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Abstract
The Minimum Weight Dominating Set (MWDS)
problem is an important generalization of the Min-
imum Dominating Set (MDS) problem with exten-
sive applications. This paper proposes a new local
search algorithm for the MWDS problem, which is
based on two new ideas. The first idea is a heuris-
tic called two-level configuration checking (CC2),
which is a new variant of a recent powerful configu-
ration checking strategy (CC) for effectively avoid-
ing the recent search paths. The second idea is
a novel scoring function based on the frequency
of being uncovered of vertices. Our algorithm is
called CC2FS, according to the names of the two
ideas. The experimental results show that, CC2FS
performs much better than some state-of-the-art al-
gorithms in terms of solution quality on a broad
range of MWDS benchmarks.

1 Introduction
Given an undirected graph G, a dominating set D is a sub-
set of vertices such that every vertex not in D is adjacen-
t to at least one member of D. The Minimum Dominat-
ing Set (MDS) problem consists in identifying the smallest
dominating set in a graph. The Minimum Weight Dominat-
ing Set (MWDS) problem is a generalized version of MD-
S. In the MWDS problem, each vertex is associated with
a positive value as its weight, and the task is to find a
dominating set that minimizes the total weight of the ver-
tices in it. The MWDS problem has played a prominen-
t role in various real-world domains [Shen and Li, 2010;
Golovach et al., 2013], such as social networks, communi-
cation networks, and industrial applications.

Most practical algorithms for solving the MWDS problem
are heuristic algorithms [Jovanovic et al., 2010; Potluri and
Singh, 2013; Nitash and Singh, 2014; Chaurasia and Singh,
2015; Bouamama and Blum, 2016]. However, the efficiency
of existing heuristic algorithm are still not satisfactory, espe-
cially for hard and large-scaled instances (as will be shown
in our experiments). The reason may be that the heuristic

∗This paper is an extended abstract of an article in the Journal of
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functions used in previous algorithms do not have enough in-
formation during the search procedure, and the cycling search
problems can not be overcome by most algorithms as well.

In this paper, we develop a novel local search algorithm for
the MWDS problem based on two new ideas. The first idea
is a new variant of the Configuration Checking (CC) strate-
gy. Initially proposed in [Cai et al., 2011], the CC strate-
gy aims to reduce the cycling phenomenon in local search,
by considering the circumstance of the solution components,
which is formally defined as the configuration. The CC s-
trategy has been successfully applied to a number of well-
known combinatorial optimization problems [Li et al., 2016;
Wang et al., 2016b; 2016a; Luo et al., 2015; Cai et al., 2015].
In this work, we propose a variant of the CC strategy based
on a new definition of configuration. In this strategy, the con-
figuration of a vertex v refers to its two-level neighborhood,
which is the union of the neighborhood N(v) and the neigh-
borhood of each vertex in N(v). This new strategy is thus
called two-level configuration checking (abbreviated as CC2).

The second idea is a frequency based scoring function for
vertices, according to which the score of each vertex is calcu-
lated. Local search algorithms for the MWDS problem main-
tain a candidate solution, which is a set of vertices selected for
dominating. Then the algorithms will use a scoring function
to decide which vertices will be selected to update the candi-
date solution, where the scores of vertices indicate the benefit
(which may be positive or negative) produced by adding (or
removing) a vertex to the candidate solution. In this work, we
introduce a scoring function based on dynamic information of
vertices, i.e., the frequency of being uncovered by the candi-
date solution. This scoring function exploits the information
of the search process and that of the candidate solution.

By incorporating these two ideas, we develop a local search
algorithm for the MWDS problem termed CC2FS. We carry
out experiments to compare CC2FS with five state-of-the-art
MWDS algorithms on benchmarks in the literatures includ-
ing unit disk graphs and random generated instances, as well
as two classical graphs benchmarks namely BHOSLIB [X-
u et al., 2007] and DIMACS [Johnson and Trick, 1996],
and a broad range of real world massive graphs with mil-
lions of vertices and dozens of millions of edges [Rossi and
Ahmed, 2015]. Experimental results show that CC2FS sig-
nificantly outperforms previous algorithms and improves the
best known solution quality for some difficult instances.
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2 Preliminaries
An undirected graph G = (V,E) comprises a vertex set
V = {v1, v2, . . . , vn} of n vertices together with a set E =
{e1, e2, . . . , em} of m edges, where each edge e = {v, u}
connects two vertices u and v, and these two vertices are
called the endpoints of edge e. The distance between two ver-
tices u and v, denoted by dist(u, v), is the number of edges
in a shortest path from u to v, and dist(u, u) = 0 partic-
ularly. For a vertex v, we define its ith level neighborhood
as Ni(v) = {u|dist(u, v) = i}, and we denote Nk(v) =⋃k

