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Abstract
We investigate Constraint Programming and Plan-
ning Domain Definition Language-based technolo-
gies for planning and scheduling multiple robots
in a retirement home environment to assist elderly
residents. Our robotics problem and investiga-
tion into proposed solution approaches provide a
real world application of planning and scheduling,
while highlighting the different modeling assump-
tions required to solve such a problem. This in-
formation is valuable to the planning and schedul-
ing community as it provides insight into poten-
tial application avenues, in particular for robotics
problems. Based on empirical results, we con-
clude that a constraint-based scheduling approach,
specifically a decomposition using constraint pro-
gramming, provides the most promising results for
our application.

1 Introduction
The aging of global populations has had, and will continue
to have, profound impact on our society [United Nations,
2002] with one particular challenge being the physical, cogni-
tive, and psychological welfare and well-being of the elderly.
Without an increase in the number of caregivers, the growth
of the older population will lead to a strain on existing per-
sonnel to meet these needs. To address the lack of human
resources, human-robot interaction (HRI) and robot compan-
ionship have been proposed and shown to have positive re-
sults on the human psychological state [Banks et al., 2008].

Our long-term project is the deployment of intelligent mo-
bile robots in retirement homes to engage residents in stimu-
lating recreational activities [Booth et al., 2016; Louie et al.,
2014a; 2014b; 2015; Li et al., 2016; Mohamed and Nejat,
2016]. We have designed the robot, Tangy, to: 1) navigate us-
ing a laser range finder and 3D depth sensors, 2) detect users
with 2D cameras, and 3) interact with users through speech,
gestures, and a touch screen. While the implementation of
the robot behaviors addresses robotics challenges (e.g., sens-
ing, HRI, person and activity recognition), herein we focus

∗This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [Tran et al., 2017].

on the planning and scheduling of the daily activities of mul-
tiple socially assistive robots such as Tangy. These plans and
schedules are to be generated prior to the start of a day and
executed by the team of robots during the day.

This paper studies the modeling and solving of a particular
application. Such case studies serve as valuable feedback for
researchers focusing on the theory and algorithms which form
the core of planning and scheduling research.

The main contributions of this work are:
• Three modeling approaches for a complex multi-robot

HRI problem using two different solving technologies:
Planning Domain Definition Language (PDDL) and
Constraint Programming (CP);
• One of the first applications of CP to a multi-robot plan-

ning and scheduling problem;
• The development of a CP-based decomposition that out-

performs the other tested methodologies.

2 Problem Definition
We need to create a daily schedule for a team of robots in a
retirement home environment. In this section, the main ele-
ments of the proposed problem are defined. The parameters
and constraints were obtained from meetings with directors,
healthcare professionals, and residents from Toronto area re-
tirement homes [Louie et al., 2014a; 2015].

2.1 The Retirement Home Environment
The retirement home is discretized into a set of locations, L,
representing different rooms in the environment with a known
distance between any two locations l and m, denoted as dlm.

For a set of users, U , each user, ui ∈ U , has a personal pro-
file that specifies a schedule, including his/her location and
availability throughout the day. The user profile also repre-
sents preferences specifying that the user, u, wishes to par-
ticipate in between att minu and att maxu multi-user HRI
activities (Bingo games).

We are also given a set of robots, R. Each robot, ri ∈ R,
starts the day at a charging station and is capable of moving
in the retirement home environment at a fixed speed, vi. The
robot facilitates the HRI activities by traveling to the appro-
priate location and interacting with the user(s) for the required
amount of time. While the robot is traveling and performing
activities, it consumes battery power at a rate dependent on
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the task. The battery level, bli of a robot, ri, must stay be-
tween bl mini ≤ bli ≤ bl maxi. During the day, a robot
may need to travel to and recharge at a charging station.

The HRI activities are telepresence sessions and Bingo
games. A set of telepresence sessions, S, represent the single-
user activities that are required to be scheduled during the day.
Each telepresence session, y ∈ S, is associated with a user,
u, a duration, dury , and a set of valid time intervals when it
can occur. A set of Bingo games,G, represents the multi-user
activities, optional tasks that add value to the daily schedule
for users. A Bingo game, g ∈ G, is characterized by its lo-
cation, the duration of the game durg , and a set of valid time
intervals when it can be played. For each Bingo game, g, the
number of participants must be between three and ten. The
participating users must be available during the time of the
Bingo game and each player must be reminded of the game
by a robot 15 to 120 minutes before it begins.

