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Abstract
Weighted partial maximum satisfiability (WPMS)
is a significant generalization of maximum satisfi-
ability (MAX-SAT), with many important applica-
tions. Recently, breakthroughs have been made on
stochastic local search (SLS) for weighted MAX-
SAT and (unweighted) partial MAX-SAT (PMS).
However, the performance of SLS for WPMS lags
far behind. In this work, we present a new SLS
algorithm named CCEHC for WPMS. CCEHC
is mainly based on a heuristic emphasizing hard
clauses, which has three components: a vari-
able selection mechanism focusing on configura-
tion checking based only on hard clauses, a weight-
ing scheme for hard clauses, and a biased random
walk component. Experiments show that CCEHC
significantly outperforms its state-of-the-art SLS
competitors. Experiments comparing CCEHC with
a state-of-the-art complete solver indicate the ef-
fectiveness of CCEHC on a number of application
WPMS instances.

1 Introduction
Given a formula in conjunctive normal form (CNF), the max-
imum satisfiability (MAX-SAT) problem is to seek out an
assignment that maximizes the number of satisfied clauses
in the formula. The weighted partial maximum satisfiabil-
ity (WPMS) problem is a significant generalization of MAX-
SAT, with many important applications. The WPMS prob-
lem, where clauses are divided into hard ones and soft ones,
and each soft clause is associated with a positive integer
as its weight, is to seek out an assignment that satisfies all
hard clauses and maximizes the total weight of satisfied soft
clauses. MAX-SAT and WPMS are typically NP-hard and it
is well known that optimal solutions are hard to approximate
[Smyth et al., 2003].
There are two popular categories of practical MAX-SAT

algorithms: complete algorithms [Lin et al., 2008; Li et al.,
2009; Ansótegui et al., 2013a; Ansótegui and Gabàs, 2013;
Ansótegui et al., 2013b; Narodytska and Bacchus, 2014]

∗This paper is an extended abstract of an article in Artificial
Intelligence [Luo et al., 2017].

and stochastic local search (SLS) algorithms evolving out
of GSAT [Selman et al., 1992] and WalkSAT [Selman et
al., 1994]. Recently, breakthroughs have been achieved on
SLS algorithms for solving weighted MAX-SAT and (un-
weighted) partial MAX-SAT (PMS), resulting in state-of-the-
art SLS algorithms namely CCLS [Luo et al., 2015b] andDist
[Cai et al., 2014] as well as Dist’s improvement DistUP [Cai
et al., 2016]. However, CCLS, Dist and DistUP are not ded-
icated to solving WPMS specifically, and their performance
for WPMS could be further improved. This motivates us to
design a more efficient SLS algorithm for WPMS.

In this work, we present a new SLS algorithm named
CCEHC (Configuration Checking with Emphasis on Hard
Clauses) for WPMS. CCEHC is mainly based on a heuristic
emphasizing hard clauses, called EHC. Our main contribu-
tions in this paper are summarized as follows.

Firstly, we identify an efficient algorithm framework for
solving WPMS. Secondly, we propose a new variable selec-
tion mechanism focusing on a new forbidding mechanism
of configuration checking. This new configuration checking
mechanism emphasizes hard clauses. Finally, by adopting a
weighting scheme for hard clauses and adjusting the existing
strategy of biased random walk, we integrate the two with
our new forbidding mechanism of configuration checking in
a subtle way and obtain our new EHC heuristic.

We compare CCEHC against CCLS, Dist and DistUP on
WPMS benchmarks from the MAX-SAT Evaluation 2014
and four real-world application benchmarks. The exper-
imental results show that CCEHC achieves better perfor-
mance, and establishes a new state-of-the-art performance on
SLS algorithms for WPMS. Also, the experiments comparing
CCEHC with a state-of-the-art complete solver present the
effectiveness of CCEHC on a number of application WPMS
instances. Further, our experimental results indicate that the
combination of CCEHC and unit propagation initialization
[Cai et al., 2016] gives a performance improvement over
CCEHC on a large number of WPMS instances.
In the remainder of this paper, Section 2 gives the neces-

sary preliminaries of this paper. Section 3 proposes the EHC
heuristic and introduces those components in the EHC heuris-
tic. Section 4 presents the CCEHC algorithm. Section 5 re-
ports experiment results on CCEHC. Section 6 concludes this
paper. For more information about CCEHC, please refer to
the full journal article version of this paper [Luo et al., 2017].
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2 Preliminaries
A formula F in conjunctive normal form (CNF) is a conjunc-
tion of clauses, i.e., F =