i=1 Ni(v). The first-level neighborhood N1(v) is usually
denoted as N(v) as well, and we denote Ni[v] = Ni(v)∪{v}.
Also, we define the closed neighborhood of a vertex set S,
N [S] =

⋃
v∈S N [v].

A dominating set of G is a subset D ⊆ V such that every
vertex in G either belongs to D or is adjacent to a vertex in
D. The Minimum Dominating Set (MDS) problem calls for
finding a dominating set of minimum cardinality. In the Min-
imum Weight Dominating Set (MWDS) problem, each vertex
v is associated with a positive weight w(v), and the task is to
find a dominating set D which minimizes the total weight of
vertices in D (i.e., min

∑
v∈D w(v)).

3 Two-Level Configuration Checking
In this section, we define the CC2 strategy and present an
implementation for it. We start from the formal definition of
the configuration of a vertex v.

Definition 1 Given an undirected graph G = (V,E) and S
the candidate solution, the configuration of a vertex v ∈ V is
a vector consisting of state of all vertices in N2(v).

Based on the above definition, we can define an important
vertex in local search as follows.

Definition 2 Given an undirected graph G = (V,E) and S
the candidate solution, for a vertex v /∈ S, v is configuration
changed if at least one vertex in N2(v) has changed its state
since the last time v is removed from S.

In the CC2 strategy, only the configuration changed ver-
tices are allowed to be added to the candidate solution S.

We implement CC2 with a Boolean array ConfChange
whose size equals the number of vertices in the input graph.
For a vertex v, the value of ConfChange[v] is an indicator
— ConfChange[v]=1 means v is a configuration changed
vertex and is allowed to be added to the candidate solution
S; otherwise, ConfChange[v]=0 and it cannot be added to
S. During the search procedure, the ConfChange array is
maintained as follows.

CC2-RULE1. At the start of search process, for each ver-
tex v, ConfChange[v] is initialized as 1.

CC2-RULE2. When removing a vertex v from the can-
didate solution S, ConfChange[v] is set to 0, and for each
vertex u ∈ N2(v), ConfChange[u] is set to 1.

CC2-RULE3. When adding a vertex v into the candidate
solution S, for each vertex u ∈ N2(v), ConfChange[u] is
set to 1.

To understand RULE2 and RULE3, we note that if u ∈
N2(v), then v ∈ N2(u). Thus, if a vertex v changes its

state (i.e., either being removed or added w.r.t. the candidate
solution), the Configuration of any vertex u ∈ N2(v) is
changed.

The details of the relationship between CC and CC2 strate-
gies are presented in [Wang et al., 2017].

4 The Frequency based Scoring Function
In this paper, we introduce a novel scoring function by taking
into account of the vertices’ frequency, which can be viewed
as some kind of dynamic information indicating the accumu-
lative effectiveness that the search has on the vertex. Intuitive-
ly, if a vertex is usually uncovered, then we should encourage
the algorithm to select a vertex to make it covered.

In detail, in a graph, each vertex v ∈ V has an additional
property, frequency, denoted by freq[v]. The freq of each
vertex is initialized to 1. After each iteration of local search,
the freq value of each uncovered vertex is increased by one.
During the search process, we apply the freq of vertex to
decide which vertex to be added or removed. Based on this
consideration, we propose a new score function, which is for-
mally defined as below.
Definition 3 For a graph G = (V,E), and a candidate so-
lution S, the frequency based scoring function denoted by
scoref , is a function such that

scoref (u) =


1

w(u)
×

∑
v∈C1

freq[v], u /∈ S,

− 1

w(u)
×

∑
v∈C2

freq[v], u ∈ S,

(1)

where C1=N [u] \N [S] and C2=N [u] \N [S \ {u}].
Remark that, in the above definition, C1 is indeed the set

of uncovered vertices that would become covered by adding u
into S and C2 is the set of covered vertices that would become
uncovered by removing u from S.