2.2 Input and Goal
The inputs to the problem are the sets of locations, L; users,
U (with their profiles); charging stations, K ⊂ L; available
robots, R (with their initial locations, velocity, and battery
level and consumption details); the requested telepresence
sessions, S; and possible Bingo games, G. The goal is to
create a plan of robot tasks in which all the requested telepres-
ence sessions are scheduled and the requested Bingo games
and reminders are scheduled, if possible, given that user at-
tendance preferences have to be satisfied. Furthermore, the
participating users must be chosen for each Bingo game as
part of the problem solving. At the end of the day, all robots
must be at a location with a charging station.

As a multi-objective optimization problem, we want to: 1)
perform as many Bingo games as possible, 2) have as many
users playing Bingo as possible, 3) provide reminders as close
as possible to the game times, and 4) expend as little battery
power as possible. The objective function considered is:

min f = 500B + 1000(|U | − P ) + δ + ε. (1)

Here, B is the number of Bingo games played and P is the
total number of participants across all Bingo games. The val-
ues of δ and ε represent the sum of time between all reminders
and their corresponding Bingo games and the total energy us-
age of all robots, respectively.

3 Solution Methods
We present three different approaches to solving the robot
task scheduling problem: PDDL-based planning, constraint-
based scheduling, and a constraint-based scheduling decom-
position. In the interest of space, we only present partial mod-
els. For the complete models, and five alternative PDDL mod-
els that do not perform as well as the one presented here, see
our full paper [Tran et al., 2017].

Planning and scheduling differ in the abstractions used to
model tasks in each paradigm. In the former, it is sufficient
to model tasks by utilizing operators, which dictate how the
state of the world may be changed. An operator is instantiated
to create a ground action and the planner decides how many
times to instantiate each operator and their sequence to reach

a goal state. For example, to charge the battery on a robot, the
planner has access to a battery recharging operator that can be
executed by any robot as many times as necessary.

In contrast, typical scheduling solvers require that every
potential task is modeled as an optional task [Laborie, 2003].
This approach allows one to model a task but not necessarily
execute it. For example, the maximum number of charging
tasks must be known prior to scheduling in order to know
how many optional tasks to create. The same must be done
for the reminders and Bingo games since it is not known a
priori which users are assigned to a Bingo game or whether
a game will be played or not. The bounds introduced for the
scheduling models provide the schedulers with additional in-
formation not available to the planners.

3.1 PDDL-Based Planning
The first methodology uses PDDL [Ghallab et al., 1998],
specifically PDDL2.2 with processes from PDDL+. The main
classes of the model are: Location, ChargingStation, Robot,
User, TelepresenceSession, BingoGame, and Global.

A robot can perform seven operations: move, recharge, re-
mind, do telepresence, play Bingo, interact, and skip Bingo.
Other than recharge and do telepresense, all other operators
are used to model Bingo games. The move operator moves a
robot from one location to another to seek users for reminders
and to facilitate a Bingo game in the games room, while hav-
ing a duration and energy consumption based on the distance.

Each Bingo game has the properties dur, to repre-
sent duration; not done and done, to represent whether
the game has been performed; and timed-initial literals
must be done during, to represent the time windows in which
the task can be performed. In addition to the properties of the
games introduced in the problem description, we have added
the fluents p num and p cur to control the number of users
reminded by the robots and the number of users playing the
game, as well as delivery time to control the time at which
each user is reminded about the game.

In the remind operator, a robot must be ready to perform
the task and the user has to be available at the same location as
the robot. Since the users are moving in the environment, we
model their location over time and require that the robot and
user be in the same location then the reminder occurs. The
time of the reminder is recorded in the fluent delivery time,
which becomes a condition for the Bingo operators.

Modeling the time between the delivery of a reminder and
its associated Bingo game is done by processes [Fox and
Long, 2006]. A process (called clock ticker) models an ex-
ogenous activity that is triggered for as long as a condition
holds (in this case the fluent can start clock), regardless of
the action selection process. This mechanism allows us to
increment the fluent current time one minute at a time, simu-
lating the passage of time in discrete one-minute intervals.

In order to facilitate a game after the reminders, a robot
has to first start the play Bingo action, then it has to con-
currently perform the interact action with each participant.
The play Bingo action can only finish when the robot has per-
formed the interact action with all assigned players. The in-
teract action is used to ensure that users are participating in
the Bingo game for the duration of the game.
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In the scenario where a Bingo game is not played, the ac-
tion skip Bingo is performed to ensure that the Bingo activity
is considered done for the goal state.

