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Abstract
The options framework provides a concrete way to
implement and reason about temporally extended
actions. Existing literature has demonstrated the
value of planning with options empirically, but
there is a lack of theoretical analysis formalizing
when planning with options is more efficient than
planning with primitive actions. We provide a gen-
eral analysis of the convergence rate of a popu-
lar Approximate Value Iteration (AVI) algorithm
called Fitted Value Iteration (FVI) with options.
Our analysis reveals that longer duration options
and a pessimistic estimate of the value function
both lead to faster convergence. Furthermore, op-
tions can improve convergence even when they are
suboptimal and sparsely distributed throughout the
state space. Next we consider generating useful op-
tions for planning based on a subset of landmark
states. This suggests a new algorithm, Landmark-
based AVI (LAVI), that represents the value func-
tion only at landmark states. We analyze OFVI and
LAVI using the proposed landmark-based options
and compare the two algorithms. Our theoretical
and experimental results demonstrate that options
can play an important role in AVI by decreasing ap-
proximation error and inducing fast convergence.

1 Introduction
We consider planning in Markov Decision Processes (MDPs;
[Puterman, 1994], see Section 2) with large or infinite state-
spaces. Traditional planning algorithms, such as Value Itera-
tion (VI) and Policy Iteration (PI), are intractable in this set-
ting because the computational and memory complexities at
each iteration scale (polynomially and linearly, respectively;
[Littman et al., 1995]) with the number of states in the tar-
get MDP. Approximate Value Iteration (AVI) algorithms are
more scalable than VI, because they compactly represent the
value function [Bertsekas and Tsitsiklis, 1996]. This allows
AVI algorithms to achieve per iteration computational and
memory complexities that are independent of the size of the

∗This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [Mann et al., 2015].

state-space. However, there are many challenges to using AVI
algorithms in practice. AVI and VI often need many iterations
to solve the MDP [Munos and Szepesvári, 2008]. It turns out
that temporally extended actions can play an important role
in reducing the number of iterations.

Options are a unified abstraction for representing both tem-
porally extended actions and primitive actions [Sutton et al.,
1999]. Options provide a valuable tool for efficient plan-
ning [Sutton et al., 1999; Silver and Ciosek, 2012]. Under
most analyses of AVI, one iteration corresponds to planning
one timestep into the future. On the other hand, perform-
ing a single iteration of AVI with temporally extended ac-
tions, one iteration could instead correspond to planning sev-
eral timesteps into the future. We derive bounds that help
us reason about when AVI with temporally extended actions
converges faster than AVI with only primitive actions.
Motivation: We focus on analyzing the convergence rate of
AVI with options, because a faster convergence rate implies
a solution with fewer iterations. Using the convergence rate
we can determine the total computational cost of planning by
bounding the computational cost at each iteration. If the total
computational cost with options is smaller than with primitive
actions, planning with options is faster than planning with
primitive actions.
Contributions: The main contributions of this paper are
the following: (1) We analyze Options Fitted Value Iteration
(OFVI) in Theorem 1, characterizing the asymptotic loss and
the convergence behavior of planning with a given set of op-
tions. (2) We analyze the asymptotic loss and convergence
behavior of Landmark-based Approximate Value Iteration
(LAVI) in Theorem 2. Comparing the bounds of LAVI and
OFVI suggests that LAVI may converge faster than OFVI.
However, their asymptotic losses are not directly compara-
ble. (3) Our experimental comparison in a complex inventory
management problem demonstrates that LAVI achieves a fa-
vorable performance versus time trade-off.

