get larger distributive subalgebras. It turns out that
RCCS5 (RCCS8, resp.) has only two maximal distributive sub-
algebras, which are all contained in 5, the maximal tractable
subclass of RCC5 identified in LRenz and Nebel, 1997;
Jonsson and Drakengren, 1997] (g, one of the three max-
imal subclasses of RCCS8 identified in [Renz, 1999], resp.).
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3 Prime Subnetwork

Given an RCC5/8 network I', a very interesting question is,
how to find a prime subnetwork of I'? This problem is clearly
at least as hard as determining if " has a redundant constraint.
Similar to the case of propositional logic formulars [Libera-
tore, 2005], we have the following result for RCC5/8.

Proposition 4. Let I' be an RCC5/8 network and suppose
(zRy) is a constraint in T. It is co-NP-complete to decide if
(xRy) is redundant in T.

A naive method to obtain a prime subnetwork is to remove
redundant constraints one by one from I" until we get an irre-
ducible network. Suppose we have an oracle which can tell if
a constraint is redundant. Then in an additional O(n?) time
we can find an irreducible network that is equivalent to I by
removing several constraints from I'.

Suppose S is a tractable subalgebra of RCC5/8. Then, for
any network I" over S, we can determine whether a constraint
is redundant in I" in O(n?) time and find all redundant con-
straints of I" in O(n®) time. A prime subnetwork for I' can
also be found in O(n°) time.

Are prime subnetworks unique? In general this is not the
case, but it is easy to see that the core of T, i.e. the set of
non-redundant constraints in I', is contained in every prime
subnetwork of I'. In the following we assume that I" is an all-
different constraint network, i.e. it has the following property:

Vi, )i # j) = (I = (v EQuy))]. 3)
This property ensures that no two variables have to be identi-
cal. In other words, there is no ‘redundant’ variables.

We next show that, if I' is an all-different constraint net-
work over a distributive subalgebra of RCC5/8, then I'.. is the
unique prime network of I'. This is quite surprising, as, in
general, knowing that both (zRy) and (uSv) are redundant
in I" does not imply that (uSwv) is redundant in T" \ {(zRy)}.

4 Networks over a Distributive Subalgebra

In this section, we assume S is a distributive subalgebra of
RCC5/8. Let I' be an all-different consistent network over
S. We show that I'. is equivalent to I" and hence the unique
prime network of I.

Definition 2 (cf. [Chandra and Pujari, 2005; Liu and Li,
2012]). Suppose © = {v;Tj;v;}};_; is an RCC5/8 net-
work. We say © is minimal if for every pair of variables v;, v;
(i # j) and every basic relation « in T;;, there exists a solu-
tion {ai1, az, - ,an} of © s.t. (a;,a;) is an instance of a.

Each consistent RCC5/8 constraint network has a unique
minimal network, but it is in general NP-hard to compute it
(see e.g. [Liu and Li, 2012]).

Notation: We write I';,, for the minimal network of I', I'),
for the a-closure of I', and I',. for the core of .

To prove that I'; is equivalent to I', we need two impor-
tant results. The first result, stated in Thm. 5, shows that I',,,
is exactly I',. The second result, stated in Prop. 6, shows
that a particular constraint (x Ry) is redundant in I iff its cor-
responding constraint in I'), is redundant. Our main result,
stated in Thm. 7, then follows immediately.

Theorem 5. Suppose T is a consistent network over S and
Iy, its a-closure. Then Ty, is 'y, the minimal network of T'.
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Proposition 6. Suppose T' is a consistent network over S
which satisfies (3). Assume that (xRy) and (xSy) are the
constraints from x to y in I and Ty, respectively. Then (xRy)
is redundant in T iff (xSy) is redundant in T'),.

Recall that Thm. 5 asserts that I';, is minimal. As a conse-
quence, we have our main result.

Theorem 7. Suppose U is a consistent network over S which
satisfies (3) and T the core of I'. Then T, is equivalent to T’
and hence the unique prime network of I.

In general, the core of an RCC5/8 network over a tractable
subclass can be found in O(n®) time. This can be improved
for networks over a distributive subalgebra. To show this, we
need the following result for path-consistent networks.
Lemma 8. Suppose I is a path-consistent network over S.
Then a constraint (v; R;;v;) is redundant in T iff

Rij = n{RZk <>Rkj ok 7é i,j},

i.e., R;; is the intersection of the weak compositions of all
paths from v; to v; with length 2.

Algorithm 1: Algorithm for finding all redundant con-
straints, where *; is the universal relation in RCCI.