3.2 Global-CP
The second methodology uses CP and is called Global-CP.

Each robot task is represented by an interval variable [La-
borie, 2009], aj , defined by a start time, end time, and size,
which refers to the battery power required to perform the task.
Other than the telepresence sessions, these tasks are optional;
i.e., presenceOf(aj) can be equal to 1 (performed) or 0 (not
performed). Furthermore, each HRI-related task has a num-
ber of clone tasks, which are required to model the alternative
robots that can complete the tasks. For each task j, there are
|R| additional tasks indexed by i and denoted by αij .

The scheduler must decide which robot exe-
cutes each of the executed tasks via the clone tasks.
We link these tasks with an alternative constraint,
alternative(aj , {a1j , . . . , a|R|j}) that ensures that if a
task aj is present in the schedule, then exactly one other
task from the set of tasks {a1j , . . . , a|R|j} is also present.
Thus, if a task aj is scheduled, then an appropriate task aij
is also present and this task corresponds with robot i which
is assigned to execute the task.

To ensure that robots perform at most one task at a time,
a cumulative function, rci is used for each robot i. Cumula-
tive functions are piecewise functions over time with discrete
value changes made at the start and end times of interval vari-
ables [Laborie, 2009]. We use a pulse effect for every task aij
on cumulative function rci, which increases (decreases) the
cumulative function by one at the start (end) of the interval
variable. By restricting rci ≤ 1, we ensure that each robot
does not perform multiple tasks in parallel.

Similarly, users can only be active in one HRI activity at
a time. A cumulative function, ucu, is used, where all tasks
pertaining to a user u must also exhibit a pulse effect. Ad-
ditionally, these tasks must be restricted to only occur during
times when the user is available. We make use of calendars
available in CP Optimizer to restrict the start times of a task.

One complication of our problem domain is the represen-
tation of robot and user movement within the environment.
Typically, travel times are represented as minimum separation
requirements between two tasks, where the separation must
be greater than or equal to the time needed to travel between
locations [Pesant et al., 1998]. However, because the robots
must interact with users and the users themselves move within
the environment, the exact location of and therefore, the travel
time before, an interaction depends on the time that the action
takes place. Our approach is to create additional tasks for
each reminder based on the possible locations for a reminder
for a particular user throughout the day. It is then possible
to treat travel times as sequence-dependent setup times as is
standard in scheduling (e.g., [Tran et al., 2016]) to ensure that
the robot is given sufficient time for travel.

To model the interaction of users in Bingo games, we cre-
ate an additional set of |U | optional interval variables for each
Bingo game. This set is used to ensure that a user who is as-
signed to a Bingo game will participate in the game at the
appropriate time (similar to the interact operator from the

PDDL model). A user who has not been reminded of a Bingo
game will not participate in the game. However, if a user
was reminded, then the scheduler must ensure that the cor-
responding user-Bingo game interaction task is performed.
This task will have a pulse effect on the relevant user’s cumu-
lative function, ucu, similar to how other interval variables
affect the availability of a robot. Additionally, we constrain
the start time of executed reminder tasks to be between 15
and 120 minutes before the appropriate Bingo game task by
bounding the separation between the two tasks.

3.3 CP-Based Decomposition

Smith et al. [2000] noted that one of the weaknesses of
scheduling is the inability to adequately handle environments
with cascading effects. An action with a cascading effect
changes the system state and leads to requirements for one or
more other actions. For example, if a user is to play a Bingo
game, he or she must be reminded of the game. However, if a
user is not participating in a Bingo game, the reminder should
not take place. Due to such dependencies, the scheduling
model becomes very large since we create alternative inter-
val variables for every possible action. We propose a decom-
position of the CP model, Decomposed-CP, that attempts to
improve upon Global-CP and better handle cascading effects.

The decomposition is comprised of two stages: a mas-
ter problem and a sub-problem. The master problem is the
Global-CP model, but with a simplified objective function:
min f = |U | − P . The master problem solution is feasible
for the complete problem, however, it may be of poor quality
since most of the objective function is ignored.

The solution of the master problem gives an assignment of
users to Bingo games that is used in the sub-problem. Only
games that were played in the master problem are available
to be played in the sub-problem with the same players, but
without fixed start-times. The upper bound for the number of
charging tasks per robot is set to the total number of charging
tasks across all robots in the master solution. We choose this
upper bound to allow for some flexibility in changing how
often a recharge occurs, while guaranteeing that a feasible
schedule exists. The objective function of the sub-problem
is the original objective function (Equation 1). Note that in
this decomposition, the optimal assignment of games and the
number of recharges might not be optimal for the original
problem.

When using the Decomposed-CP model, we set a time
limit for the master problem that is half the total time limit.
We switch to solving the sub-problem when either the master
problem has been solved to optimality or when the time-limit
is reached; whichever occurs first.

