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Abstract
This paper proposes a generic approach to
planning in the presence of incomplete in-
formation. The approach builds on an ab-
stract notion of a belief state representation,
along with an associated set of basic opera-
tions. These operations facilitate the develop-
ment of a sound and complete transition func-
tion, for reasoning about effects of actions in
the presence of incomplete information, and a
set of abstract algorithms for planning. The pa-
per demonstrates how the abstract definitions
and algorithms can be instantiated in three con-
crete representations: minimal-DNF, minimal-
CNF, and prime implicates, resulting in three
highly competitive conformant planners: DNF,
CNF, and PIP. The paper includes an experi-
mental evaluation of the planners DNF, CNF,
and PIP and proposes a new set of conformant
planning benchmarks that are challenging for
state-of-the-art conformant planners.

1 Motivation and Related Work
Planning in the presence of incomplete information
[Goldman and Boddy 1996; Smith and Weld, 1998] is
the problem of generating a plan that can achieve a given
goal regardless of what the actual truth value of unknown
information about the initial world is. This paper focuses
on conformant planning—a special class of planning
problems in the presence of incomplete information—
that deals with incomplete information about the initial
state and with deterministic and non-sensing actions.

One of the challenges in conformant planning is the
problem of reasoning about action effects in the pres-
ence of incomplete information. Specifically, consider
an action a with a set of conditional effects of the form
(a : ψ → η), where ψ and η are a set of literals. Each

∗This paper is based on the journal article [To, Son, and
Pontelli, 2015].

effect (a : ψ → η) denotes that the set of literals η
will be true in the resulting state after the execution of
a in the current state if the e-condition ψ is true in the
current state. Due to incomplete information, the cur-
rent state and, hence, the truth value of ψ in it can be
unknown. As a consequence, the fact that η must be
true in the successor state can be unknown, making the
computation of the successor state particularly challeng-
ing. This agrees with the results in [Baral et al., 2000;
Haslum and Jonsson, 1999], that conformant planning
for domains with conditional effects is at a higher com-
plexity level than that without conditional effects. Since
its introduction, conformant planning has attracted the
attention of several researchers—leading to the develop-
ment of several state-of-the-art conformant planners. It is
important to observe that most efficient conformant plan-
ners are best-first search and progression-based plan-
ners, whose development starts with the selection of a
representation language for incomplete (partially known)
states and the definition of a transition (progression)
function that, given a state S and an action, computes the
next state S′ of the world, where S and S′ are generally
incomplete and encoded in the representation.

To deal with incomplete information about the world,
the notion of a belief state—defined as the set of possible
states—has been introduced and is widely used in plan-
ning in presence of incomplete information [Bonet and
Geffner, 2000; Smith and Weld, 1998]. An advantage of
this notion lies in its simplicity in representing and rea-
soning about the effects of actions in presence of incom-
plete information. Indeed, any formalism for Reasoning
about Action and Change (RAC), that assumes complete-
ness of the state, can be straightforwardly generalized to
deal with incomplete states, by dealing with each indi-
vidual possible state in the belief state separately, and by
collecting the set of resulting states as the successor be-
lief state. More precisely, let s be a state and a be an
action executable in s (s satisfies the precondition of a).
The effect of executing a in s is the set of literals that
become true in the successor state, defined as

e(a, s) = {` | ∃(a : ψ → η). ψ ⊆ s ∧ ` ∈ η} (1)
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The transition function Φ(a, s) that returns the result of
the execution of a in s is defined by

Φ(a, s) = s \ e(a, s) ∪ e(a, s) (2)

where e(a, s) denotes the set of negations of literals in
e(a, s). Then the function Φ̂(a, S) = {Φ(a, s) | s ∈ S}
characterizes the transition between belief states and can
be used for reasoning with incomplete information.

The downside of the direct use of belief states lies in
its size, which is exponential in the number of unknown
fluents. This presents two challenges for the planners
employing this representation. First, it can quickly in-
crease the memory usage for maintaining the set of gen-
erated belief states to avoid repeated search. This can
often lead to the ‘Out of memory’ situation before the
planner finds a solution. Second, it directly influences the
time complexity in computing the successor belief states.
To address this problem, different approaches have been
proposed in state-of-the-art planners, resulting in signif-
icant improvement in their performance, both planning
time and scalability on the problem size.

