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Abstract
We examine theoretical properties of value of infor-
mation (VOI) in the selection problem, and identify
cases of submodularity and supermodularity. We
use these properties to compute approximately op-
timal measurement batch policies, implemented on
a “wine selection problem” example.

1 Introduction
Given a set of items of unknown utility (drawn from a known
distribution), we need to select an item with as high a util-
ity as possible. Measurements of item values prior to selec-
tion are allowed, at a known cost. The problem is to opti-
mize the decision process of measurement and selection. The
selection problem is intractable, but has numerous applica-
tions [Tolpin and Shimony, 2012; Radovilsky et al., 2006;
Radovilsky and Shimony, 2008]. We analyze cases where the
value of information (VOI) is submodular, which guarantees
that greedy algorithms achieve good approximate solutions.

The selection problem is applicable in meta-reasoning
[Russell and Wefald, 1991b; 1991a; Hay et al., 2012], as well
as settings where the items to be selected are physical ob-
jects. Examples of the latter type are: oil exploration, finding
a good set of parameters for setting up an industrial imag-
ing system [Tolpin and Shimony, 2012], and selecting exper-
iments to be performed [Azimi et al., 2016].

A widely adopted scheme for selecting measurements
(sensing actions in some contexts, or deliberation steps in
meta-reasoning) uses value of information (VOI) [Russell and
Wefald, 1991b; 1991a]. Optimizing value of information is
intractable in general, thus both researchers and practitioners
often use various forms of myopic VOI estimates [Russell and
Wefald, 1991b; 1991a; Hay et al., 2012] coupled with greedy
search. Submodularity is an important property, because if
the VOI is submodular, simple, greedy algorithms result in
provably near-optimal policies [Krause and Guestrin, 2009;
2011; Papachristoudis and Fisher III, 2012]. However, as
stated in [Krause and Guestrin, 2009], the VOI is not sub-
modular in general [Tolpin and Shimony, 2012].

Specifically, the selection problem analyzed in this paper
is as follows. We have a set of items I, each of which
has some unknown value (or utility). The item utilities
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are random variables with a known joint distribution. It is
possible to perform measurements on an item, thereby ob-
taining information about its utility. Measurements have a
cost, specified by a known cost function C, which is usu-
ally an additive cost function. After performing measure-
ments, the decision-maker selects one item. We assume a
risk-neutral decision-maker, thus the decision maker always
selects an item that has the highest expected utility given
the observations. The problem is to find a policy of per-
forming measurements such that the utility of the selected
item minus the cost of measurements has a maximum ex-
pected value. In some settings [Tolpin and Shimony, 2012;
Azimi et al., 2016], a measurement budget is also specified,
and a policy is considered valid only if this budget is not ex-
ceeded. Some budgeted applications [Azimi et al., 2016] op-
timize just the expected value of the selection (not factoring
in the measurement costs), subject to the budget constraint.

There are two common selection problem settings: batch,
and online (also called sequential, or conditional). In the
online setting, the decision-maker may decide on measure-
ments based on information from previous measurements. In
the batch setting, the decision-maker the decision-maker does
not get to perform additional measurements after receiving
observations. In this paper we consider only the batch set-
ting, wherein the VOI is the expected value of the best item
given the observations, minus the expected value of the best
item according to the initial (prior) distribution. That is, be-
fore receiving the information, there is some item that has the
best expected value, which we call the “current best” item
α. After receiving the observations O, some other item β(O)
may have the highest expected value. The expected value of
the difference uβ(O) − uα is the value of information (VOI).
Note that both the identity of the resulting best item β and its
utility depend onO. In the batch setting with perfect observa-
tions, the distribution over the observed values is equal to the
utility distribution of the respective item. Thus finding an op-
timal policy can be done by finding a set of measurements S
to perform that has the highest expected VOI minus cost (also
called the net VOI). In this paper, we consider mostly the case
of perfect observations, i.e. where as a result of performing
a measurement on an item, its precise utility value becomes
known. In general, measurements can generate noisy (imper-
fect) observations. We briefly point out the cases where our
results can be extended beyond perfect observations.
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The theoretical results in this paper (Section 2) examine
the conditions under which the batch value of perfect infor-
mation is submodular, and provide counterexamples for some
attempts to generalize the submodularity conditions. We also
show that optimizing VOI is NP-hard even under very restric-
tive assumptions. Finally, we capitalize on the submodularity
results by suggesting a simple “compound” greedy scheme
in Section 3 for near-optimal solution of the selection prob-
lem, and compare its performance to the standard greedy al-
gorithms on a wine quality dataset.