Table 1: The number of objects in the five scenarios.

Scenario Users Robots Telepresence Bingo
1 5 2 2 1
2 10 2 4 2
3 15 3 6 3
4 20 3 8 4
5 25 4 10 5
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Table 2: Empirical results for the five scenarios tested. Results are not shown when no feasible solutions were found.

Model Scenario Runtime (s) Participants Objective Value
first last first last first last

1 0.04 786.12 0 3 5,506.13 2,070.75
2 0.18 0.88 0 0 11,019.38 11,016.66

PDDL 3 0.84 9.38 0 0 16,530.31 16,525.73
Planning 4 2.18 23.84 0 0 22,024.92 22,024.92

5 7.24 89.46 0 0 27,557.30 27,554.54
1 0.08 9.26 0 5 5,623.00 192.00

Global-CP 2 1.96 33.84 6 9 4,549.00 1,243.00
1 0.05 0.23 5 5 486.00 192.00
2 0.08 67.49 6 10 5,039.00 847.00

Decomposed 3 0.36 37.87 4 15 12,296.00 1,213.50
CP 4 0.41 2,567.80 10 20 12,107.00 1,430.50

5 0.37 3,382.83 4 25 23,494.50 1,929.00

4 Empirical Evaluation
We consider a retirement home environment in which resi-
dents undertake several activities in different locations during
the day. We assume that each user has seven one-hour non-
interruptible activities (e.g., physiotherapy, doctor’s appoint-
ment, family visit, nap, meals). Other, interruptible, activities
(e.g., walk in the garden, read in a common area) allow robot
interactions, but in various locations. At least one interrupt-
ible activity is assumed for each user. We analyze the pro-
posed models for five full-day scenarios representing the re-
quirements of the retirement home, but with a varying number
of users, robots, and HRI activities (see Table 1). User sched-
ules were obtained from our collaborating retirement homes.

We run each model on the five scenarios using a 64-bit
Ubuntu Linux machine with 12 GB of memory and a one-
hour time limit. The OPTIC planner [Benton et al., 2012]
is used to solve the PDDL planning model. The CP models
are solved using IBM ILOG CPLEX CP Optimizer 12.6.2.
We measure runtime, number of participants in Bingo games,
and the objective function as performance metrics.

The performance of each methodology is presented in Ta-
ble 2. The PDDL solver always finds a feasible solution, but
these plans are low quality as they do not contain any Bingo
games except for scenario 1. OPTIC struggles to improve
upon the initial solution. In contrast, Global-CP is unable to
find a feasible solution within one hour for scenarios 3 to 5,
but, for the smaller scenarios, the solution quality is better
and does improve over time. Thus, the PDDL solver behaves
by prioritizing feasibility while mostly ignoring the objective
function and the CP solver more aggressively optimizes the
objective function, but can do so at the cost of not being able
to find a schedule.

Decomposed-CP performs the best as it is able to consis-
tently find solutions of high quality. The decomposition is
able to find schedules with the maximum number of pos-
sible participants for every scenario and in general does so
very quickly. Once a partial schedule is found with decisions
made regarding the presence of a Bingo game and its play-
ers, the problem becomes significantly easier as many actions
with cascading dependencies are eliminated. There is a large

reduction in the number of charging tasks (about 98%) and
reminder tasks (between 80% and 96%).

5 Conclusion
The properties of the retirement home environment create a
complex problem to solve. Based on numerical experiments,
we find that CP, in particular a decomposition model using
CP, is the most suitable technology to use in our system.

CP is better equipped than PDDL planning for handling
optimization, but can struggle to find feasible schedules for
larger problems. We found that CP is better at obtaining high
quality solutions, but it is interesting to note that the best ap-
proach is to only consider a simple objective function. Al-
though the large number of optional tasks used in the CP
model is also a culprit for the poor performance, we suspect
for similar problems with complex objective functions, it is
easier and likely just as effective to decompose a CP model
to handle the objective function in stages rather than to re-
move or reduce the optional activities. We conclude that CP
is better suited for our application; however, we do not claim
that CP will be better than PDDL-based planning for all robot
applications. To state one obvious case, CP is an inappropri-
ate choice if the bound on the number of tasks to perform is
either very poor or undefined.

Our full paper [Tran et al., 2017] presents more details of
our work including: the full models, along with five alterna-
tive PDDL models; the modeling limitations and feature sup-
port of available solvers; a number of problem modifications
that are also studied to obtain insights on the problem char-
acteristics that are difficult for the solving technologies; and,
lastly, a discussion of each of the technologies, the effects of
modeling decisions, and a comparison between planning and
scheduling.
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