In the planner KACMBP [Cimatti, Roveri, and
Bertoli, 2004], belief states are represented as OBDDs
[Bryant, 1992] with the use of model checking tech-
niques for expanding the search space. The OBDD for-
mula was also used in the planner POND [Bryce et al.,
2006] to represent literals and actions in the planning
graph for computing heuristics. This BDD-based ap-
proach does not require any extra BDD manipulation op-
erations and it can be applied in both directions: progres-
sion and regression. However, the transition function de-
fined for OBDDs may require a huge memory consump-
tion in the manipulation of the OBDDs. This is a poten-
tial reason why planners employing this formulation, like
POND or KACMBP, do not scale well as shown in the
experimental evaluation [To, Son, and Pontelli, 2015].

Hoffmann and Brafman (2006) proposed implicit en-
coding of belief states with the sequence of actions that
leads to the belief state from the initial state. To deter-
mine whether an unknown proposition holds in a belief
state, the resulting conformant planner CFF has to rea-
son about a CNF formula that captures the semantic of
the initial belief state and the entire action sequence from
it to the current belief state. This representation requires
very little memory. However, it incurs excessive repeated
computations and checking whether two belief states un-
der this representation are equivalent is challenging and
expensive. Furthermore, checking whether a proposition
holds after the execution of even one single action in the
presence of incomplete information is co-NP complete.
We believe those are the main reasons why CFF has dif-
ficulties in finding a solution for even small instances
of harder problems, where there are unknown proposi-
tions in the e-conditions [Palacios and Geffner, 2009;
Tran et al., 2009; To, Pontelli, and Son, 2009].

The approach employed in the planners T0 [Palacios

and Geffner, 2007; Palacios and Geffner, 2009] and T1
[Albore, Ramirez, and Geffner, 2011] compiles incom-
plete information away by translating a conformant prob-
lem into a classical problem and then using the effi-
cient classical planner FF [Hoffmann and Nebel, 2001]
to solve the resulting problem. This approach demon-
strates great performance improvements, e.g., T0 and T1
can solve many hard problems of large size. However,
the complete translation is exponential in the conformant
width of the problem, related to the number of relevant
unknown literals, and the number of literals in the re-
sulting problem can be exponential in that of the original
problem. To reduce the complexity of the translation, T0
sacrifices the completeness of the translation in certain
problems. This explains why T0 is unable to return a
solution in several problems, that have solutions, or the
translation fails for large instances of several domains, as
shown in our experiments.

GC[LAMA] [Nguyen et al., 2012] is another con-
formant planner that uses a classical planner. This ap-
proach is based on the observation that every solution for
a conformant problem is also a solution for the classi-
cal problem obtained by replacing the initial belief state
with a state in it. A tentative plan α for such a sub-
problem then can be corrected, by inserting an action se-
quence to produce precondition for the action the plan
α violates at that place. If α cannot be fixed to become
a plan for the conformant problem, GC[LAMA] con-
tinues with another plan of the same or different sub-
problem. GC[LAMA] is efficient on problems where
the action effects are monotonic, i.e., useful actions cre-
ate useful literals without destroying other useful literals,
and the belief state is not large. Otherwise, it is not as ef-
ficient, as reported in the experimental evaluation.

Instead of using a complete transition function in the
search, the planner CPA [Son et al., 2005] approximates
a belief state with the intersection of the states in it [Son
and Baral, 2001]. The approximation is polynomial, yet
it is incomplete and so are planners employing it. Later,
a complete condition for the approximation was iden-
tified and corresponding techniques were developed in
CPA to make the planner complete [Son and Tu, 2006;
Tu et al., 2011]. The computation of successor belief
states in this approach is very simple, i.e., it can be
performed in the same manner as that for belief states.
However, these techniques require the system to deal
with sets of approximated states, which—in the worst
case—are the same as the actual belief states being rep-
resented. Hence, the approximated formula explodes in
many problems, as observed in the experiments, prevent-
ing the planner to effectively scale. The authors of CPA
[Tran et al., 2009] developed preprocessing techniques
which help reduce the size of the initial disjunctive for-
mula in certain classes of problems, enabling the planner
to perform very well in several benchmarks and to win
the conformant planning category in the IPC-08.
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f∨g∨h

ϕ

BS(ϕ)=S

s1={f,g,h}

s2={f,g,¬h}

s3={f,¬g,h}

s4={f,¬g,¬h}

s5={¬f,g,h}

s6={¬f,g,¬h}

s7={¬f,¬g,h}

S={s1,...,s7}

s′i=Φ(a,si), S′=Φ(a,S)

e(a,s1)={¬g}

e(a,s2)={¬g}

e(a,s3)={¬f,¬g}

e(a,s4)={¬f,¬g}

e(a,s5)={f}

e(a,s6)={f}

e(a,s7)={f}

a:{f}→{¬g}

a:{f,¬g}→{¬f}

a:{¬f}→{f}

s′1={f,¬g,h}

s′2={f,¬g,¬h}

s′3={¬f,¬g,h}

s′4={¬f,¬g,¬h}

s′5={f,g,h}

s′6={f,g,¬h}

s′7={f,¬g,h}=s′1

S′={s′1,...,s′6}

f∨¬g

ϕ′

BS(ϕ′)=S′

Figure 1: An example of computing successor belief states by using the function Φ