2 Main Results
Definition 1 (perfect information batch selection setting). Let
I = {I0, I1, ..., In} be a set of n+1 items of uncertain utility,
represented by r.v.s X0, ..., Xn. We assume w.l.o.g. that the
current best item α is item I0. For a cost Ci we can measure
Ii. We select a subset S ⊆ I to be measured as a batch,
for a total cost of

∑
Ii∈S Ci, observe the results O (the true

utilities of the items in S), and select a final item If (O) that
has the highest expected utility given the observations.

The optimization version of the perfect information batch
selection problem is: under the perfect information batch se-
lection setting, find the set that achieves:

max
S∈I

(ES [If (O)]−
∑
Ii∈S

Ci) (1)

Optionally, in the budget limited version of the selection prob-
lem, we are given a budget limit C and need to optimize S
under the additional constraint:

∑
Ii∈S Ci ≤ C.

Denoting the expected value of Xi by µi, note that by con-
struction µα ≥ µi for all i > 0. For a set of items S ⊆ I,
denote the expected value of information of a (perfect) obser-
vation of the utility of all these items by V PI(S), defined as
the expected value ES [If (O)] − µα (with expectation taken
over all possible observations on S). Denote by pi the PDF
of random variable Xi.
Example 1. Consider a wine selection problem with quality
distributions similar to Figure 2. Suppose that one wine case
α that we wish to purchase has a known quality of uα = 8. We
have been offered an additional option, with a quality distri-
bution X1 uniformly distributed in {4, 10}, so µ1 = 7. Sup-
pose that our utility scale is linear in the quality, and that
all wines cases cost the same. Testing a wine case is possi-
ble, thereby revealing its true quality. If we make no tests, we
should rationally pick the α wine for a quality of 8. If we do
test the unknown wine prior to the purchase, then with prob-
ability 0.5 its quality is revealed as 10, and we purchase it,
thereby gaining 2. Otherwise, stick with α, and gain nothing.
On the average we gain 1, so V PI({X1}) = 1.

2.1 Batch VOI for Known α
Theorem 1. For a perfect information batch selection setting
with independent item utility distributions, where the utility
uα of the currently best item α is known, the value of perfect
information V PI(S) is a submodular set function.
Corollary 1. Theorem 1 also holds given only a distribution
over uα, if there is no way to obtain additional information

about uα. That is because an optimal (risk neutral) decision
maker would have to act as if uα = µα.

A similar argument leads to a generalization to noisy obser-
vations: although Theorem 1 is stated in terms of perfect in-
formation, this is not an inherent limitation. Consider a more
general setting where measurements are noisy, but the value
of each item can be measured only once. In this setting, one
can simply use the expected posterior value instead of the ac-
tual value when making the decision, and our results still ap-
ply. However, in settings where the measurement types on
an item are allowed to vary (e.g. allow a choice between one
and two conditionally independent measurements, or a choice
of measurements that reveal different features of an item), it
is well known that submodularity does not hold [Frazier and
Powell, 2010; Tolpin and Shimony, 2012].

Theorem 1 is relevant to additional settings. First, consider
the special case where uα = 0. In this case, action α can be
re-cast as making no selection at all, and the conditions of the
theorem hold if all items have a non-positive prior expected
value. This is actually reasonable when items with uncer-
tain value are being sold to our decision-making agent, as the
seller wishes to gain from the sale, and presumably would not
wish to sell an item for less than its expected value.

Complexity of the Selection Problem
The batch measurement selection problem was shown to be
NP-hard [Reches et al., 2013], in a setting where multiple
noisy measurements per item are allowed. We show that the
problem gives rise to an NP-hard decision problem even if the
observations are perfect.
Definition 2 (perfect information budget-limited batch selec-
tion decision problem (PBSP)). In the perfect information
batch selection setting (Definition 1), is there a subset S ⊆ I
which has a total measurement cost not greater than C, and
such that the expected utility of the final item If selected after
observing the utility of the items in S, is at least U?
Theorem 2. The PBSP is NP-hard.

The proof is by reduction from Knapsack to a PBSP. We
also show that the PBSP remains NP-hard under the condi-
tions of Theorem 1.

