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Abstract

Committee scoring rules are a class of voting rules
used to select sets of candidates based on the pref-
erences of the voters. The goal of this paper is to
present this class and to invite researchers to study
its properties (computational and axiomatic alike).

1 Introduction

The problem of selecting a set of individuals based on a given
set of criteria is ubiquitous. For example, in various competi-
tions it is often necessary to select a group of finalists based
on their performance, Internet stores need to decide which
products to show on their homepages to advertise their of-
fer, and democratic societies need to choose parliaments to
represent them. While these scenarios are very different from
each other in many ways, they all fit within the framework
of multiwinner voting: Our goal is to select a fixed-size com-
mittee of candidates, based on the preferences of a group of
voters. For the case of choosing the finalists in a competition,
the candidates are the participants and the voters’ preferences
correspond to means of evaluating these participants (for ex-
ample, in ski-jumping each “vote” would describe a single
series of jumps, ordering the competitors from the most to
the least successful one; in other types of competitions, the
votes would reflect the opinions of the judges or would be de-
rived in some other ways). For the case of an Internet store,
the candidates are the products on offer and the voters model
the customers the store expects to see. Finally, in the case of
parliamentary elections, the voters are simply the members of
the society participating in electing their leaders. (The exam-
ples given above are based on the discussions provided by Lu
and Boutilier [2011], Elkind et al. [2017b], and Skowron et
al. [2016al.)

There are many multiwinner voting rules, based on many
different ideas and principles (e.g., multiwinner rules inspired
by Condorcet consistency recently attracted some attention
in the Al literature [Sekar et al., 2017; Aziz et al., 2017b]).
In this paper we focus on the family of committee scoring
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rules, introduced by Elkind et al. [2017b]' as multiwinner
analogues of the well-known single-winner positional scoring
rules. Our goal is to encourage further researchers to study
this class of rules. To this end, we suggest a number of re-
search challenges, ranging from very high-level ones (such as
finding principled ways of deciding which committee scor-
ing rules are most appropriate for particular applications),
through mid-level ones (such as characterizing some specific
subclasses of committee scoring rules), to very specific ones
(such as finding good algorithms for concrete rules).

2 Committee Scoring Rules

The idea of single-winner positional scoring rules is to as-
sume that each voter ranks the candidates from the most to
the least appealing one and to associate each position in a
ranking with a score value; the final score of a candidate is
the sum of the scores he or she obtains from the voters and
the candidates with the highest total score win. Committee
scoring rules follow the same approach, but for a generalized
notion of a position. We provide formal definitions below.

2.1 Definitions

An election E = (C,V) consists of aset C' = {c1,...,¢m}
of candidates and a collection V' = (vq,...,v,) of voters,
where each voter is endowed with a preference order, i.e., a
ranking of the candidates from the most to the least appealing
one. The position of candidate c in the preference order of
voter v is denoted by pos,(c) (the position of the most pre-
ferred candidate is 1, the position of the next one is 2, and so
on). For a positive integer t, by [t] we mean the set {1,...,t}
(in particular, we use [m] to denote the set of all possible can-
didate positions, but we will use this notation in other con-
texts as well). A single-winner scoring function ~,,: [m] —
R associates each position in a preference order with a score.
The ~,-score of candidate ¢ in election £ = (C,V) is de-
fined as 7,,-scorep(c) = >, c Ym(pos,(c)). We require
scoring functions to be nonincreasing (i.e., if ¢ < j then
f(@) > f(4)). Examples of scoring functions include the
Borda scoring function, 3,,, (i) = m—1, and, for each positive
integer t, the ¢t-Approval scoring function, o, (i) = [i < ]

!"The notion was introduced in 2014, in the conference paper cor-
responding to the 2017 journal paper we cite here.
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(we use the Iverson bracket here; for a logical expression P,
by [P] we mean 1 if P is true and 0 if P is false).

In the multiwinner setting, our goal is to select a commit-

tee of candidates (i.e., a set of candidates) of a given size.
Formally, a multiwinner rule R is a function that given an
election £ = (C, V) and a positive integer k, outputs a fam-
ily of size-k committees that tie as winners. For an elec-
tion E = (C,V), we define the position of a committee
S in the preference order of voter v (denoted by pos,(S))
to be the increasing sequence obtained from sorting the set
{pos,(c) | ¢ € S}. For two positive integers m and k,
k < m, we write [m]j to denote the set of all increasing
length-k sequences of numbers from [m] (intuitively, [m]x
is the set of all possible positions of size-k committees in
elections with m candidates). Given two committee positions,
I =(i1,...,ix)and J = (j1,...,Jx), we say that I weakly
dominates J (denoted I > .J) if for each t € [k] we have
iy < ji. A committee scoring function fp, 5: [m]p — R
is a function that associates each committee position with
a score, so that for each two committee positions I and J
such that I > J it holds that fy, (1) > fm.x(J). The fp, k-
score of a committee .S in election E = (C, V) is defined as
f,mk-scoreE(S) = Zyev fm,k-(posv(s))-
Definition 1 (Elkind et al. [2017b]). We say that a multiwin-
ner rule R is a committee scoring rule if there exists a family
of committee scoring functions f = (fum k) k<m such that for
each election E = (C, V') with m candidates and each com-
mittee size k (k < m), the set R(E, k) of winning committees
consists exactly of those size-k committees S for which the
value fy, p-scoreg(S) is the highest.

