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Abstract

A qualitative representation of space and/or time
provides mechanisms that characterize the essential
properties of objects or configurations. The advan-
tages over quantitative representations can be: (1) a
better match with human concepts related to natu-
ral language, and (2) better efficiency for reasoning.
The two main trends in qualitative spatial constraint
reasoning are topological reasoning about regions
and reasoning about directions between points and
straight lines and orientations of straight lines or
configurations derived from points. In this work,
we apply universal algebraic tools to binary quali-
tative calculi and their relations.

1 Introduction
In constraint-based reasoning about spatial configurations,
typically a partial initial knowledge of a scene is represented
in terms of qualitative constraints between spatial objects.
Implicit knowledge about spatial relations is then derived by
constraint propagation. See [Ligozat, 2011] for an overview
and references. In this work, we apply universal algebraic
tools to binary qualitative calculi and demonstrate that two
calculi expressing related features but on different levels of
granularity can often be connected via homomorphisms1.

2 Relation Algebras for Spatial Reasoning
Standard methods developed for finite domains generally
do not apply to constraint reasoning over infinite domains.
The theory of relation algebras [Ladkin and Maddux, 1994;
Maddux, 2006] allows for a purely symbolic treatment of
constraint satisfaction problems involving relations over in-
finite domains. The corresponding constraint reasoning tech-
niques were originally introduced by [Montanari, 1974], ap-
plied for temporal reasoning [Allen, 1983] and later proved
to be valuable for spatial reasoning [Renz and Nebel, 1999;
Isli and Cohn, 2000]. The central data for a binary calculus is
given by:

1Full details and proofs can be found in the full version of our
paper [Mossakowski and Moratz, 2015].

• a list of (symbolic names for) base-relations, which are
interpreted as relations over some domain, having the
crucial “JEPD” properties of joint exhaustiveness and
pairwise disjointness (a general relation is then simply
a union of base-relations).
• a table for the computation of the converses of relations.
• a table for the computation of the compositions of rela-

tions.
Then, the path consistency algorithm [Montanari, 1974] and
backtracking techniques [van Beek and Manchak, 1996] are
the tools used to tackle the problem of consistency of con-
straint networks and related problems. The mathematical
background of composition in table-based reasoning is given
by the theory of non-associative algebras [Maddux, 2006;
Ligozat and Renz, 2004], where relations algebras are gener-
alised by dropping associativity. These algebras treat spatial
relations as abstract entities (independently of any domain)
that can be combined by certain operations and governed by
certain equations.

When providing examples, it is easier to start with parti-
tion schemes [Ligozat and Renz, 2004; Mossakowski et al.,
2006]. A partition scheme partitions the set of binary rela-
tions over a given set U . It leads to a non-accosivateive al-
gebra, using weak composition, a symbolic approximation of
set-theoretic composition.
Example 1. The most prominent temporal calculus is Allen’s
interval algebra IA [Allen, 1983], which describes possible
relations between intervals in linear flows of time2. An inter-
val is a pair (s, t) of real numbers such that s < t. This leads
to 13 basic relations between such intervals.
Example 2. The CYCb calculus [Isli and Cohn, 2000] is
based on the domain CYC = {φ | −π < φ ≤ π} of cyclic
orientations. Equivalently, these angles can be represented as
oriented straight lines containing the origin of the 2D Euclid-
ian plane associated with a reference system. Using this latter
representation, Fig. 1 depicts the four base-relations r, l, o, e
(e.g. “right”, “left”, “opposite”, “equal”) of CYCb.
Example 3. The OPRAn calculus [Moratz, 2006; ?] is
based on the domain OP = {(p, φ) | p ∈ R2,−π < φ ≤ π}

2There is also a spatial interpretation of the Allen calculus in
which the intervals are interpreted as one-dimensional spatial enti-
ties
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Figure 1: CYCb relations. “A r B” means “B is right of A”.

