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Abstract

In automated bilateral multi issue negotiations, two
intelligent automated agents negotiate on behalf of
their owners over many issues in order to reach an
agreement. Modeling the opponent can excessively
boost the performance of the agents and increase
the quality of the negotiation outcome. State of the
art models accomplish this by considering some as-
sumptions about the opponent which restricts their
applicability in real scenarios. In this paper, a less
restricted technique (POPPONENT) is proposed,
where perceptron units are applied in modelling the
preferences of the opponent. This model adopts
a Multi Bipartite version of the Standard Gradient
Descent search algorithm (MBGD) to find the best
hypothesis, which is the best preference profile. In
order to evaluate the accuracy and performance of
this proposed opponent model, it is compared with
the state of the art models available in the Genius
repository and in the devised setting. The results
approve the higher accuracy of POPPONENT com-
pared to the most accurate state of the art model.
Evaluating the model in the real world negotiation
scenarios in the Genius framework also confirms its
high accuracy in relation to the state of the art mod-
els in estimating the utility of offers. The findings
here indicate that the proposed model is individually
and socially efficient. The proposed MBGD method
could also be adopted in similar practical areas of
Artificial Intelligence.

1 Introduction

Negotiation is the science and art of resolving any kind of
disputes and reaching consensus among human parties. In
an automated bilateral multi-issue version of negotiations, in-
telligent computer agents engage in a cooperative process
on behalf of their beneficiaries with different and some-
times contradicting interests, with the objective of achiev-
ing an agreement on one or more issues. Recently, with
the emergence of ANAC (an annual international Automated

*This paper is an extended abstract of an article in the Artificial
Intelligence journal [Zafari and Nassiri-Mofakham, 2016b].
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Negotiating Agents Competition) [Baarslag et al., 2012;
Fujita ef al., 2013], many new negotiation strategies have
been developed. Most of the existing sophisticated negotia-
tion strategies typically consist of a set of fixed modules. In
general, three main components are distinguished in a negoti-
ating agent which work together within a BOA framework to
accomplish the whole negotiation task [Baarslag et al., 2014]:
Bidding Strategy (BS), which decides which offer will be sent
to the opponent as the next proposal, Opponent Model (OM),
which constructs a model of the preference profile of the op-
ponent through a learning technique, and Acceptance Strategy
(AC), which receives the incoming offer from the opponent
and the outgoing offer chosen by the bidding strategy compo-
nent, and determines whether the incoming offer is acceptable
for the agent or not.

Despite the variety in opponent modelling techniques, most
of the current models rely on a small and common set of
learning techniques [Baarslag et al., 2016]. Moreover, since
in a single negotiation session all bids (i.e., training exam-
ples) are not available at the same time, traditional learning
techniques are not easily applied. An opponent model that
is able to learn incrementally and update itself once the new
training examples (i.e., offers) arrive during a negotiation
session is of necessity. Another problem in the negotiation
setting is that the training instances lack the output variable
(i.e., the variable which contains the utility values of the re-
ceived bids in the opponent’s view). Therefore, specific op-
ponent models are required that are capable of modeling the
preferences of the opponent with no need for the value of
the output variable. In order to overcome this limitation, all
the existing opponent models use a subset of assumptions to
extract the preferences of the opponent [Zafari and Nassiri-
Mofakham, 2016b]. Another difficulty with modeling an
opponent’s preferences in bilateral negotiations is related to
the time factor. The post event analysis of ANAC tourna-
ments also confirms that the computational complexity of the
opponent models and the poor accuracy are the two main
factors that degrade the performance of the agents applying
these models [Baarslag, 2016]. In particular, the time factor
is of paramount importance in online opponent models. In
these models, the participating agents usually exchange a lim-
ited number of offers before the negotiation deadline is met,
therefore, they do not contain enough information to accu-
rately train an opponent model [Hindriks and Tykhonov, 2008;
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Sycara and Zeng, 1997]. Consequently, the ability of the
model to extract the most information possible from the train-
ing bids it receives is highly essential. Therefore, a proper
opponent model should function based on the least assump-
tions, be efficient, extract the most information from minimum
number of bids, and embrace incremental training capability.
To learn the issue weight values and individual utility func-
tion captured by opponent models, a two layered architecture
would be essential. To overcome the aforementioned difficul-
ties, in this paper, a new opponent preference model based on
perceptron units is proposed in bilateral multi issue negotiation
domains. Moreover, to be more applicable in real world nego-
tiations, fewer and more realistic assumptions than those of
the state of the art models are applied in this study. This is ob-
tained by proposing an opponent model named POPPONENT,
based on an adapted version of the standard gradient decent
search [Zafari and Moser, 2016; Zafari and Moser, 2017b;
Zafari and Moser, 2017a] (named the Multi Bipartite Gradient
Decent Search). The model shows great success in the practi-
cal Al area of modelling the opponent preferences in bilateral
multi issue negotiations with incomplete information, and the
proposed Multi Bipartite Gradient Decent Search method used
to train the model can be conveniently adopted in the similar
Al problems.