VPI in the Presence of Dependencies
We now consider the perfect information batch selection set-
ting, without the independence assumption. With dependen-
cies the amount of information obtained by additional obser-
vations, having already made some observations, is ususally
reduced. Intuition would suggest that the same would there-
fore occur for the VPI as well. Indeed, for n = 2 the VPI is
still subadditive.
Theorem 3. For a batch selection setting with 3 items,
where the utility of the currently best item α is known, the
value of perfect information is subadditive, i.e. V PI({1}) +
V PI({2}) ≥ V PI({1, 2}).

Unfortunately, this submodularity result has no practical
use, as it does not generalize to n ≥ 3, as is evident from the
following counterexample. Let uα = 10, and we have 3 ad-
ditional items with utility distributed as binary variables, with
values {L,H}. The dependency is “parity”, that is, exactly

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5066



an even number of the items have value H , and the rest have
value L. The distribution over the 4 possible legal configu-
rations is uniform, i.e. each has probability 0.25. The utility
values are: u1L = u2L = 5, and u1H = u2H = 13, so that
µ1 = µ2 = 9 < uα. For the 3rd item, we have: u3L = 0,
and u3H = 18, so that µ3 = 9 < uα. It is straightforward to
show: V PI({1, 2}) > V PI({1}) + V PI({2}).

2.2 Batch VOI with Unknown α
Consider now that we are given a distribution over uα, but
unlike corollary 1, additional information about uα can be
obtained. Now the VPI is neither necessarily submodular,
nor necessarily supermodular: in the well-known case ex-
hibited in figure 1, the VPI of each individual item is 0, but
V PI({α, β}) > 0.

probability

µ µ

α
β

β α
utility

Figure 1: Utility distributions with supermodular VPI

Now consider: uα is evenly distributed: P (uα = 0) =
P (uα=10) = 0.5, and uβ is distributed as P (uβ=1) = 0.7,
P (uβ = 11) = 0.3. We get (µα = 5) > (µβ = 4). It is
straightforward to show that we have:

V PI({α, β}) < V PI({α}) + V PI({β})
An interesting question is about the VPI among sets of ob-

servations that must include an observation of the currently
best item. In general, the VPI of such sets is neither sub-
modular nor supermodular. Suppose we have 3 items, with
distributions as follows. Current best item α, distributed:
P (uα = 20) = P (uα = 0) = 0.5. Second best item β,
distributed: P (uβ = 9) = P (uβ = 5) = 0.5, and third item
γ, distributed P (uγ = 6) = P (uγ = 2) = 0.5. This gives
us: µα = 10, µβ = 7 and µγ = 4. We can show in this case:

V PI({α, β, γ}) > V PI({α, β})+V PI({α, γ})−V PI({α})
which clearly violates submodularity for sets containing ob-
servations of item α. However, if uα is always sufficiently
high, we can get submodularity as follows. Denote:
Condition C 1. P (uα < µi) = 0 for all i other than α.
Example 2. Consider the same wine selection problem in-
stance as in example 1, except that the quality of the α wine
case is no longer known to be 8: instead its quality is uni-
formly distributed among {7, 8, 9}. With the quality of X1

independent of wine α and distributed as in example 1, this
example obeys condition C1.

Denote by V PIα(S) the value of information of perfectly
observing the utility of all items in S, as well as that of α.
Theorem 4. For a batch selection setting with jointly inde-
pendent items where condition C1 holds, the value of perfect
information V PIα(S) is a submodular set function of S.

3 Application of Results
Consider a batch setting selection problem where the mea-
surement cost function C is supermodular. If we know the
utility of item α, then V PI(S)− C(S) is submodular due to
Theorem 1. We can thus use a standard greedy algorithm that
starts with an empty candidate set S, and repeatedly adds to
S items that have the highest net gain (best (marginal) V PI
minus cost), until no item has a positive net gain. We call
this method the (additive) greedy algorithm. According to
a fundemental result in [Nemhauser et al., 1978], the greedy
algorithm already guarantees an expected utility that is close
to optimal: submodularity is a guarantee against “premature
stopping” in the greedy algorithms.

If uα is unknown, but obeys condition C1, run the greedy
algorithm twice: once for sets that contain measurements of
item α, and once for sets that do not. Compare the expected
value of both resulting measurement sets, and return the bet-
ter of the two. We call this method the compound greedy
algorithm. Theorems 1 and 4 imply that the functions we
optimize in both cases are submodular, thus the greedy algo-
rithms return sets that are near-optimal.