∧
i

∨
j lij , where each lij is a literal,

which is either a Boolean variable or its negation. Given a
CNF formula F , V (F ) is used to denote the set of all vari-
ables in F . Two different variables are neighbors when they
appear in at least one clause, and N (x ) is used to denote the
set of all neighbors of variable x.

A weighted partial CNF formula is such a CNF formula,
where all clauses are divided into hard ones and soft ones,
and each soft clause c is associated with a positive integer
w(c) as its weight. Given a weighted partial CNF formula
F , the weighted partial maximum satisfiability (WPMS)
problem is to find such an assignment which satisfies all hard
clauses in F and maximizes the total weight of all satisfied
soft clauses in F . A complete assignment is feasible if it sat-
isfies all hard clauses in the formula, and the cost of a fea-
sible assignment α, denoted as cost(α), is the total weight
of all unsatisfied soft clauses under α. The optimal feasible
assignment is the feasible assignment with the minimum cost.

In SLS algorithms for WPMS, for a variable x, the hard
make score of x, denoted by hmake(x ), is the number (or
total weight if using clause weighting scheme) of unsatisfied
hard clauses that would become satisfied if x is flipped; the
hard score of x, denoted by hscore(x ), is the increment in the
number (or total weight if using clause weighting scheme) of
satisfied hard clauses if x is flipped; the soft make score of x,
denoted by smake(x ), is the total weight of unsatisfied soft
clauses that would become satisfied if x is flipped; the soft
score of x, denoted by sscore(x ), is the increment in the total
weight of satisfied soft clauses if x is flipped. For a variable x,
the general make score of x, denoted bymake(x ), can be cal-
culated asmake(x ) = A× hmake(x ) + smake(x ); the gen-
eral score of x, denoted by score(x ), can be calculated as
score(x ) = A× hscore(x ) + sscore(x ), where A is a pos-
itive integer whose value equals the total weight of all soft
clauses plus 1.

3 Heuristic with Emphasis on Hard Clauses
We adopt the framework of CCLS in our new algorithm. To
improve the performance, we design a heuristic called EHC
(Emphasis on Hard Clauses), which introduces more differ-
ences in treating hard clauses and soft clauses and emphasizes
hard clauses. The EHC heuristic is composed of three com-
ponents: a variable selection mechanism focusing on config-
uration checking only on hard clauses, a weighting scheme
for hard clauses, and a strategy of biased random walk.

3.1 Hard Clauses’ States Based Configuration
Checking

Inspired by the success of the clause states based configura-
tion checking (CSCC) strategy [Luo et al., 2015a] in solving
Boolean satisfiability (SAT), it is natural to adapt this CSCC
strategy to solving WPMS. In WPMS, hard clauses are more
important, so we propose a new configuration checking strat-
egy based only on the states of hard clauses, named HCSCC
(hard clauses’ states based configuration checking).

Definition 1 Given a weighted partial CNF formula F and a
complete assignment α to V (F ), the configuration of a vari-
able x ∈ V (F ) for HCSCC is a vector configuration(x )
consisting of the states of all hard clauses where x appears
under α.
For a variable x, a change on any element of

configuration(x ) is considered as a change on the whole
configuration(x ) vector. The HCSCC strategy is designed to
prevent flipping the variable x whose configuration(x ) has
not been changed since x’s last flip.
To implement HCSCC more efficiently, we employ a