5 The Selection Vertex Strategy
During the search process, for preventing visiting previous
candidate solutions, we not only use the CC2 strategy in the
adding process, but also use the forbidding list in the remov-
ing process. The forbid_list used here is a tabu list which
keeps track of the vertices added in the last step, and these
vertices are prevented from being removed within the tabu
tenure. In this sense, this frequency based prohibition mech-
anism can be viewed as an instantiation of the longer ter-
m memory tabu search, and the main difference is that our
method also consider the information from the CC2 strategy.

The algorithm picks a vertex to add or remove, using the
frequency based scoring function and the above two strate-
gies. Firstly, we give two rules for removing vertices.

REMOVE-RULE1. Removing one vertex v, which has
the highest value of scoref (v), breaking ties by selecting the
oldest one.

REMOVE-RULE2. Removing one vertex v, which is not
in forbid_list and has the highest value of scoref (v), break-
ing ties by selecting the oldest one.
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When the algorithm finds a solution, it removes one vertex
from the solution and continues to search for a solution with
smaller weight. In this process, we use REMOVE-RULE1 to
pick the vertex. During the search for a solution, the algorith-
m exchanges some vertices, i.e., removing one vertex from
the candidate solution and then iteratively adding vertices in-
to the candidate solution. In this case, we select one vertex to
remove according to REMOVE-RULE2.

The rule to select the adding vertices is given below.
ADD-RULE. Adding one vertex v with ConfChange[v]

6= 0, which has the greatest value scoref (v), breaking ties by
selecting the oldest one.

When adding one vertex into the candidate solution, we try
to make the resulting candidate solution’s cost (i.e., the to-
tal weight of uncovered vertices) as small as possible. When
adding one configuration changed vertex with the highest val-
ue scoref (v), breaking ties by preferring the oldest vertex.

6 CC2FS Algorithm
Based on CC2 and the frequency based scoring function, we
develop a local search algorithm named CC2FS. During the
process of local search, we maintain a set from which the
vertex to be added is chosen. The set for finding a vertex to
be removed from the candidate solution is simply S.

CCV 2 = {v|ConfChange[v] = 1, v /∈ S}
The pseudo code of CC2FS is shown in Algorithm 2. At

first, CC2FS initializes ConfChange, forbid_list and the
frequency and scoref of vertices. Then it gets an initial
candidate solution S greedily by iteratively adding the ver-
tex that covers the most remaining uncovered vertices until
S covers all vertices. At the end of initialization, the best
solution S∗ is updated by S.

After initialization, the main loop from lines 3 to 16 begins
by checking whether S is a solution (i.e., covers all vertices).
When the algorithm finds a better solution, S∗ is updated.
Then one vertex with the highest scoref value in S is selected
to be removed, breaking tie in favor of the oldest one. Finally,
the values of ConfChange are updated by CC2-RULE2.

If there are uncovered vertices, CC2FS first picks one ver-
tex to remove from S with the highest value scoref , break-
ing tie in favor of the oldest one. Note that when choos-
ing a vertex to remove, we do not consider those vertices
in forbid_list, as they are forbidden to be removed by the
forbidden list. After removing a vertex, CC2FS updates the
ConfChange values according to CC2-RULE2, and clear
forbid_list. Additional, since the tabu tenure is set to be 1,
the forbid_list shall be cleared to allow previous forbidden
vertices to be added in subsequent loop.

After the removing process, CC2FS iteratively adds one
vertex into S until it covers all vertices, i.e. the candidate so-
lution is a dominating set. CC2FS first selects v ∈ CCV 2

with the greatest scoref (v), breaking ties in favor of the old-
est one. When the picked uncovered vertex is added into
the candidate solution, the ConfChange values are updat-
ed according to CC2-RULE3 and this added vertex is added
into the forbid_list. After adding an uncovered vertex each
time, the frequency of uncovered vertices is increased by one.
When the time limit reaches, the best solution will be re-

Algorithm 1: CC2FS (G, cutoff)
Input: a weighted graph G = (V,E,W ), the cutoff time
Output: dominating set of G

1 initialize ConfChange, forbid_list, and the freq and
scoref of of vertices;