3.1 Example Setting: Wine Selection
A comparison of algorithm performance on a typical dataset
indicates the type of results one can observe with greedy op-
timization algorithms for the selection problem.
Definition 3 (Wine selection problem). Given a set of wine
types I = {I0, ..., In}, each wine has an unknown quality,
but a quality distribution is known for each type. In addition,
for a known cost Ci, we can purchase and send a bottle of
each wine type to a sommelier for analysis and quality de-
termination. Which subset S of the wines (if any) needs to
be sent to the sommelier in order to maximize the expected
utility of testing and final decision? (That is, maximize the
expected quality of the final selection, minus the sum of costs
Ci of wines in S, i.e. the net VPI).

The setting for the tests was based on the UCI white wine
quality dataset [Cortez, 2009; Cortez et al., 2009], from
which we constructed for each wine a quality distribution, as-
sumed to be independent. Figure 2 shows these distributions
as a scatter plot where darker color indicates higher probabil-
ity. Each value on the X axis indicates a specific wine type,
with wines sorted by expected quality value.

Using the above distribution, the following experiments
were conducted. Each experiment was on a set I of n + 1
randomly picked wines from the dataset, where n was an ex-
perimental parameter, and for each wine a random cost Ci
was drawn uniformly between 0.01 to 0.1 (assumed to be on
the same scale as quality values). The wine with the best ex-
pected value from I is the α wine, the prior best. We then
used 4 different methods to find the measurement policy (i.e.
batch of wines to be tested).
Exhaustive: Every possible subset S of I (both with and
without the alpha wine) was examined. The S which maxi-
mized the net VPI was retured. S here is the optimal (batch)
measurement policy.
Greedy (additive). Wines are kept sorted by myopic ex-
pected net VPI w.r.t. the current batch. A batch S is in-
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Figure 2: Wine quality distributions

crementally constructed, starting from the empty set: every
iteration, the best candidate wine from I − S is added to S,
as long as the net myopic VPI for adding this wine is positive.
Greedy (rate). Same as additive greedy, but with wines
sorted according to expected VPI divided by cost of mea-
surement, as in [Azimi et al., 2016].
Compound greedy. Run the greedy (additive) algorithm
twice: once for sets that do not contain the α wine, and once
for sets that do. Compare the expected net VPI of both result-
ing measurement sets, and return the better of the two.
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Figure 3: Comparison of net VPI for various item set sizes

The net VPI, averaged over 15 random item sets for each
item set size, with n varying from 1 to 20, is shown in Figure
3. Both standard greedy algorithms averaged 0.99 of the opti-
mal net VPI, while compound greedy averaged slightly better
at 0.993, all considerably better than the theoretical bound.

Evaluating the VPI of a batch is non-trivial, but can be ap-
proximated by sampling [Azimi et al., 2016]. In the wine
selection problem we have independent discrete r.v.s with
greatly overlapping domains, so we can cheaply compute the
distribution of the maximum, and from there evaluate the ex-
pectation of the maximum exactly. Runtimes for the algo-
rithms appear in Figure 4. Clearly, the exhaustive method
delivers the best net VPI, but its runtime is prohibitive. Both
the additive and rate greedy were the fastest, with compound
greedy roughly a constant factor slower. In fact, despite the
improved VPI computation, this part still dominates the run-
time, and adding caching of computations of random vari-
able maximizations resulted in the compound greedy algo-
rithm being only a few percent slower than the other greedy
algorithms (not shown). Therefore, although the improve-
ment due to the compound greedy algorithm appears small, it

comes essentially for free and is thus worthwhile. The greedy
algorithms appear to be scalable: an experimental run with
n = 100 wines resulted in runtimes of approximately 200
seconds for each of the greedy algorithms (including com-
pound greedy, with caching).
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Figure 4: Runtime comparison: time vs. item set size

4 Conclusion
Cases where the batch value of perfect information is sub-
modular in the selection problem were examined. We have
shown that a resulting optimization problem is NP-hard, even
in such restricted cases. Greedy optimization algorithms
seem to achieve good results in practice. The theoretical re-
sults suggest that greedy algorithms should be supplemented
by examining sets that include the currently best item, even if
its individual VPI is zero, supported by empirical evidence.

We suggest that deviations from submodularity indicate
points where the greedy and myopic optimization schemes
can be improved w.r.t. net VPI, at relatively little com-
putational cost. As such, the simple method suggested in
this paper complements the idea of “blinkered VOI” [Hay et
al., 2012]. Our motivation for this work comes from meta-
reasoning in search, where information is gathered by search
actions. Solving a selection problem is a way to proceed at
the first level in the search tree. Generalization beyond the
first level is a non-trivial task for future research.
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