of oriented points in Euclidean plane. An oriented point con-
sists of a point and an angle serving as its orientation. The
full angle is divided using n axes, leading to 4n regions, see
Fig. 2. If the points of A and B differ, the relation A m∠j
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(i, j ∈ Z4m
3) reads like this: given a granularity m, the rel-

ative position of B with respect to A is described by i and
the relative position of A with respect to B is described by j.
If the points of A and B coincide, the relation A m∠i B ex-
presses that the difference between B’s and A’s orientations
(angles) is in region i.
Example 4. The OPRA∗

m calculus [Dylla, 2008] is simi-
lar to OPRAm. Here, we concentrate on OPRA∗

1. The
important extension is a refinement that is applied to the rela-
tions 1∠3

3, 1∠1
3, 1∠1

1, and 1∠3
1. These relations are refined by

marking them with letters ’+’ or ’−’, ’P’ or ’A’, according to
whether the two orientations of the oriented points are posi-
tive, negative, parallel or anti-parallel. Altogether, we obtain
a set of 28 base-relations.
Example 5. A dipole is a pair of distinct points in the Eu-
clidean plane. Before explaining dipole-dipole relations, we
first study dipole-point relations. We distinguish between
whether a point lies to the left, to the right, or at one of five
qualitatively different locations on the straight line that passes
through the corresponding dipole. Using these seven possible
relations between a dipole and a point, the relations between
two dipoles may be specified according to the following con-
junction of four relationships:

A R1 sB ∧A R2 eB ∧B R3 sA ∧B R4 eA,
4

where Ri ∈ {l, r, b, s, i, e, f} with 1 ≤ i ≤ 4. The formal
combination gives us 2401 relations, out of which 72 rela-
tions are geometrically possible. These constitute the DRAf

3Z4m is the residue ring; for simplicity, we set Z4m =
{0, . . . , 4m− 1}.

4Note that e.g. A r sB reads “sB is to the right of A”.

calculus [Moratz et al., 2000; 2011]. There is a refinement of
DRAf , called DRAfp , with additional distinguishing fea-
tures due to parallelism which are analogous to those for
OPRA∗

1.

3 Granularity and Homomorphisms
The presented calculi offer the possibility to describe scenes
on different levels of granularity. The granularity of a descrip-
tion is the context-dependent selection of an adequate level of
detail in the description [Hobbs, 1985]. In this paper we deal
with granularity in the form of modality changes. In previous
work we also dealt with granularity parameters dealing with
scale of resolution even enabling the representation of qual-
itative shape [Dorr et al., 2015; Moratz and Wallgrün, 2014;
Dorr and Moratz, 2017]. Granularity plays a key role in hu-
man strategies to deal with the complexity of the spatial fea-
tures of the real world. This is demonstrated nicely by an
example from Hobbs (1985). In his example he points out
that humans conceptualize streets as one-dimensional entities
when they plan a trip, they use a two-dimensional conception
when they cross a street. And in contexts where the pavement
has to be dug up the street becomes a three-dimensional vol-
ume. The key importance of mechanisms to flexibly switch
and translate between granularities for successful reasoning
about the world is highlighted by the following quote from
Hobbs (1985, p. 432):

Our ability to conceptualize the world at differ-
ent granularities and to switch among these granu-
larities is fundamental to our intelligence and flex-
ibility. It enables us to map the complexities of the
world around us into simple theories that are com-
putationally tractable to reason in.

Imagine a scenario involving ships and their relative posi-
tions in the open sea (see Fig. 3). Ships can be modelled
as elongated, directed entities neglecting their width or any
other shape property. The resulting DRAfp representation
uses a single dipole for each ship to be represented (see left
part of Fig. 3). In the OPRA∗

1 representation in addition
even the lengths of the ships are neglected (see middle part
of Fig. 3). The CYCb representation abstracts away the dif-
ferent locations of the ships and only focuses on their relative
orientation (see right part of Fig. 3).

In another example ships are represented with DRAfp in
such a way that the start point corresponds to the position of
the ship and the end point represents its current speed. More
specifically, the end point denotes the future position after
one minute travel (if speed and heading were constant). Then
longer arrows represent faster ships in a diagram. When we
have an alternative representation in OPRA∗

1, in this rep-
resentation we might only focus on location and heading of
the ships and abstract away from the their speed. Then sev-
eralDRAfp relations in one representation map onto a single
OPRA∗

1 relation in the alternative representation. For exam-
ple the three relations {flll, ells, illr} are mapped to 1∠1

0 (see
Fig. 5).