2 Background
An MDP is defined by 〈X,A, P,R, γ〉 [Puterman, 1994]
where X is a set of states, A is a finite set of primitive ac-
tions, P maps from state-action pairs to probability distribu-
tions over states, R is a mapping from state-action pairs to
reward distributions bound to the interval [−RMAX, RMAX],
and γ ∈ [0, 1) is a discount factor. Let B(X;VMAX) denote
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the set of functions with domain X and range bounded by
[−VMAX, VMAX] where VMAX ≤ RMAX

1−γ .
A policy π : X → A is a mapping from states to ac-

tions. We denote the value function for π by V π , the Bell-
man operator by T π , and the Bellman optimality operator by
T . Value Iteration (VI) is defined by repeatedly applying T .
The algorithm produces a series of value function estimates
V0, V1, V2, . . . , VK and the greedy policy πK is constructed
based on VK .
Approximate Value Iteration (AVI): iteratively produces a
sequence of K ≥ 1 approximations {Vk}Kk=1 of the optimal
value function and returns a greedy policy πK with respect to
the final iterate VK .
Semi-Markov Decision Processes (SMDPs): are a general-
ization of the Markov Decision Process (MDP) model that
incorporates temporally extended actions. For each state
x ∈ X , we denote the set of options [Sutton et al., 1999] that
can be initialized from x by Ox = {o ∈ O | x ∈ Io}. Op-
tions encompass, not only primitive actions and temporally
extended actions, but also stationary policies and other con-
trol structures. Here we take actions to be options that always
terminate after a finite number of timesteps.

For an option o = 〈Io, πo, βo〉, we denote the probability
that o is initialized from a state x and terminates in a subset of
states Y ⊆ X in exactly t timesteps by P ot (Y |x). We denote
the SMDP Bellman operator by T.

3 AVI Algorithms
Options Fitted Value Iteration (OFVI): is a generaliza-
tion of the multisample FVI algorithm to the case where
samples are generated by options. We refer to the special
case of OFVI with primitive actions as PFVI. The algo-
rith takes as arguments positive integers n,m,K, µ a sam-
pling distribution, an initial value function estimate V0, and
a simulator S. At each iteration k = 1, 2, . . . ,K , states
xi ∼ µ for i = 1, 2, . . . , n are sampled, and for each option
o ∈ Oxi

, m next states, rewards, and option execution times
〈yoi,j , roi,j , τoi,j〉 ∼ S(xi, o) are sampled for j = 1, 2, . . . ,m.
Then the update resulting from applying the Bellman oper-
ator to the previous iterate Vk−1 is estimated by V̂k(xi) ←
maxo∈Oxi

1
m

∑m
j=1

[
roi,j + γτ

o
i,jVk−1(yoi,j)

]
, and we apply

a supervised learning algorithm to obtain the best fit. The
given simulator S differs from the simulator for PFVI. It re-
turns the state where the option returned control to the agent,
the total cumulative, discounted reward received during exe-
cution, and the number of timesteps that the option executed.
Landmark-based AVI: One limitation of planning with op-
tions is that options typically need to be designed by an ex-
pert. In this section, we consider an approach similar in spirit
to the successful FF-Replan algorithm [Yoon et al., 2007],
which plans on a deterministic projection of the target MDP.
The algorithm replans whenever the agent enters a state not
in the current plan. Unlike FF-Replan, our approach is more
scalable as it does not plan over the entire problem. We argue
for using landmark-based options where the designer speci-
fies a collection of landmark regions and creates options by
planning a path from one landmark region to another. For this

algorithm, we only maintain value estimates for a finite set of
landmark points.
Landmark-based OFVI: It is also possible to consider using
landmark-based options with OFVI. We refer to the result-
ing case of the algorithm as Landmark-based Options Fitted
Value Iteration (LOFVI).

OFVI Analysis
Our approach is based on a contraction mapping argument.
By applying the MDP Bellman operator T to V , we obtain a
contraction mapping where γ (the discount factor) serves as
the contraction coefficient. Smaller values of γ imply a faster
convergence rate, but γ is part of the problem description and
cannot be changed. However, if we apply T , τ > 1 times,
we obtain a contraction mapping where the contraction coef-
ficient is γτ < γ. Temporally extended options have a similar
effect. Options can speed up the convergence rate by inducing
a smaller contraction coefficient.