2 S := InitGreedyConstruction() and S∗ := S;
3 while elapsed time < cutoff do
4 if there are no uncovered vertices then
5 if w(S) < w(S∗) then S∗ := S;
6 v := a vertex in S with the highest value scoref (v),

breaking ties in the oldest one;
7 S := S \ {v} and update ConfChange according to

CC2-RULE2;
8 continue;

9 v := a vertex in S with the highest value scoref (v) and
v /∈ forbid_list, breaking ties in the oldest one;

10 S := S \ {v} and update ConfChange according to
CC2-RULE2;

11 forbid_list := ∅;
12 while there are uncovered vertices do
13 v := a vertex in CCV 2 with the highest value

scoref (v), breaking ties in the oldest one;
14 S := S ∪ {v} and update ConfChange according to

CC2-RULE3;
15 forbid_list := forbid_list ∪ {v};
16 freq[v] := freq[v] + 1, for v /∈ N [S];

17 return S∗;

turned. For each iteration, the local search stage of CC2FS
has a time complexity of O(max{∆(G)|V |, ∆(G)3}), where
∆(G) = max{|N [v]||v ∈ V,G = (V,E)}.

7 Empirical Results
We compare CC2FS with five competitors on a broad range
of benchmarks, with respect to both solution quality and run
time. The run time is measured in CPU seconds. We run
CC2FS on a broad range of test instances, namely T1, T2,
UDG, DIMACS, BHOSLIB, as well as many real world mas-
sive graphs. For T1 and T2 instances [Jovanovic et al., 2010],
we note that ten instances are generated for each combination
of number of nodes and transmission range.

We compare CC2FS with HGA [2013], ABC [2014],
ACO-PP-LS [2013], EA/G-IR [2015], and R-PBIG [2016].
Among them, R-PBIG and ACO-PP-LS are the best available
algorithms for solving MWDS.

We implement CC2FS in C++ and compile it by g++ with
the -O2 option. All the experiments are run on Ubuntu Lin-
ux, with 3.1 GHZ CPU and 8GB memory. For T1 and T2 in-
stances, CC2FS and ACO-PP-LS are performed once, where
one run is terminated upon reaching a given time limit. A-
mong this, the parameter time limit is set to 50 seconds when
the number of vertices is less than 500, otherwise the time
limit is set to 1000 seconds. We report the real time RTime
of ACO-PP-LS and CC2FS, while we also give the finial ex-
ecution time FTime of EA/G-IR and R-PBIG. The real time
is a time when ACO-PP-LS and CC2FS obtain the best solu-
tion respectively. The MEAN contains the average solution
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Table 1: Experiment results of HGA, ACO-PP-LS, ABC, EA/G-IR,
R-PBIG, and CC2FS on the T1 benchmark.

Instance HGA ACO-PP-LS ABC EA/G-IR R-PBIG CC2FS
T1 MEAN MEAN RTime MEAN MEAN FTime MEAN FTime MEAN RTime