If different spatial calculi can be used to represent a given
spatial situation at different levels of granularity, the relation
between the calculi can typically be formalized as a quotient
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abstraction from locationabstraction from lengthabstraction from shape

Figure 3: Modelling relative ship directions on different levels of granularity with DRAfp , OPRA∗
1, and CYCb.

IA DRAfp OPRA?
1 CYCb

DRAf OPRA1 OPRAn OPRAn·m

(proper, oplax) (full, proper)
(proper, proper)

(proper, oplax)

(full, oplax)

(full, proper) (full, oplax)(full, oplax)

(full, oplax)

Figure 4: Homomorphisms among various calculi.

Figure 5: In a quotient homomorphism between DRAfp and
OPRA∗

1 the three relations {flll, ells, illr} are mapped to
1∠1

0.

homomorphism. Figure 5 exemplifies the action of a quotient
homomorphism. Homomorphisms also arise in other con-
texts, e.g. as embeddings of a smaller calculus into a larger
one (for example, Allen’s interval algebra can be embedded
into DRAfp).

We now study homomorphisms in general. They are a
means for the examination of relationships among calculi.
Often, conceptual relations between different calculi and
their domains can be formalised as homomorphism, and vice
versa, if one has found a homomorphism, then often there is
also some conceptual relation behind it.

Homomorphisms can also be used to transfer properties
(like strength of composition, or algebraic closure deciding
consistency) from one calculus to another one, see Proposi-
tions 8, 9, 18 and 23 below. Using homomorphisms, it is also
possible to find errors in composition tables (we discovered
errors in 197 entries of the composition table ofOPRA∗

1, see
Example 17 below).

Homomorphisms have been studied in [Ligozat and Renz,
2004; Ligozat, 2005; 2011] (mainly under the name of repre-
sentations). We here introduce a more systematic treatment
of homomorphisms. For non-associative algebras, we recall
and refine the weaker notion of lax homomorphisms [Moratz
et al., 2009; Lücke, 2012], which allow for both the embed-
ding of a calculus into its domain, as well as relating several
calculi to each other. Dually to lax homomorphisms, we can
define oplax homomorphisms, which enable us to define pro-
jections from one calculus to another.
Definition 6 (Lax homomorphism, [Moratz et al., 2009;
Lücke, 2012]). Given non-associative algebras A and B, a
lax homomorphism is a homomorphism h : A −→ B on the
underlying Boolean algebras such that:
• h(∆A) ≥ ∆B

• h(a`) = h(a)` for all a ∈ A
• h(a � b) ≥ h(a) � h(b) for all a, b ∈ A
A lax homomorphism between complete atomic non-

associative algebras is called semi-strong [Mossakowski et
al., 2006] if for atoms a, b

a � b =
∨
{c | (h(a) � h(b)) ∧ h(c) 6= 0}

This notion has been inspired by the definition of weak com-
position and will be used for representation homomorphisms
of qualitative calculi.
Definition 7 (Oplax homomorphism, [Moratz et al., 2009;
Lücke, 2012]). Given non-associative algebras A and B, an
oplax homomorphism is a homomorphism h : A−→B on the
underlying Boolean algebras such that:
• h(∆A) ≤ ∆B

• h(a`) = h(a)` for all a ∈ A
• h(a � b) ≤ h(a) � h(b) for all a, b ∈ A
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A homomorphism is full iff it fully induces the structure on
its direct image.

A proper homomorphism (sometimes just called a homo-
morphism) of non-associative algebras is a homomorphism
that is lax and oplax at the same time; the above inequalities
then turn into equations. Each proper homomorphism is also
full. A proper injective homomorphism is also semi-strong.

An oplax homomorphism of non-associative algebras is
said to be a quotient homomorphism if it is full and surjec-
tive. We have then the following facts:
Proposition 8. Proper quotient homomorphisms preserve the
holding of equations, in particular, associativity.
Proposition 9. Given a quotient homomorphism q : A→ B,
B’s converse and composition tables can be computed from
those for A, using q.

A first sample use of homomorphism is the embedding of
Allen’s interval relations [Allen, 1983] into DRAfp via a ho-
momorphism.
Proposition 10 ([Moratz et al., 2011]). There is a proper ho-
momorphism from Allen’s interval algebra to DRAfp .