Options with a long duration are desirable for planning be-
cause options that execute for many timesteps enable OFVI
to look far into the future during a single iteration. How-
ever, the duration depends on both an option and the state
where the option is initialized. We denote by Do

x,Y the
random variable representing the duration of initializing op-
tion o from state x and terminating in Y ⊆ X . For a
set of options O, we define the minimum duration to be
dmin = min

x∈X,o∈Ox

infY⊆X E
[
Do
x,Y

]
.

The duration of an option is a random variable that depends
on the state where the option was initialized. This compli-
cates the analysis compared to assuming that all temporally
extended actions terminate after a fixed number of timesteps,
but it allows for much greater flexibility when selecting op-
tions to use for planning.

Similar to the analysis of PFVI, the analysis of OFVI de-
pends on the concentrability of future state distributions. We
denote this coefficient by Cν,µ and assume it is finite. This
assumption is analogous to the concentrability coefficient as-
sumption from [Munos and Szepesvári, 2008]. Despite the
fact that options are a more general framework than the set of
primitive actions, the concentrability coefficient for tempo-
rally extended actions is smaller than the coefficient for prim-
itive actions.

The important properties of temporally extended actions
that cause faster convergence are (1) the quality of the policy
they follow, and (2) how long the action executes for (or its
duration). The following definition describes the set of states
where there exists an option that follows a near-optimal pol-
icy and has sufficient duration.

We define the set ωα,d to be states with particularly long
duration and follow an α-optimal policy. However, the states
outside of ωα,d do not. At these other states, either the avail-
able options are not sufficiently temporally extended or they
follow a suboptimal policy. To obtain faster convergence, we
need a way of connecting the convergence rates of the states
outside of ωα,d with the convergence rates of the states in
ωα,d.

Assumption 1. [A1(α, d, ψ, ν, j)] Let α,ψ, j ≥ 0,
d ≥ dmin, and ν ∈ M(X). For any m ≥ 0 option
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policies ϕ1, ϕ2, . . . , ϕm, let ρ = νPϕ1Pϕ2 . . . Pϕm .
There exists an α-optimal option policy ϕ̂ such
that either (1) Prx∼ρ [x ∈ ωα,d] ≥ 1 − ψ or (2)
∃i∈{1,2,...,j} Pry∼ηi [y ∈ ωα,d] ≥ 1 − ψ where

ηi = νPϕ1Pϕ2 . . . Pϕm
(
P ϕ̂
)i

for i = 1, 2, . . . , j.

Assumption 1 points out three key features that impact
planning performance with options: (1) Quality of the op-
tion set controlled by α, (2) Duration of options specified by
d, and (3) Sparsity of ωα,d characterized by j and ψ.

We call ϕ̂ the “bridge” policy, because it bridges states in
ωα,d and other states. Notice that we do not assume that the
planner has any knowledge of ϕ̂. It is enough that such a
policy exists. Assumption 1 says that no matter what policies
are followed, either (1) the agent will end up in ωα,d with high
probability or (2) there exists a near-optimal option policy
that will transport the agent to ωα,d in at most j timesteps
with high probability. This enables us to account for problems
where only a few states have temporally extended actions, but
these states can be reached quickly without following a policy
that is too suboptimal.

The following theorem provides a comprehensive descrip-
tion of the convergence behavior of OFVI (with PFVI as a
special case where O = A).

Theorem 1. Let εS , δ > 0, α,ψ, j ≥ 0, K, p ≥ 1,
d ≥ dmin, 0 ≤ Z ≤ K, and ν, µ ∈ M(X). Suppose that
A1(α, d, ψ, ν, j) (Assumption 1) holds and Cν,µ <∞. Given
V0 ∈ B(X,VMAX), if the first Z iterates {Vk}Zk=0 produced
by the algorithm are pessimistic (i.e., Vk(x) ≤ V Φ∗

(x) for
all x ∈ X), then there exists positive integers n and m such
that when OFVI is executed,

‖V ∗ − V ϕK‖p,ν ≤ ‖V ∗ − V Φ∗
‖p,ν

+
2γdmin

(1− γ)2
C1/p
ν,µ (bp,µ(TF ,F) + α) + εS

+
(
γdmin(K+1)+(1−ψ)(d−dmin)bZ/ĵc

)1/p
(

2
∥∥V Φ∗ − V0

∥∥
∞

(1− γ)2

)
(1)

holds with probability at least 1 − δ where Φ∗ is the optimal
option policy with respect to the given options O and ĵ =
j + 1.