Boolean array hardConf whose size equals the number of the
variables in the formula. The array hardConf is maintained
during the search. Initially, for each variable x, hardConf (x )
is set to 1. Whenever a variable x is flipped, hardConf (x ) is
set to 0. Then each hard clause c, where x appears, is checked
whether c’s state is changed (from satisfied to unsatisfied or
vice versa). If c’s state is indeed changed, for each variable
y (y ̸= x) in c, hardConf (y) is set to 1.
Thus, in the implementation of our HCSCC strategy, a vari-

able x’s configuration has been changed since x’s last flip
if hardConf (x ) = 1. We define the notion of HCSCCD
(hard clauses’ states based configuration changed decreas-
ing) variables as follows: a variable x ∈ V (F ) is HCSCCD
if hardConf (x ) = 1 and hscore(x ) > 0. The notation HC-
SCCDvars is used to denote the set of all HCSCCD variables
during the search.
An important heuristic in CCLS is CCM (configuration

checking with make), which prefers to select the CCMP (con-
figuration changed and make positive) variable with the high-
est score [Luo et al., 2015b]. A variable x is CCMP if
make(x ) > 0 and, since x’s last flip, at least one of x’s neigh-
boring variables has been flipped [Luo et al., 2015b]. The
notation CCMPvars denotes the set of all CCMP variables
during the search. The relationship between the HCSCCD
variable and the CCMP variable is presented as follows.
Lemma 1 For a given variable x, if x is a HCSCCD vari-
able, then x is a CCMP variable.

3.2 Weighting Scheme for Hard Clauses
Clause weighting schemes have been used prominently and
successfully in SLS algorithms for solving SAT. This mo-
tivates us to further extend the CCLS algorithm framework
with an effective clause weighting scheme.
To put higher priority on hard clauses than soft clauses

in clause weighting, it is natural to adopt a clause weight-
ing scheme that only works for hard clauses. We utilize the
one inDist [Cai et al., 2014], which only adds weights to hard
clauses. The weighting scheme is similar to PAWS [Thornton
et al., 2004] and works as follows.

• In the beginning of the SLS algorithm, for each hard
clause c, the weight of c (i.e., w(c)) is set to 1.

• During the search, when the hard clause weighting
scheme is activated, with probability sp (sp is a real
number and 0 ≤ sp ≤ 1), for each satisfied hard clause c
with w(c) > 1, w(c) is decreased by 1; otherwise (with
probability 1 − sp), for each unsatisfied hard clause c,
w(c) is increased by 1.
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Algorithm 1: The CCEHC Algorithm
Input: Weighted partial CNF formula F ,maxSteps

1 generate a random assignment α, α∗ ← α;
2 for step ←1 tomaxSteps do
3 if time limit is exceeded or all hard and soft clauses are

satisfied then break;
4 if with fixed probability p then
5 if there exists any unsatisfied hard clause then c← a

random unsatisfied hard clause;
6 else c← a random unsatisfied soft clause;
7 v ← a variable x with greatest sscore(x ) in c,

breaking ties randomly;
8 else
9 if HCSCCDvars is not empty then
10 v ← a variable randomly selected from

HCSCCDvars;
11 else
12 Update hard clause weights;
13 if CCMPvars is not empty then
14 v ← x with the greatest score(x ) in

CCMPvars, breaking ties randomly;
15 else
16 c← a random unsatisfied clause;
17 v ← a random variable in c;

18 α← α with v flipped;
19 if cost(α) < cost(α∗) then α∗ ← α;

20 if α∗ satisfies all hard clauses then return α∗;
21 else return “No feasible assignment is found”;

3.3 The Biased RandomWalk Component
An important component of the CCLS algorithm is the ran-
dom walk for the diversification mode. However, standard
random walk may not be suitable for WPMS. Since hard
clauses are forced to be satisfied in feasible solutions of the
WPMS problem, it is reasonable for us to employ a biased
random walk component that prefers selecting a hard clause
with a higher priority to choosing a soft clause. The biased
random walk strategy is suggested by the literature [Jiang et
al., 1995] and described as follows.
When biased random walk is called, if there exist unsatis-

fied hard clauses, the algorithm chooses an unsatisfied hard
clause randomly; otherwise, an unsatisfied soft clause is se-
lected randomly. Then the algorithm picks a variable in the
chosen clause. In this work, this is accomplished by select-
ing the variable x with the greatest sscore(x ) in the chosen
clause, inspired by the literature [Cai et al., 2014].

4 The CCEHC Algorithm
Based on the above ideas, this section presents the CCEHC
(Algorithm 1) in detail.

Initially, CCEHC generates an assignment α randomly.
Then it performs a loop until one of the termination criteria is
met. During the search, whenever a better solution is found,
the best solution α∗ is updated accordingly.
In each search step, CCEHC selects a variable to be flipped.