2 Our Approach

In this paper, we propose a generic approach to plan-
ning with incomplete information. The key idea underly-
ing our approach is the observation that belief states are
propositional formulae. Thus, reasoning about effects
of actions on belief states can be expressed using suit-
able operations on formulae, which is usually (possibly
exponentially) more compact than the belief states they
represent.

As an example, let us consider a domain F =
{f, g, h}, an action awith three conditional effects Ca =
{f → ¬g, f ∧ ¬g → ¬f,¬f → f}, pre(a) = {True},
and a belief state S that contains all possible states of the
world (i.e., all possible interpretations of propositions in
F ) except for {¬f,¬g,¬h}. Figure 1 shows the belief
state S = {s1, . . . , s7} and the computation of the suc-
cessor belief state S′ after executing a in S using the
function Φ (Equation 2).

Let ϕ be a formula and S be a belief state. We say that
ϕ represents S or S is the belief state of ϕ, denoted by
BS(ϕ), if S is the set of states that satisfyϕ. In the above
example, we observe that S and S′ can be represented
by the more compact CNF-formulae ϕ = f ∨ g ∨ h and
ϕ′ = f ∨¬g, respectively. Since each formula encodes a
unique belief state, we want to use their compact encod-
ing ϕ and ϕ′ instead of the belief states S and S′ of expo-
nential size. To this end, we need to construct a transition
function (e.g., ΦµCNF ) such that (1) it returns a CNF-
formula representing the successor belief state given a
CNF-formula and an action (e.g., ΦµCNF (a, ϕ) = ϕ′)
and (2) its computation involves operations over a small
set of formulae instead of enumerating each individual in
belief states.

To compute the result s′ of execution of an action a in

a state s, we need to compute the effect e(a, s) of exe-
cuting a in s, the set of literals that must be true in the
successor state s′. Observe from Figure 1 that, the effects
of executing a in s1, s3, and s5 are all different. How-
ever, e(a, s1) = e(a, s2) = {¬g}, e(a, s3) = e(a, s4) =
{¬f,¬g}, and e(a, s5) = e(a, s6) = e(a, s7) = {f}.
Hence, if we divide BS(ϕ) into three sets of states
S1 = {s1, s2}, S2 = {s3, s4}, and S3 = {s5, s6, s7}
(Figure 2) then for each i ∈ {1, 2, 3} and u, v ∈ Si,
we have that e(a, u) = e(a, v). This is because the
truth value of each e-condition of a in all the states in
each subset Si is the same and it can be different in
states from different subsets (e.g., the e-condition f in
(a : {f} → {¬g}) is true in all states s1 and s2 in S1 and
it is false in all states s5, s6, and s7 in S3.) Observe also
that S1, S2, and S3 can be represented by the formulae
ϕ1 = f ∧ g, ϕ2 = f ∧ ¬g, and ϕ3 = ¬f ∧ (g ∨ h) re-
spectively. Since the effects of a in all states in BS(ϕi),
for each ϕi, are the same, we define e(a, ϕi) = e(a, s)
for s ∈ BS(ϕi) and i ∈ {1, 2, 3}. Let s′j = Φ(a, sj)
(for j = 1, . . . , 7) and S′

i = Φ(a, Si). Let ϕ′
i be

the formula obtained by updating ϕi with the minimum
change such that the literals in e(a, ϕi) become true in
the new formula ϕ′

i. Intuitively, BS(ϕ′
i) = S′

i and,
hence, BS(ϕ′

1)∪BS(ϕ′
2)∪BS(ϕ′

3) = BS(ϕ′) (= S′).
Indeed, it is easy to see that ϕ′

1 = f ∧¬g, ϕ′
2 = ¬f ∧¬g,

ϕ′
3 = f ∧ (g ∨ h) and the disjunction ϕ′

1 ∨ ϕ′
2 ∨ ϕ′

3
can be simplified to the formula ϕ′. On the other hand,
S = S1 ∪ S2 ∪ S3 and ϕ ≡ ϕ1 ∨ ϕ2 ∨ ϕ3. In sum-
mary, the computation of ϕ′ includes three major steps
as described in Figure 2.