v50e50 531.3 531.3 0.2 534 532.9 0.21 531.3 0.5 531.3 <0.01
v50e100 371.2 371.2 0.17 371.2 371.5 0.23 371.1 0.8 370.9 <0.01
v50e250 175.7 175.7 0.12 175.7 175.7 0.18 175.7 1.3 175.7 <0.01
v50e500 94.9 94.9 0.05 94.9 94.9 0.16 95 2.3 94.9 <0.01
v50e750 63.1 63.1 0.03 63.1 63.3 0.1 63.8 2.5 63.3 <0.01
v50e1000 41.5 41.5 0.01 41.5 41.5 0.1 41.5 3 41.5 <0.01
v100e100 1081.3 1065.6 2.05 1077.7 1065.5 0.76 1061.9 1.4 1061 0.04
v100e250 626.2 623.1 1.3 621.6 620 0.72 619.3 2.2 618.9 0.04
v100e500 358.3 360.6 0.54 356.4 355.9 0.6 356.5 3 355.6 <0.01
v100e750 261.2 261 0.46 255.9 256.7 0.52 256.5 3.7 255.8 <0.01
v100e1000 205.6 207.3 0.38 203.6 203.6 0.49 203.6 4.3 203.6 <0.01
v100e2000 108.2 108.4 0.2 108.2 108.1 0.45 108 6.2 107.4 0.19
v150e150 1607 1582 4.88 1607.9 1587.4 1.64 1582.5 2.4 1580.5 0.02
v150e250 1238.6 1228.4 3.67 1231.2 1224.5 1.71 1219.5 3.3 1218.2 0.06
v150e500 763 763 2.2 752.1 755.3 1.45 745 4.3 744.6 0.05
v150e750 558.5 554 1.46 549.3 550.8 1.27 548.2 5.2 546.1 0.04
v150e1000 438.7 440.7 1.34 435.1 435.2 1.11 433.6 5.9 432.9 0.03
v150e2000 245.7 251.8 0.89 242.2 241.5 0.88 241.5 8.7 240.8 0.17
v150e3000 169.2 171.4 0.8 167.8 168.1 0.82 168.4 11.1 166.9 0.06
v200e250 1962.1 1919.5 9.54 1941.1 1924.1 3.68 1914.6 4.7 1910.4 0.19
v200e500 1266.3 1252.9 4.92 1246.9 1251.3 3.3 1235.3 6.2 1232.8 1.01
v200e750 939.8 934.3 3.71 923.7 927.3 2.78 914.9 7.4 911.2 0.45
v200e1000 747.8 741.8 2.99 730.4 731.1 2.39 725.2 8.2 724 0.25
v200e2000 432.9 437.3 1.36 417.6 417 1.68 414.8 10.9 412.7 0.45
v200e3000 308.5 308.8 1.24 294.4 294.7 1.42 294.2 14.2 292.8 0.41
v250e250 2703.4 2646.6 16.09 2685.7 2653.7 4.65 2653.7 6 2633.4 0.2
v250e500 1878.8 1840.1 10.91 1836 1853.3 4.66 1812.6 8.6 1805.9 0.92
v250e750 1421.1 1396.8 7.15 1391.9 1399.2 4.25 1368.6 9.6 1362.2 0.65
v250e1000 1143.4 1120.2 5.53 1115.3 1114.9 3.69 1097.1 10.9 1091.1 0.48
v250e2000 656.6 666 3.23 630.5 637.5 2.65 624.7 14 621.9 0.44
v250e3000 469.3 469.4 2.64 454.9 456.3 2.16 451.5 17.9 447.9 0.72
v250e5000 300.5 307 2.29 292.4 291.8 5.16 291.5 25.4 289.5 0.17
v300e300 3255.2 3190.6 24.39 3240.7 3213.7 8.73 3189.3 7.6 3178.6 1.47
v300e500 2509.8 2461.4 21 2484.6 2474.8 7.21 2446.9 10.2 2438.1 1.46
v300e750 1933.9 1885.1 16.91 1901.4 1896.3 6.48 1869.6 12 1854.6 1.6
v300e1000 1560.1 1532.7 10.49 1523.4 1531 5.7 1503.4 13.2 1495 0.61
v300e2000 909.6 900.5 5.95 875.5 880.1 4.03 872.5 16.8 862.5 1.93
v300e3000 654.9 658.8 4.03 635.3 638.2 3.27 629 21.3 624.3 1.12
v300e5000 428.3 432.3 3.67 411 415.7 2.59 409.4 29.8 406.1 1.72
v500e500 5498.3 5370.4 99.09 5480.1 5380.1 37.52 5378.4 21.1 5305.7 2.63
v500e1000 3798.6 3675.8 64.96 3707.6 3695.2 26.36 3642.2 29.1 3607.8 4.24
v500e2000 2338.2 2236.2 32.85 2266.1 2264.3 25.54 2203.9 36.1 2181 4.83
v500e5000 1122.7 1105.8 15.57 1070.9 1083.5 9.02 1055.9 55.9 1043.3 5.07
v500e10000 641.1 640.9 10.57 596 606.8 6.08 596.3 76.2 587.2 6.19
v800e1000 8017.7 7991.6 174.62 7907.3 7792.2 129.82 7768.6 67.9 7663.4 10.58
v800e2000 5317.7 5298.4 95.34 5193.2 5160.7 102.09 5037.9 83.3 4982.1 8.83
v800e5000 2633.4 2578.8 59.23 2548.6 2561.9 53.02 2465.4 122.6 2441.2 6.58
v800e10000 1547.7 1512.7 41.86 1471.7 1497 31.17 1420 171.1 1395.6 6.84
v1000e1000 11095.2 10984.9 412.14 10992.4 10771.7 249.82 10825 96.9 10585.3 12.18
v1000e5000 3996.6 3977.7 91.07 3853.7 3876.3 107.41 3693.1 184.2 3671.8 8.49
v1000e10000 2334.7 2291.8 83.82 2215.9 2265.1 63.22 2140.3 254.9 2109 9.43
v1000e15000 1687.5 1647.4 63.15 1603.2 1629.4 45.86 1549.1 282 1521.5 11.91
v1000e20000 1337.2 1297.5 44.21 1259.5 1299.9 36.35 1219 289.8 1203.6 11.4

values for each of the ten instances of graphs of a particular
size.