With probability p, CCEHC calls the biased random walk
component (lines 5–7): if there exists any unsatisfied hard

Table 1: The parameter settings reported by SMAC for CCEHC,Dist
and CCLS.

Instance Type CCEHC Dist CCLS

p sp wp sp t p
Random 0.2 0.0001 0.1 0.001 15 0.535
Crafted 0.177 0.003 0.1 0.001 15 0.204
Industrial/Application 0.279 0.085 0.038 0.002 6 0.2

clause, an unsatisfied hard clause is selected randomly; oth-
erwise, an unsatisfied soft clause is picked randomly; then
CCEHC selects a variable x with greatest sscore(x ) in the
chosen hard or soft clause as the variable to be flipped. With
probability 1−p, CCEHC first checks whether theHCSCCD-
vars set is empty or not; if the HCSCCDvars set is not empty,
CCEHC picks a variable randomly selected from HCSCCD-
vars (with bias towards the ones with the best hscore), in-
spired by the literature [Cai et al., 2014] (line 10 in Algorithm
1). Otherwise, CCEHC activates the hard clause weighting
scheme (line 12), and then selects a variable according to the
CCM heuristic [Luo et al., 2015b] (lines 13–17). After the
variable to be flipped is selected, the CCEHC algorithm flips
the selected variable and then starts the next search step (line
18 in Algorithm 1).

Finally, when the search terminates, if α∗ is feasible,
CCEHC reports α∗ as the solution; otherwise, CCEHC out-
puts “No feasible assignment is found”.

5 Experimental Evaluations
We evaluate CCEHC on random, crafted and industrial
WPMS benchmarks fromMAX-SAT Evaluation 2014 as well
as four real-world application benchmarks, including com-
putational protein design1 (CPD) [Allouche et al., 2012;
2014], advanced encryption standard2 (AES) [Gwynne and
Kullmann, 2011], the pedigree problem3 [Sánchez et al.,
2008] and cluster expansion4 (CE) [Huang et al., 2016].
CCEHC is implemented in C++ and compiled by g++ with

‘-O2’. All experiments are performed on a cluster of work-
stations with Intel Xeon E7-8830 2.13 GHz CPU, 24MB L3
cache and 1.0TB RAM under the operating system CentOS.

Each solver performs one run on each instance. For each
solver on each benchmark, we report the number of instances
where the solver finds the best solution among all competing
solvers in the related experiment, denoted by ‘#win.’, and the
averaged time of doing so on such winning instances, denoted
by ‘time’ (the unit is CPU second). The cutoff time of each
run is set to 300 CPU seconds.

5.1 Comparing CCEHC with SLS Competitors
Our CCEHC algorithm is compared against three state-of-
the-art SLS algorithms, namely CCLS [Luo et al., 2015b],

1http://genoweb.toulouse.inra.fr/~degivry/evalgm/CFN/
ProteinDesign/

2In the directory ‘aes/’, http://maxsat.udl.cat/14/benchmarks/
pms_industrial.tgz

3http://genoweb.toulouse.inra.fr/~degivry/evalgm/CFN/
Pedigree/

4http://lcs.ios.ac.cn/~caisw/Resource/cluster-expansion.zip
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Table 2: Comparison of CCEHC with SLS solvers including DistUP, Dist and CCLS.

Benchmark #inst. CCEHC DistUP Dist CCLS VBS

#win. time #win. time #win. time #win. time #win. time
Random 280 279 0.10 279 0.04 279 0.06 271 7.93 279 <0.01
Crafted 310 282 45.03 194 6.83 192 5.37 146 7.75 302 42.26
Industrial 410 226 124.43 154 96.53 90 95.50 35 39.59 389 125.15
CPD 20 11 94.85 2 174.88 2 31.73 3 162.02 15 93.70
AES 7 5 11.08 1 0.00 2 150.74 5 2.31 7 47.97
Pedigree 20 11 94.85 2 174.88 2 31.73 3 162.02 15 93.70
CE 6 6 0.05 6 <0.01 6 0.01 3 <0.01 6 <0.01

Table 3: Comparison of CCEHC and the complete solver WPM-
2014. As a reference, we report the number of instances where Eva
proves optimality within the cutoff time.