2 Negotiation Setting

The negotiation setting here is in accordance with the set-
ting employed by the state of the art models in the field
of bilateral automated negotiations and the setting of the
ANAC 2010-2013 [Baarslag er al., 2012; Fujita et al., 2013;
Lin et al., 2014; Baarslag et al., 2013; Yaakov and Ilany, 2015;
Zafari et al., 2015]'. Automated agents alternatively exchange
offers and compete against each other to reach a joint agree-
ment on a set of issues in bilateral negotiations. The issues
and possible values for each issue constitute a domain. For
each domain there could be two preference profiles (one for
each side of the negotiation) which together with the domain
construct a negotiation scenario. The interaction between ne-
gotiating parties is regulated by a negotiation protocol that
defines the rules of how and when proposals can be exchanged.
In this setting, the alternating offers protocol is applied [Ru-
binstein, 1982]. Negotiation is bilateral, that is, exactly two
parties are negotiating over one or a set of issues. Each is-
sue is associated with a set of possible values. The agents
repeatedly exchange offers in successive rounds, so as to reach
a mutually acceptable outcome. The negotiation deadline
is reached after a specified number of N rounds are passed.
This type of negotiation setting is commonly referred to as
a round based setting. Each agent tries to take advantage of
the other party for gaining a maximum utility for its own. A
negotiation break-off causes both negotiating parties to obtain
their reservation values. Therefore, the agents try to reach an
agreement before the deadline. A negotiation session takes
place in a negotiation scenario, which consists of a negotiation

'In 2014, another setting has been added for negotiations under
nonlinear utilities and in ultra large domains [Zafari and Nassiri-
Mofakham, 2016a]. ANAC 2015 and 2016 considered multi-party
negotiations
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domain (or, alternatively, an outcome space) and two pref-
erence profiles (or, alternatively, utility space) one for each
negotiating agent. The negotiation domain Q specifies all
possible offers @ that the agents can send or receive. Each
offer or possible outcome is a vector < @y, ..., ®, >, where
each component is the mapping of every issue i to a value
®; € {vit,,Vim, }» where, m; is the number of possible values
forissue i, i = 1,...,n [Fujita et al., 2013]. A preference pro-
file {< B,U(a) > |8 € Q}, on the other hand, consists
of a utility function U (B) which maps each possible offer
@ € Q to a value in the [0,1] range based on the overall
relative value of that offer for the agent. In multi-issue negoti-
ations, the common assumption is that the utility of an offer
can be computed as a weighted sum of the utilities associated
with the values for each issue [Nassiri-Mofakham et al., 2008;
Nassiri-Mofakham er al., 2009]. Accordingly, in the nego-
tiation setting here, the agents use the linear additive utility
function shown in Equation (1) , defined by a set of weights
w;, and the corresponding evaluation functions or evaluation
values eval;(®;),i = 1,...,n for the issue value ®; of a given

offer 3
n

U(a) = Zw,- x eval; (@) (1)
i=1

Unlike the negotiation domain which is publicly known for
both the negotiating parties, the preference profile is private
for each agent, so the agents are not aware of the weights
and evaluation values associated with the preference profile of
one another. This negotiation setting is online, meaning that
the agent is only allowed to use the offers exchanged during
a single negotiation session to model the preferences of the
opponent. Unlike offline opponent models, where negotiation
information from different negotiation sessions is used, in
online models [van Krimpen et al., 2013] no history of the

previous negotiations is provided for the opponent model.