The performance results of previous algorithms on the T1
benchmark are displayed in Table 1. More importantly, this
table also summarizes the experimental results on the first
benchmark for our algorithm.

Among previous algorithms, for most instances, R-PBIG
and ACO-PP-LS can find better solutions than HGA, ABC
and EA/G-IR, with only a few exceptions.

For our algorithm, we show the minimum solution value
and the run time. As is clear from the Table 1, CC2FS shows
significant superiority on the T1 benchmark, except v50e750.
By comparing these algorithms, we can easily conclude that
CC2FS outperforms other algorithms.

The experimental results on the T2 benchmark are pre-
sented in Table 2. The quality of the solutions found by
CC2FS is always much smaller than those found by other al-
gorithms on all instances with 2 exceptions, i.e. v250e250
and v800e10000. Details of the experiemental results as

Table 2: Experiment results of HGA, ACO-PP-LS, ABC, EA/G-IR,
R-PBIG, and CC2FS on the T2 benchmark.

Instance HGA ACO-PP-LS ABC EA/G-IR R-PBIG CC2FS
T2 MEAN MEAN RTime MEAN MEAN FTime MEAN FTime MEAN RTime

v50e50 60.8 60.8 0.08 60.8 60.8 0.19 60.8 0.5 60.8 <0.01
v50e100 90.3 90.3 0.17 90.3 90.3 0.27 90.3 0.8 90.3 <0.01
v50e250 146.7 146.7 0.09 146.7 146.7 0.23 146.7 1.4 146.7 <0.01
v50e500 179.9 179.9 0.04 179.9 179.9 0.09 179.9 2.1 179.9 <0.01
v50e750 171.1 171.1 0.01 171.1 171.1 0.07 171.1 2.4 171.1 <0.01
v50e1000 146.5 146.5 0.01 146.5 146.5 0.06 146.5 2.9 146.5 <0.01
v100e100 124.5 123.5 1.05 124.4 123.5 0.6 123.5 1.2 123.5 <0.01
v100e250 211.4 210.1 0.89 209.6 209.2 0.92 209.2 2.1 209.2 <0.01
v100e500 306 305.7 0.57 305.8 305.7 0.78 305.7 2.9 305.7 <0.01
v100e750 385.3 384.5 0.45 384.5 384.5 0.7 386.9 3.5 384.5 <0.01
v100e1000 429.1 427.7 0.21 427.3 427.3 0.67 427.3 4.2 427.3 <0.01
v100e2000 550.6 550.6 0.15 550.6 550.6 0.54 552.7 6.3 550.6 <0.01
v150e150 186 184.5 2.9 185.9 184.5 1.85 184.5 2.1 184.5 0.07
v150e250 234.9 233 2.7 233.4 232.8 2.03 232.8 3.1 232.8 <0.01
v150e500 350 350.3 1.49 349.5 349.7 1.95 349.7 4.4 349.5 <0.01
v150e750 455.8 453 1.81 453.7 452.4 1.78 452.4 5.4 452.4 <0.01
v150e1000 547.5 549 1.3 547.8 548.2 1.61 547.8 6 547.2 <0.01
v150e2000 720.1 720.8 0.88 720.1 720.1 1.2 720.1 8.4 720.1 <0.01
v150e3000 792.6 792.4 0.56 793.2 792.4 1.07 793.2 11.7 792.4 0.66
v200e250 275.1 272.2 5.01 273.5 272.3 4.38 271.7 4.3 271.7 <0.01
v200e500 390.7 387.4 3.71 387.6 388.4 4.51 386.8 6.1 386.7 0.04
v200e750 507 499.7 3.56 498.5 497.2 4.18 497.1 7.2 497.1 <0.01
v200e1000 601.1 598.9 2.69 599.3 598.2 3.89 596.8 8.5 596.8 0.04
v200e2000 893.5 887.3 1.88 885.5 885.8 2.78 884.6 11.4 884.6 0.09
v200e3000 1021.3 1027 1.01 1021.3 1019.7 2.16 1019.2 14.1 1019.2 0.06