As shown in our analysis and experiments [To, Son,
and Pontelli, 2010a; To, Son, and Pontelli, 2010b; To,
Son, and Pontelli, 2011c; To, Son, and Pontelli, 2015],
the size of formulae representing belief states and, hence,
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f∨g∨h

ϕ

Compute ϕ1, ϕ2, ϕ3, e(a,ϕ1), e(a,ϕ2), e(a,ϕ3)

ϕ1=f∧g

S1=BS(ϕ1)={{f,g,h},

{f,g,¬h}}

e(a,ϕ1)=e(a,S1)={¬g}

ϕ2=f∧¬g

S2=BS(ϕ2)={{f,¬g,h},

{f,¬g,¬h}}

e(a,ϕ2)=e(a,S2)={¬f,¬g}

ϕ3=¬f∧(g∨h)

S3=BS(ϕ3)={{¬f,g,h},

{¬f,g,¬h},{¬f,¬g,h}}

e(a,ϕ3)=e(a,S3)={f}

ϕ′
1=f∧¬g

S′
1=BS(ϕ′

1)={{f,¬g,h},

{f,¬g,¬h}}

ϕ′
2=¬f∧¬g

S′
2=BS(ϕ′

2)={{¬f,¬g,h},

{¬f,¬g,¬h}}

ϕ′
3=f∧(g∨h)

S′
3=BS(ϕ′

3)={{f,g,h},

{f,g,¬h},{f,¬g,h}}

f∨¬g

ϕ′

Compute ϕ′, by simplifying ϕ′
1∨ϕ′

2∨ϕ′
3

Compute ϕ′
i, by updating ϕi s.t. e(a,ϕi) is true in ϕ′

i

a:{f}→{¬g}

a:{f,¬g}→{¬f}

a:{¬f}→{f}

Figure 2: Computing successor formula ϕ′ given action a and formula ϕ (Figure 1) in three steps

the performance of a corresponding planner depend sub-
stantially on both the type of the formulae being used
and the specific problem. For this reason, we propose
a generic approach based on the abstract notion repre-
sentation, instead of limiting to some specific types of
formulae, aimed at the use of any type of propositional
formulae to represent belief states.

Specifically, a collection R of formulae is a represen-
tation of belief states (or representation, for short) if for
every belief state S there exists a formula ϕ ∈ R that
represents S (BS(ϕ) = S). A formula ϕ in R is called
an R-state. A function ΦR that maps pairs composed
of an action a and R-state ϕ into R-states is a transi-
tion function forR if ΦR(a, ϕ) represents the belief state
Φ(a,BS(ϕ)), i.e., BS(ΦR(a, ϕ)) = Φ(a,BS(ϕ)).

As shown in the above example (Figure 2), a transi-
tion function ΦR forR will be developed based on three
computation steps as follows:
• Step 1: Compute the set of R-states {ϕi | i =

1, . . . , n} such that BS(ϕ1) ∪ . . . ∪ BS(ϕn) =
BS(ϕ) and ∀i.∀s, s′ ∈ BS(ϕi). e(a, s) = e(a, s′).
Compute e(a, ϕi) for i = 1, . . . , n;
• Step 2: For each R-state ϕi, compute ϕ′

i by updat-
ing ϕi such that e(a, ϕi) is true in ϕ′

i and nothing
else changes;
• Step 3: Convert the disjunction ϕ′

1 ∨ . . . ∨ ϕ′
n into

an equivalent R-state ϕ′, i.e., BS(ϕ′) = BS(ϕ′
1 ∨

. . . ∨ ϕ′
n).

To realize the above computation steps, we then spec-
ify a set of abstract operations on a representationR and
use these operations in defining the abstract transition

function ΦR. We devise a set of abstract algorithms for
computing the transition function that can be instantiated
in each concrete representation and used in the imple-
mentation of conformant planners.

We illustrate the generic framework by instantiating it
in three concrete representations of belief states:
• minimal-DNF, a compact form of disjunctive nor-

mal form formulae,
• minimal-CNF, a compact form of conjunctive nor-

mal form formulae, and
• prime implicates, a well-known, special form of

minimal-CNF.
For each representation, we define its set of operations,
provide a concrete implementation of these operations,
and instantiate the abstract algorithms to create a con-
formant planner. This results in three conformant plan-
ning systems, called DNF, CNF, and PIP, that employ
the minimal-DNF, minimal-CNF, and prime implicates
as the belief state representation, respectively.

We evaluate these systems using benchmarks available
in the literature as well as new benchmarks, that appear
to be particularly challenging for other planners. The ex-
perimental evaluation shows that the three systems are
very competitive with other planners. In addition, the
two systems using conjunctive representations (CNF and
PIP) are particularly effective on the new problems.
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