Benchmark #inst. #prov.
by Eva

CCEHC WPM-2014 VBS

#win. time #win. time #win. time
Random 280 1 279 0.10 0 0 279 0.10
Crafted 310 141 247 29.76 170 16.82 310 25.16
Industrial 410 355 59 37.74 396 14.08 410 16.02
CPD 20 0 14 130.34 6 42.01 20 103.84
AES 7 1 6 17.57 1 96.03 7 28.78
Pedigree 20 17 14 65.48 15 28.09 20 64.65
CE 6 0 6 0.05 0 0 6 0.05

Table 4: Experimental results of CCEHC and CCEHC+UP on all
testing WPMS benchmarks.

Benchmark #inst. CCEHC CCEHC+UP VBS

#win. time #win. time #win. time
Random 280 279 0.10 279 0.06 279 0.06
Crafted 310 249 32.10 261 37.55 301 46.42
Industrial 410 153 119.38 269 78.41 361 98.95
CPD 20 10 132.28 11 137.79 15 150.99
AES 7 5 11.08 6 24.23 6 22.62
Pedigree 20 16 81.27 15 43.19 19 65.75
CE 6 6 0.05 6 <0.01 6 <0.01

Dist [Cai et al., 2014] and DistUP [Cai et al., 2016]. We also
report the results of the Virtual Best Solver (VBS), i.e., the
perfect selector – on each instance, the solution of VBS is the
best one of the solutions reported by all competing solvers
included in this experiment on solving this instance. We tune
parameters of these solves using SMAC [Hutter et al., 2011],
and the resulting parameter settings are presented in Table 1.

The results comparing CCEHCwith other SLS solvers (Ta-
ble 2) shows that CCEHC outperforms its SLS competitors.

5.2 Comparing CCEHC with Complete Solver
We compare CCEHC with a state-of-the-art complete solver
WPM-2014 [Ansótegui et al., 2013a]. We adopt the version
of WPM-2014 that uses the outputting format of incomplete
solvers (i.e., printing the better-quality solution immediately
once the solver finds one), which won the industrial WPMS
category in the incomplete solver track of the MAX-SAT
Evaluation 2014. We also report the results for Eva [Naro-
dytska and Bacchus, 2014], which won the industrial WPMS
category in the complete solver track. As Eva only finds one
feasible solution finally when it proves optimality, the results
for Eva are just reported to indicate the performance of the
current state-of-the-art complete solver on these benchmarks.

The results (Table 3) show that, although CCEHC per-
forms worse than WPM-2014 on the Industrial benchmark
and the pedigree benchmark, it is much better on random,
crafted benchmarks and three real-world application bench-
marks. The results of VBS present thatCCEHC could be com-
plementary to WPM-2014 on the Crafted, Industrial, CPD,
AES and pedigree benchmarks.

5.3 Initializing CCEHC by Unit Propagation

Inspired by the success of DistUP, which equips Dist with an
unit propagation initialization [Cai et al., 2016], we combine
CCEHC with the unit propagation initialization, and empiri-
cally evaluate the resulting hybrid solver on all testing bench-
marks. By replacing Dist with CCEHC in the DistUP solver,
we obtain a new solver namely CCEHC+UP. The compara-
tive results of CCEHC+UP and CCEHC are reported in Table
4. CCEHC+UP performs better than CCEHC on all testing
benchmarks but one (the pedigree benchmark).

6 Conclusions

In this work, we design a heuristic with emphasis on hard
clauses, and develop a new SLS algorithm named CCEHC
for solving WPMS. We evaluate CCEHC on random, crafted,
industrial and real-world application instances. Experiments
show that CCEHC significantly outperforms state-of-the-art
SLS algorithms namely CCLS, Dist and DistUP on these
WPMS benchmarks. Experiments comparing CCEHC with
a state-of-the-art complete solverWPM-2014 show the effec-
tiveness of CCEHC on random, crafted instances and many
WPMS instances based on real-world applications. Also, we
conduct empirical evaluations to study the combination of
CCEHC and the unit propagation initialization.
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