v250e250 310.1 306.5 8.86 308.6 306.5 5.26 306 4.9 306.1 0.01
v250e500 444 441.9 9.11 442.6 441.6 6.1 441 8.2 440.7 0.16
v250e750 578.2 571.4 7.64 569.9 569.2 6.09 567.9 10 567.4 0.2
v250e1000 672.8 671.5 4.81 670.3 671.7 5.89 669.2 11.4 668.6 0.17
v250e2000 1030.8 1018.9 3.88 1010.4 1010.3 4.23 1009.5 14.5 1007 0.48
v250e3000 1262 1261.2 2.75 1251.3 1250.6 3.5 1251.6 18.1 1250.6 0.57
v250e5000 1480.9 1469.6 1.36 1464.7 1464.2 2.59 1464.2 25.5 1464.2 0.01
v300e300 375.6 371.1 14.46 373.5 370.5 9.01 369.9 6.3 369.9 0.13
v300e500 484.2 479.9 11.93 481.6 480 8.83 478 9.6 477.8 0.06
v300e750 623.8 616.1 13.63 617.6 613.8 7.57 613.6 11.7 613.3 0.37
v300e1000 751.1 740.9 11.37 743.6 742.2 8.96 738.3 13.5 737.9 0.28
v300e2000 1106.7 1104.5 6.86 1095.9 1094.9 6.67 1094.6 17.4 1093.8 0.03
v300e3000 1382.1 1398.4 6.25 1361.7 1359.5 5.41 1358.5 20.9 1358.5 0.08
v300e5000 1686.3 1691.5 3.21 1682.7 1683.6 4.02 1683.2 29.5 1682.7 0.01
v500e500 632.9 627.3 33.4 630.4 625.8 31.06 624.2 17.7 623.6 0.29
v500e1000 919.2 907.6 70.92 906.7 906 28.27 901.3 28.1 899.8 2.08
v500e2000 1398.2 1381.5 38.78 1383.6 1376.7 23.41 1364.4 37.2 1363.3 2.28
v500e5000 2393.2 2406.9 11.87 2337.9 2340.3 17.36 2341.5 59 2333.7 0.31
v500e10000 3264.9 3277.9 6.48 3211.5 3216.4 10.8 3216.1 80.5 3211.5 0.06
v800e1000 1128.2 1121.7 274.35 1119.2 1107.9 132.36 1107.6 59.6 1104.3 2.36
v800e2000 1679.2 1674.9 97.55 1656.4 1641.7 111.84 1634.6 83.5 1632.3 3.59
v800e5000 3003.6 3065.7 47.02 2917.4 2939.3 68.14 2884.8 128.3 2878.5 3.65
v800e10000 4268.1 4357.1 26.77 4121.3 4155.1 40.15 4103.7 183.9 4105.6 1.55
v1000e1000 1265.2 1254.4 564.71 1256.2 1240.8 202.08 1243.6 80.9 1237.7 0.86
v1000e5000 3320.1 3371.6 95.9 3240.7 3222 132.94 3195.7 196 3178.7 8.87
v1000e10000 4947.5 5041.6 55.26 4781.2 4798.6 84.82 4722.4 274.6 4711.8 4.06
v1000e15000 6267.6 6336.1 46.07 5931 5958.1 61.64 5884.2 305.2 5874.2 2.97
v1000e20000 7088.5 7166.7 37.65 6729 6775.8 59.2 6678 319.2 6662.1 2.68

well as the analysis based on benchmarks of the DIMACS,
BHOSLIB, and real world massive graphs are presented in
[Wang et al., 2017].

8 Conclusions
This paper presented a local search algorithm called CC2FS
for solving the minimum weight dominating set (MWDS)
problem. We proposed a new configuration checking strategy
namely CC2 based on the two-level neighborhood of vertices
to remember the relevant information of removed and added
vertices and prevent visiting the recent paths. Moreover, we
introduced a new frequency based scoring function for solv-
ing MWDS. The experimental results showed that CC2FS
performs essentially better than state of the art algorithms on
almost all instances in terms of solution quality and run time.
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