3 POPPONENT Algorithm

The preference profile of the opponent in linear scenarios is
learnt using the multi bipartite incremental gradient descent
search [Zafari and Nassiri-Mofakham, 2016b]. This algorithm
learns the issue priorities or weight values w{* through wo”
and the evaluation values eval®F (;) for all possible values
®; € Vi1,...,Vim;, (Where, m; is the number of possible values
for issue i) and all negotiation issues i (i = 1,...,n) in that
negotiation domain.

This proposed algorithm implements the multi bipartite in-
cremental gradient descent search and applies two parameters
of n and N as the input. Parameter 1) represents the learning
rate which determines the step size in the gradient descent
search. Parameter N represents the number of training repeats
for each training instance. This algorithm includes two sepa-
rate functions of initializer and updater. The first function is
invoked just once when the model is generated and the essen-
tial parameters of the proposed model, most importantly the
preference profile of the opponent (that is, the issue weights
inP and evaluations evaliOP (;) for issue values) is initialized.
By trying different initial points, it is realized that 0.5, the
midpoint in the hypothesis space, is the best point for initial-
izing eval® (@) values for each @; € Vi, ..., Vim,i = 1,...,n



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

(Algorithm: line 13). Similarly, for the weight values w;, equal
weights % are chosen for all issues (Algorithm: line 14). The

second function receives an offer vector & which specifies
the issue values for all the negotiation issues of a new offer
recently received from the opponent. That is, as soon as a new
offer is received from the opponent, this function is invoked to
update the model based on this newly received bid. It updates
the estimated preference profile of the opponent by adjust-
ing evaliOP (®;) and w; values (Algorithm: Lines 18 and 21).
Whenever a new offer is received from the opponent, the per-
ceptron learning delta rules (Algorithm: lines 18 and 21) are
repeated N times. The EstimatedUtility°F (w) is a function
which receives an offer as the input and returns the estimated
utility value of that offer in the opponent’s utility space as the
output. In this algorithm, instead of updating each eval?F ()
and w9" value after calculating all Aw; and Aeval?" values
when all training examples are met, each eval?” (®;) and wP?
value is modified using training delta rules right after each
single training instance is met in an incremental manner (Al-
gorithm: Lines 18, 21). Therefore, this algorithm can easily
be applied in more realistic negotiation scenarios in which
training examples (opponent offers) are gradually met one at a
time. The POPPONENT algorithm is as follows:

Algorithm: Perceptron-Based Opponent Model
1: Where,

2: y is the learning rate.

3: N is the maximum number of training repeats for each training instance.

@: @ = (w4, -+, wy) is the offer vector containing the values of a new offer received
from the opponent.

15: n is the number of issues.

6: m; is the number of possible values for i-th issue.

7: w; denotes a possible value for the i-th issue.

8: wPP is the weight of the i-th issue.

9: eval®" is the evaluation function of the opponent for the i-th issue.

10: ; is the value of i-th issue for the offer @.

11:  PerceptronUtility®”(&3) is the estimated utility of the offer & in the opponent’s
utility space, which is obtained by feeding the offer into the perceptron unit and
getting the output value.

12:  EstimatedUtility°"(&) is a function which receives an offer @ as the input and
returns the estimated utility of that bid in the opponent’s utility space as the output.
This function value is calculated using the estimated bidding behavior of the
opponent.

Initializer

13:  Initialize all evaluation values eval,°"(w,) to 0.5, for each w; € {vil, ey, viml} i=
1, ..., n).

14: Initialize each weight value w?” to %

Updater

15: Repeat the following process N times

16: For each evaluation value evallop(w,‘), Do

17: Input the instance @ to the unit and compute the output
PerceptronUtility®"(@).