Theorem 1 bounds the loss of the option policy ϕK re-
turned after performing K ≥ 1 iterations of value iteration
with respect to a (p, ν)-norm. The distribution ν can be
thought of as an initial state distribution. It places more prob-
ability mass on the regions of the state space where we want
the policy ϕK to have the best performance. The value of
p ≥ 1 is generally determined by the function approximation
procedure. For p = 1, the function approximation procedure
minimizes the L1-norm and for p = 2, the function approxi-
mation procedure minimizes the L2-norm.

The right hand side of (1) contains four terms.

1. The first term bounds the abstraction loss, which is the
loss between the optimal policy over primitive actions
and the optimal option policy.

2. The second term bounds the approximation error, which
is the error caused by the inability of the function ap-
proximation architecture to exactly fit V̂k(xi) during
each iteration and α which shows up in this term is
due to bootstrapping off options that follow α-optimal
policies to gain faster convergence. Notice that γdmin

(1−γ)2

shrinks as dmin grows. Thus option sets with longer min-
imum duration shrink the approximation error.

3. The third term εS is the sample error, which is controlled
by the number of samples taken at each iteration.

4. The last term controls the convergence error. Notice
that γ, the discount factor, is in [0, 1) and therefore the
last term shrinks rapidly as its exponent grows. While
OFVI does not actually converge in the sense that the
loss may never go to zero, this last term goes to zero as
K →∞. In the worst case, the convergence rate is con-
trolled by γdmin(K+1), but the convergence rate can be
significantly faster if Z and d are large and j is small.

An iterate V̂ : X → R is pessimistic if ∀y∈X V̂ (y) ≤
V Φ∗

(y) , where Φ∗ is the optimal option policy. Whether
iterates are pessimistic (or not) has a critical impact on the
convergence rate of OFVI. To understand why, suppose that
q ∈ Ox is an option that can be initialized from a state
x ∈ X where q is α-optimal with respect to Φ∗ (i.e.,
QΦ∗

(x, q) ≥ V Φ∗
(x) − α) and has a long duration (at least

d timesteps). Since T is known to be a monotone operator,
V Φ∗

(x) ≥ (TV̂ )(x), even if an option other than q was se-
lected for the update, (TV̂ )(x) is at least as close to V Φ∗

(x)
as if q was selected. This allows us to prove that when the
iterates are pessimistic, the convergence rate of OFVI is rapid
(depending on d). Unfortunately, when the iterates are not
pessimistic, this reasoning no longer holds and convergence
may depend on options with duration dmin instead.

Using Theorem 1 it is possible to prove convergence rates
of OFVI on a wide range of planning problems. See the corol-
laries to Theorem 1 in [Mann et al., 2015] for more details.

LAVI Analysis
We provide a theoretical analysis of LAVI along two dimen-
sions. (1) We bound the loss associated with policies returned
by LAVI compared to the optimal policy over primitive ac-
tions, and (2) we analyze the convergence rate of LAVI.
Theorem 2. (LAVI Convergence) Let εS > 0, δ ∈ (0, 1].