Input: An all-different consistent RCC5/8 network
I'={v;Rijv; : 1 <4,j <n}overS and
V={v;:1<i<n}

Output: Redun: the set of redundant constraints of I,

and Core: the core of T.

Redun + @
Core + T
I',, < the a-closure of T’
for each constraint (v;S;;v;) € T',, do
Qij < *i
for each variable v, € V' \ {v;,v;} do
Qij < Qij N Sig © Sk
if Qij = Sij then
Redun < Redun U {(v;R;;v;)}
Core <— Core\ {(v;R;;v;)}
break the inner loop;

e % N A UM AR W N e

-
-

Suppose I is an all-different consistent network over a dis-
tributive subalgebra of RCC5/8. Prop. 6 and Lemma 8 sug-
gest a simple way for computing I'., the unique prime net-
work of I'. By Prop. 6, a constraint (v;R;;v;) in T is re-
dundant iff the corresponding constraint (v;S;;v;) in Iy, is
redundant. Furthermore, Lemma 8 shows that (v;S;;v;) is
redundant in I',, iff S;; is the intersection of all S;; o Sy;
(k # 1i,7). We hereby have the cubic algorithm Algorithm 1
for finding all redundant constraints in I'. For each constraint
(’UiSijUj), to verify if SLJ = m{Szk <o Skj c k 7é i,j}, we
introduce a relation P;; which consists of all basic relations
o that are not in S, ¢ Sy; for some £ # 4, j and then check
if P;; U S;; is the universal relation.

S Empirical evaluation

In this section, we empirically evaluate our method in com-
parison with the two greedy methods for removing redundant

constraints proposed in [Wallgriin, 2012]: the basic and ex-
tended simplification algorithms (hereafter SIMPLE and SIM-
PLEX). SIMPLE loops through all triples of regions ¢, 7, and
k and identifies as redundant any constraints R;; such that
R;; o Rj, € R;,. A drawback of SIMPLE is that redundant
relations removed may affect subsequent iterations of the al-
gorithm. Hence, the order in which triples are visited by SIM-
PLE can alter the resulting subnetwork. SIMPLEX solves this
issue by first marking potentially redundant relations for re-
moval, subject to a consistency check, before removing all
marked relations in a final loop. SIMPLE and SIMPLEX are
not guaranteed to provide a prime subnetwork.

In the evaluation, two real data sets were used: the UK ge-
ographic “footprint" dataset introduced in Section 1.1 (total
3443 regions) and the statistical areas levels 1-4 dataset for
Tasmania (in total 1559 regions), provided by the Australian
Bureau of Statistics. Both datasets are complete basic con-
straint networks, i.e., there is a single basic relation between
each pair of regions. Derived from social media, the foot-
print data set contains a variety of regions of differing sizes
and shapes, but relatively unstructured sharing almost no ad-
jacent boundaries. In stark contrast the Tasmanian statistical
areas are highly structured, made up of four levels of spatially
contiguous and nested but non-overlapping regions. To aid in
our analysis, five subsets of each of the two datasets were
generated in addition to the full datasets.

Our empirical analysis showed that for real geographic data
sets the prime subnetwork can lead to significant increases in
the number of redundant relations identified when compared
with the approximations proposed by [Wallgriin, 2012]. In
practice, the algorithm was efficient, exhibiting average case
O(n?) scalability. The redundant relations identified by the
prime subnetwork can also significantly outnumber DC rela-
tions, especially in less structured geographic data sets that
may contain a significant minority of PO relations.

6 Conclusion and Further Development

In this paper, we have systematically investigated the compu-
tational complexity of redundancy checking for RCC5/8 con-
straints. Although it is in general intractable, we have shown
that, if the constraints are taken from a distributive subal-
gebra, then the core of the constraint network is the unique
prime network and can be found in cubic time.

Algorithm 1 can be significantly improved if we enforce
partial path-consistency [Bliek and Sam-Haroud, 1999] in-
stead of path-consistency. Indeed, it is showed in [Sioutis
et al., 2015] that the thus revised redundancy removing algo-
rithm significantly progresses the state-of-the-art for practical
reasoning with very large real RCC8 networks.

Some of our results (e.g., all results before Thm. 5) can be
immediately applied to several other qualitative calculi e.g.
Interval Algebra [Allen, 19831, but Prop. 6 and Thm. 7 do
use the particular algebraic properties of RCC5/8. However,
the same results actually apply to the simple temporal prob-
lem (STP) [Dechter et al., 1991]. In [Lee et al., 2016], it
was shown that every non-degenerated STP instance has a
unique prime subnetwork and evaluation on a large bench-
mark dataset of STP exhibits a significant reduction in redun-
dant information for the involved instances.