18: eval " (w;) — eval®’(w;) + y(EstimatedUti]ityop(a) -

PerceptronUtility®"(&@)). wPF.

19: For each issue weight value wi, Do

20: Input the instance & to the unit and compute the output
PerceptronUtility® ().
21: wPP — wPP + y.(EstimatedUtility°" (@) - PerceptronUtility® (@)). eval®"(w)).

This proposed model is a supervised algorithm, thus it
needs output labels for training instances. The problem of
preference modelling in bilateral multi issue negotiations
through supervised learning methods can be separated into
two sub-problems: 1) estimating the utility values of the
opponent’s offer history (the history of the offers received
from the opponent through the negotiation session) and 2)
extracting the estimated utility function (or the preference
profile) of the opponent from the opponent’s offer history.
By solving the first problem, now the opponent’s offer his-
tory contains all the estimated offer utilities for each offer
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in the opponent’s offer history. The EstimatedUtility°? (@)
function which deals with the first sub-problem, can be es-
timated according to the perceived bidding behavior of the
opponent. In this article, four different values - three con-
stant (0.6, 0.8, and 1) and one adaptive method (named P6,
P8, P1, AP, respectively) are applied in order to estimate
the utilities of the offers proposed by the opponent. For the
fourth value, we use the adaptive method where the agent
estimates the bids that the opponent will offer in future,
based on the opponent’s bid history [Ikrashi and Fujita, 2014;
Witten et al., 2016]. The computational complexity of POP-
PONENT Algorithm is linear (O(n)).

4 Experiments

To evaluate the proposed model, two separate experimental
settings are applied for assessing its accuracy and performance,
in real world negotiation examples, compared to the available
opponent models from Genius repository [Lin et al., 2014].
In the following sections, we present the experimental results
obtained in these two experimental settings (for the details,
please see [Zafari and Nassiri-Mofakham, 2016b]). The mod-
els used in these experiments are abbreviated in Table 1.

Abbreviation _Opponent Model Abbreviation _Opponent Model

Po Perceptron Based Model (Constant 0.6)  SF Smith Frequency Model

P8 Perceptron Based Model (Constant (.8)  FF The Fawkes Frequency Model

P1 Perceptron Based Model (Constant 1)~ IHB IAMHaggler Bayesian Model

AP Adaptive Perceptron Based Model PIHB Perfect [AMHaggler Bayesian Model
PP Perfect Perceptron Based Model NRB The Negotiator Reloaded Bayesian Model
LGF AgentLG Frequency Model SB Scalable Bayesian Model

XF AgentX Frequency Model PSB Perfect Scalable Bayesian

CKF CUHKAgent Frequency Model oM Opposite Model

HHF HardHeaded Frequency Model NM No Model

IXF InoxAgent Frequency Model M Perfect Model

NF Nash Frequency Model WM Worst Model

Table 1: The list of the opponent models used in the experi-
ments

4.1 Experiment I

The first setting evaluates the accuracy of POPPONENT model
through the Pearson Correlation measure. The experimental
setting applied by [Baarslag et al., 2013] for automated bilat-
eral multi issue negotiations is applied to evaluate the accuracy
of POPPONENT model versus the state of the art opponent
models. According to this setting, 5 variations of POPPO-
NENT are compared with a total of 15 opponent models. In
this experiment, the agents employing these opponent models
negotiate against a category of opponent agents with different
bidding strategies in a number of negotiation domains. The
average accuracies of top performing opponent models against
all opponent agents are depicted in Fig. 1, where at the perfect
information state (PP), the proposed model outperforms the
state of the art models by a large margin. As observed, the
other three variations of POPPONENT (i.e., P6, P8, and P1
except PP) outperform the state of the art models with respect
to the average accuracy over all opponents.