There exists m = O
(

1
(εS(1−γ)2(1−γdmin ))2

ln
(
LK
δ

))
such

that with probability greater than 1 − δ, if LAVI is executed
for K ≥ 1 iterations, the greedy policy ϕK derived from VK
satisfies

‖V ∗ − V ϕK‖1,ν ≤
(

2(εL + εP)

1− γd̂min

+ εR

)
+ ε̃+ εS

+ γ(K+1)dmin

(∥∥V Φ∗

M − V0

∥∥
L

1− γdmin

)
, (2)

where ε̃ =
(

γdmin

1−γdmin

)(
1 + (1−ψ)γdmin

1−γdmin

)
(ψVMAX + (1− ψ)εH)

and d̂min and dmin are the minimum duration of any
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Figure 1: (a) Comparison of performance of the first and last policies derived by PFVI, OFVI, and LAVI. (b) Comparison of time per iteration
in seconds. Results were averaged over 20 trials. Error bars represent ±1 standard deviation.

landmark-option pair in M̂ and M , respectively.

Herem controls the amount of sampling LAVI does at each
landmark state. The first four terms on the right hand side of
(2) describe the worst case loss of the policy derived by LAVI
as K → ∞. εL is the landmark error and εP is the planning
error. The first term corresponds to the error associated with
the choice of landmarks and using a suboptimal local planner.
If LAVI uses an optimal local planner, such as A∗, then εP =
0. The second term εR is the relaxation error. ε̃ is controlled
by the stochastic plan failure ψ and local Lipschitz error εH .
If both, ψ and εH are small then ε̃ will be small. In addition,
longer duration options (i.e., larger dmin) decreases ε̃. The
sample error εS is decreased by increasing m. See [Mann et
al., 2015] for formal definitions of each term.

The last term is the convergence rate. γdmin is smaller than
γ, indicating a faster convergence rate than PFVI [Munos and
Szepesvári, 2008; Mann and Mannor, 2014]. dmin is con-
trolled by the minimum time between landmark regions. So
convergence is faster when the landmarks provide greater mo-
bility throughout the state-space.

4 Experiments and Results
We compared PFVI, OFVI, LAVI, and LOFVI in an eight
commodity inventory management problem [Mann and Man-
nor, 2014]. We simulated options by simulating individual
primitive actions, until the selected option terminates or a
maximum number of timesteps (100 in our experiments) oc-
curs. This potentially places options-based planning meth-
ods at a disadvantage. Nevertheless, our experiments provide
strong evidence that options can speed up the convergence
rate of planning, which leads to a smaller time-to-solution.

All experiments were implemented in Java and executed
using OpenJDK 1.7 on a desktop computer running Ubuntu
12.04 64-bit with an 8 core Intel Core i7-3370 CPU 3.40GHz
and 8 gigabytes of memory.

In a basic inventory management task, the objective is to
maintain stock of one or more commodities to meet customer

demand while at the same time minimizing ordering costs and
storage costs [Scarf, 1959; Sethi and Cheng, 1997]. At each
time period, the agent is given the opportunity to order ship-
ments of commodities to resupply its warehouse. See [Mann,
2014] for implementation details of the cyclic inventory man-
agement problem used in these experiments. See [Mann et
al., 2015] for details on function approximation and how we
created hand-crafted options.

Figure 1a compares the performance of a policy that selects
primitive actions uniformly at random and policies derived
from the first and last iterates of PFVI, OFVI, LOFVI, and
LAVI. In this task, LAVI outperforms PFVI and OFVI after
on its first iteration, while LOFVI ultimately has higher per-
formance. Figure 1b compares the time per iteration in sec-
onds of PFVI, OFVI, LOFVI, and LAVI. In this task, LAVI
is significantly faster than PFVI, OFVI, and LOFVI.

5 Discussion
Option discovery has been investigated extensively, and many
approaches explore heuristics related to finding useful sub-
goals [McGovern and Barto, 2001; Simsek and Barto, 2004;
Stolle and Precup, 2002; Wolfe and Barto, 2005], which is
similar in spirit to finding landmarks. In all of these ap-
proaches, however, the emphasis is on finding only useful
subgoals. Our analysis provides instead a way to use any
arbitrary set of landmarks, and quantify the quality of the ob-
tained policy. Because of this less careful approach in select-
ing landmarks, and because of the use of local planning on a
deterministic problem, the scalability of LAVI is significantly
better, especially in high-dimensional problems.
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