Another important application of homomorphisms is their
use in the definition of a qualitative calculus. [Ligozat and
Renz, 2004] define a qualitative calculus in terms of a so-
called weak representation [Ligozat, 2005; 2011]: A weak
representation ϕ : A → P(U × U) is an identity-preserving
and converse-preserving lax homomorphism ϕ from a com-
plete atomic non-associative algebra A into the powerset-
relation algebra of a domain U .
Definition 11. Given weak representations ϕ : A → P(U ×
U) and ψ : B → P(V×V), a ∈ {lax, oplax, full, proper} and
b ∈ {lax, oplax, proper}, an (a,b)-homomorphism of weak
representations (h, i) : ϕ→ ψ is given by
• an a-homomorphism of non-associative algebras
h : A→ B, and
• a map i : U → V , such that ψ ◦ h = P(i× i) ◦ ϕ if b is

proper (or ≤, ≥ instead of = if b is lax, oplax).
Example 12. The homomorphism from Prop. 10 can be ex-
tended to a (proper, proper) homomorphism of weak repre-
sentations by letting i be the embedding of time intervals to
dipoles on the x-axis.

A quotient homomorphism of weak representations is a
(full,oplax) homomorphism of weak representations that is
surjective in both components.

Given a weak representation ϕ : A → P(U × U) and an
equivalence relation ∼ on U that is a congruence for _` we
obtain a quotient representation ϕ/∼. Under certain condi-
tions, we can show that the quotient algebra indeed is a non-
associative algebra. Under suitable conditions, we obtain a
(full, oplax) quotient homomorphism of semi-strong repre-
sentations.
Example 13. CYCb is a quotient ofOPRA∗

1. At the level of
domains, it acts as follows: an oriented point (p, φ) is mapped
to the orientation φ (the point p is forgotten).
Example 14. DRAf (as a weak representation) is a quotient
of DRAfp . It is obtained by forgetting the labels ’+’, ’-’, ’P’
and ’A’.

Example 15. OPRAn is a quotient of OPRAn·m.
In [Dylla et al., 2013], we show that OPRA1 to OPRA8

are not associative. By Prop. 8 and Ex. 15, this carries over to
any OPRAn.
Example 16. OPRA1 is a quotient of OPRA∗

1. It forgets
the labels ’+’, ’-’, ’P’ and ’A’.
Example 17. OPRA∗

1 is a quotient of DRAfp , by keeping
start point and direction, but forgetting the end point.

By Prop. 9, the construction of OPRA∗
1 as a quotient al-

lows us the computation of the converse and composition ta-
bles by applying the congruence relations to the tables for
DRAfp . Actually, we have compared the result of this pro-
cedure with the composition table for OPRA∗

1 published
by [Dylla, 2008] and provided with the tool SparQ [Wall-
grün et al., 2009]. In the course of checking the full oplax-
ness property of the quotient homomorphism fromDRAfp to
OPRA∗

1, we discovered errors in 197 entries of the compo-
sition table of OPRA∗

1 as it was shipped with the qualitative
reasoner SparQ. The table has been corrected accordingly in
the meantime.5

Proposition 18. Quotient homomorphisms of weak represen-
tations that are bijective in the second component preserve
strength of composition.

Corollary 19 ([Moratz et al., 2009; Lücke, 2012]). Compo-
sition in OPRA∗

1 is strong.

Corollary 20. Composition in CYCb is strong.

Altogether, we get the diagram of calculi (semi-strong rep-
resentations) and homomorphisms in Fig. 4.

Finally, important properties of qualitative calculi can be
transfered along suitable homomorphisms:
Proposition 21. Given non-associative algebras A and B,
an oplax homomorphism h : A −→ B preserves algebraic
closure. An injective lax homomorphism reflects algebraic
closure.

Proposition 22. (_,oplax) homomorphisms of weak represen-
tations preserve solutions for scenarios.

Proposition 23. Atomic (lax,oplax) homomorphisms (h, i) of
weak representations with injective h preserve the following
property to the image of h:

Algebraic closure decides scenario-consistency.

5See https://github.com/dwolter/SparQ/
commit/89bebfc60a and https://github.com/
dwolter/SparQ/commit/dad260edd9.
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