4.2 Experiment II

In the second Experiment, the proposed model is evaluated
by measuring the real performance of the agents applying
this model in 7 domains (Table 2) of real world experimental
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Fig. 1: Average accuracy of POPPONENT variations and the
top state of the art opponent model in Experiment I

negotiation scenarios. A similar setting to the one applied
by the ANAC organizers [Baarslag et al., 2013] is designed
here. To accomplish this, a BOA framework is applied to
embed each opponent model into an agent framework, the
bidding strategy of which (together with its associated accep-
tance strategy) is chosen from the state of the art agents. In
this setting, two sets of negotiation agents compete with each
other in a tournament. The first set of agents are constructed
using the top performing ANAC agents and some of the clas-
sic agents without an opponent component, and the second
set is comprised of the same set of agents, except that they
are equipped with one of the opponent models from Table
1. Then, the average performance of each opponent model is
assessed by measuring the average performance of the agents
that employed that opponent model. Six performance mea-
sures of Avg. utility, Avg. time of agreement, Avg. Pareto
Distance of Agreement, Avg. Kalai Distance of Agreement,
Avg. Nash Distance of Agreement and Avg. Percentage of
Pareto Bids are applied for this purpose. The results of the
Experiment II indicate that POPPONENT is the most accurate
model compared with other models available. This is consis-
tent with the results of the first experiment, where it is found
that the accuracy of POPPONENT exceeds state of the art
models. Moreover, we also found that POPPONENT (AP)
and IXF models are the only two models which can outper-
form all other models in at least one domain with respect to
all performance/accuracy measures. Both Experiments I and
II reveal that POPPONENT is undoubtedly the most accurate
model among all its counterparts. The experiments also re-
vealed that POPPONENT achieves the highest performance in
the Grocery domain for the average utility measure (through
AP), the highest performance in the Travel and ItexVsCypress
domains for the average time of agreements measure (through
AP), the highest performance in the ItexVsCypress for the
Nash and Kalai distance measures (through AP), the highest
performance in the Grocery domain for the Pareto distance
measure (through AP), the best performance in the Supermar-
ket, Travel, Thompson, Energy, Camera, and ItexVsCypress,
for the Pearson Correlation measures (through P1), and the
best performing model in the Thompson domain for the per-
centage of Pareto bids measure (through P1). These results
are tabulated in Tables 2 and 3.
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Domain Utility Pearson Nash Pareto Kalai Time Pareto Bids %
Supermarket  IXF P1 IXF XF IXF XF XF

Travel IXF P1 IXF IXF IXF AP XF
Thompson IXF P1 CKF IXF CKF CKF P1

Grocery AP IXF CKF AP CKF SF LGF

Energy HHF P1 IXF HHF IXF IXF XF

Camera LGF P1 CKF LGF CKF LGF LGF
ItexVsCypress IXF P1 AP IXF AP AP IXF

Average IXF P1 IXF IXF IXF LGF XF

Table 2: Top performing real model in each domain for all
performance/accuracy measures in Experiment 11