5023



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Allen, 1983] James F. Allen. Maintaining knowledge about
temporal intervals.  Commun. ACM, 26(11):832-843,
1983.

[Belov et al., 2012] Anton Belov, Mikolds Janota, Inés
Lynce, and Jodo Marques-Silva. On computing minimal
equivalent subformulas. In Milano [2012], pages 158-174.

[Bliek and Sam-Haroud, 1999] Christian Bliek and Djamila
Sam-Haroud. Path consistency on triangulated constraint
graphs. In IJCAI, pages 456-461, 1999.

[Chandra and Pujari, 2005] Priti Chandra and Arun K. Pu-
jari. Minimality and convexity properties in spatial CSPs.
In ICTAI, pages 589-593. IEEE Computer Society, 2005.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea
Pearl. Temporal constraint networks. Artif. Intell., 49(1-
3):61-95, 1991.

[Diintsch er al., 2001] Ivo Diintsch, Hui Wang, and Stephen
McCloskey. A relation - algebraic approach to the region
connection calculus. Theor. Comput. Sci., 255(1-2):63-83,
2001.

[Jonsson and Drakengren, 1997] Peter Jonsson and Thomas
Drakengren. A complete classification of tractability in
RCC-5. Journal of Artificial Intelligence Research, 6,
1997.

[Lee et al., 2016] Jae Hee Lee, Sanjiang Li, Zhiguo Long,
and Michael Sioutis. On redundancy in simple temporal
networks. In ECAI 2016 - 22nd European Conference on
Artificial Intelligence, 29 August-2 September 2016, The
Hague, The Netherlands - Including Prestigious Applica-
tions of Artificial Intelligence (PAIS 2016), pages 828—
836, 2016.

[Li and Ying, 2003] Sanjiang Li and Mingsheng Ying. Re-
gion connection calculus: Its models and composition ta-
ble. Artif. Intell., 145(1-2):121-146, 2003.

[Liberatore, 2005] Paolo Liberatore. Redundancy in logic I:
CNF propositional formulae. Artif. Intell., 163(2):203—
232, 2005.

[Ligozat and Renz, 2004] Gérard Ligozat and Jochen Renz.
What is a qualitative calculus? A general framework. In
Chengqi Zhang, Hans W. Guesgen, and Wai-Kiang Yeap,
editors, PRICAI, volume 3157 of Lecture Notes in Com-
puter Science, pages 53—-64. Springer, 2004.

[Liu and Li, 2012] Weiming Liu and Sanjiang Li. Solving
minimal constraint networks in qualitative spatial and tem-
poral reasoning. In Milano [2012], pages 464—479.

[Long and Li, 2015] Zhiguo Long and Sanjiang Li. On dis-
tributive subalgebras of qualitative spatial and temporal
calculi. In Spatial Information Theory - 12th International
Conference, COSIT 2015, Santa Fe, NM, USA, October
12-16, 2015, Proceedings, pages 354-374, 2015.

[Milano, 2012] Michela Milano, editor. Principles and Prac-
tice of Constraint Programming - 18th International Con-
ference, CP 2012, Québec City, QC, Canada, October 8-
12, 2012. Proceedings, volume 7514 of Lecture Notes in
Computer Science. Springer, 2012.

5024

[Randell et al., 1992] David A. Randell, Zhan Cui, and An-
thony G. Cohn. A spatial logic based on regions and con-
nection. In Bernhard Nebel, Charles Rich, and William R.
Swartout, editors, KR, pages 165—176. Morgan Kaufmann,
1992.

[Renz and Nebel, 1997] Jochen Renz and Bernhard Nebel.
On the complexity of qualitative spatial reasoning: A max-
imal tractable fragment of the region connection calculus.
In IJCAI (1), pages 522-527. Morgan Kaufmann, 1997.

[Renz, 1999] Jochen Renz. Maximal tractable fragments
of the region connection calculus: A complete analysis.
In Thomas Dean, editor, IJCAI, pages 448-455. Morgan
Kaufmann, 1999.

[Sioutis et al., 2015] Michael Sioutis, Sanjiang Li, and Jean-
Frangois Condotta. Efficiently characterizing non-
redundant constraints in large real world qualitative spa-
tial networks. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, pages
3229-3235, 2015.

[Wallgriin, 2012] Jan Oliver Wallgriin. Exploiting qualita-
tive spatial reasoning for topological adjustment of spatial
data. In Isabel F. Cruz, Craig A. Knoblock, Peer Kroger,
Egemen Tanin, and Peter Widmayer, editors, SIGSPA-
TIAL/GIS, pages 229-238. ACM, 2012.