domain LGF CKF SF XF HHF IXF AP Pl
Supermarket 0.57351 0.56896 0.56965 0.58600 0.56570 0.58087 0.57105 0.56914
Travel 0.64750 0.64959 0.64961 0.63896 0.65197 0.65680 0.65050 0.63812
Thompson 0.53872 0.53833 0.54093 0.52814 0.53756 0.54132 0.53514 0.51591
Grocery 0.69604 0.69729 0.69707 0.69128 0.69576 0.69842 0.69872 0.68984
Energy 0.29733 0.29924 0.30033 0.29410 0.30118 0.30060 0.29713 0.29507
Camera 0.64786 0.64721 0.64752 0.64748 0.64571 0.64487 0.64604 0.64294
ItexVsCypress 0.51422 0.51391 0.50999 0.50219 0.50970 0.51686 0.51194 0.51212
Average 0.55931 0.55922 0.55930 0.55545 0.55823 0.56282 0.55865 0.55188
(a)
domain LGF CKF SF XF HHF IXF AP P1
Supermarket 0.44280 0.44910 0.44739 0.43696 0.45441 0.43562 0.44697 0.46811
Travel 0.39598 0.38980 0.39015 0.40976 0.38841 0.38193 0.39648 0.42069
Thompson 0.45737 0.45601 0.45792 0.48016 046114 0.45777 0.46587 0.51565
Grocery 0.19560 0.19460 0.19555 0.20918 0.19901 0.19479 0.19683 0.21527
Energy 0.42718 0.42482 0.42490 0.43164 0.41975 0.41926 0.42461 0.43989
Camera 0.19557 0.19388 0.19417 0.20283 0.20141 0.20339 0.20003 021167
ItexVsCypress 0.43756 0.43987 0.44361 0.46226 0.44274 0.43921 0.43722 0.46152
Average 0.36458 0.36401 0.36481 0.37611 0.36670 0.36171 0.36686 0.39040
(b)
domain LGF CKF SF XF HHF IXF AP Pl
Supermarket 0.41536 0.42271 0.42228 0.41394 0.42882 0.41037 0.42476 0.44646
Travel 0.39598 0.38980 0.39015 0.40976 0.38841 .38193 0.39648 0.42069
Thompson 0.45737 0.45601 0.45792 0.48016 046114 0.45777 0.46587 0.51565
Grocery 0.19560 0.19460 0.19555 0.20918 0.19901 0.19479 0.19683 0.21527
Energy 0.42614 0.42373 0.42371 0.43042 0.41841 0.41807 0.42309 0.43843
Camera 0.18981 0.18925 0.18979 0.19740 0.19492 0.19699 0.19606 0.20576
ItexVsCypress 0.43756 0.43987 0.44361 0.46226 0.44274 0.43921 0.43722 0.46152
Average 0.35969 0.35943 0.36043 0.37188 0.36192 0.35702 0.36290 0.44646
(c)
domain LGF CKF SF XF HHF IXF AP Pl
Supermarket 0.18723 0.19696 0.19526 0.17587 0.20295 0.18226 0.19171 0.19903
Travel 0.16681 0.16109 0.16081 0.17579 0.15901 0.15325 0.16314 0.17902
Thompson 0.19026 0.19176 0.18976 0.20422 0.19091 0.18927 0.19636 0.22859
Grocery 0.04910 0.04786 0.04864 0.05976 0.05101 0.04842 0.04783 0.06303
Energy 0.24504 0.23955 0.23858 0.24820 0.23492 0.23516 0.23789 0.24679
Camera 0.01860 0.01934 0.01873 0.02099 0.02142 0.02351 0.02164 0.02824
ItexVsCypress 0.16812 0.16979 0.17448 0.18650 0.17425 0.16660 0.17245 0.18098
Average 0.14645 0.14662 0.14661 0.15305 0.14778 0.14264 0.14729 0.16081
()
domain LGF CKF SF XF HHF IXF AP Pl
Supermarket 070826  0.75850  0.74139  0.72082  0.73243  0.73035  0.82177 0.85347
Travel 0.58626 0.60839 0.62381 0.57311 0.62180 0.61342 0.68417 0.69942
Thompson 0.57681 0.67709 0.60411 0.63678 0.60775 0.60503 0.68074 0.76582
Grocery 0.79901 0.82462 0.82527 0.79673 0.83744 0.84908  0.84719 0.84206
Energy 0.69150 0.73543 0.71033 0.67537 0.70041 0.69513 0.68027 0.85217
Camera 0.80180 0.80536 0.80717 0.64470 0.82206 0.81622 0.82146 0.84243
ItexVsCypress 0.76850 0.80785 0.76880 0.76072 0.76023 0.75148 0.86250 0.89247
Average 0.70459 0.74532 0.72584 0.68689 0.72602 0.72296 0.77116 0.82112
G

Table 3: Average performance of models in terms of a) Utility,
b) Nash Distance, ¢) Kalai Distance, d) Pareto Distance, and
e) Pearson Correlation in Experiment 11

5 Conclusion

In this paper, a new opponent preference model called POP-
PONENT is proposed. The experiments also reveal that the
accuracy of P1, P6, and P8 exceeds the accuracy of the most
accurate state of the art model. Evaluating the performance
of POPPONENT also indicated that it overcomes the most
accurate state of the art opponent models. In particular, the
results indicated that POPPONENT works better in medium to
large and more distributed negotiation domains and overcomes
all the state of the art models in at least one domain for all the
measures.
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