2.2 Examples of Committee Scoring Rules

One of the greatest strengths of the framework of committee
scoring rules is that it allows one to express a remarkably di-
verse set of rules, including many rules previously studied in
the literature, in a simple and uniform way. Below we provide
several examples (we let k be the committee size):

Single Non-Transferable Vote (SNTV). The SNTV rule is
defined via committee scoring functions of the form
S}j;;rv(il, N ,Zk) = Ckl(’L'l) + e 4 al(ik) = O[l(il).

In other words, under the SNTV rule a committee gets

a point for each voter that ranks some member of the

committee on the top position.

Bloc. Under the Bloc rule, we use scoring functions of the
form fn%l’%c(il, cooyik) = ag(iy) + - + ag(ix). This
can be interpreted as saying that under the Bloc rule each
voter lists his or her ideal committee members and the
score that a voter assigns to a committee is the number
of ideal candidates this committee includes.

k-Borda The k-Borda rule uses scoring functions of the
form fE2r92(iy, k) = Bm(ia) + -+ + Bm(ik).
That is, k-Borda chooses k candidates with the highest
Borda scores. Debord [1992] offers an axiomatic analy-
sis of k-Borda.

Chamberlin—Courant (3-CC). Under the 3-CC rule, we
use scoring functions of the form ff[,fc(il, ceny i) =

Bm(i1). Given a committee .S and a voter v, we refer to
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the highest-ranked member of S as the representative of
vin S. The score of a committee is the Borda score of its
representative. The 3-CC rule was introduced by Cham-
berlin and Courant [1983], but currently other variants
of the rule are studied as well. For example, if we re-
place the Borda scoring function with the k-Approval
one, we obtain the ay,-CC rule [Procaccia et al., 2008;
Betzler et al., 2013]. The SNTYV rule can be seen as the
a1-CC rule.

Proportional Approval Voting (ax-PAV). Under the ;-
PAV rule, we use scoring functions of the form
f:@’f,;PAv(il, - ,ik) = Oék(il) + %O&k(ig) + %Oék(i?,) +

-+ +ay(ix). PAV was introduced by Thiele [1895]
and rediscovered by Simmons (see the overview of Kil-

gour [2010]).

These five rules have very different properties and are used
in very different settings. For example, SNTV and Bloc are
sometimes used in political elections (SNTV is used, e.g.,
in Puerto Rico, and Bloc is used, e.g., for some local elec-
tions in the United States and in the United Kingdom), k-
Borda seems to be very fitting for the problem of choos-
ing finalists in a competition (indeed, similar rules are used,
e.g., in Formula 1 racing, ski-jumping, and the Eurovision
song contest), 5-CC seems to select the most diverse com-
mittees (we are not aware of real-life applications of the rule,
but this conclusion is both intuitive and supported by sev-
eral recent studies [Skowron, 2016; Faliszewski et al., 2016a;
Elkind et al., 2017a]), and PAV is best-suited for electing par-
liaments (in particular, the surprising-at-first use of the har-
monic sequence in its definition guarantees that it naturally
extends the d’Hondt method of apportionment, used for elect-
ing the parliaments of many countries [Brill et al., 2017]).

2.3 Approval-Based Elections

Instead of considering ordinal elections, where voters submit
rankings of candidates, it is often more practical to consider
approval-based elections, where voters indicate which can-
didates they find acceptable. Indeed, the cognitive burden of
choosing a few candidates to approve, among many available
ones, is much lower than ranking all these options (however,
we should bear in mind that in some applications approval-
based votes do not provide sufficient information).

Fortunately, many multiwinner rules that were originally
defined in the context of approval elections can also be cast
in the framework of committee scoring rules. One of the most
typical ways of doing so is to convert preference orders to sets
of approved candidates, e.g., by assuming that each voter ap-
proves his or her k highest-ranked candidates (where k is the
size of the committee). Indeed, the PAV rule was originally
defined in the context of approval elections and we converted
it to the a,-PAV rule in the just-described way.

For more details on approval-based multiwinner rules, we
point the readers to the overview of Kilgour [2010] and to the
recent works of Aziz et al. [2017a; 2015] (which also include
computational results). Two other papers that link commit-
tee scoring rules and approval-based elections are those of
Skowron et al. [2016a] and Lackner and Skowron [2017].
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3 Challenge: Which Rules to Use When?

In Section 2.2 we have provided several examples of commit-
tee scoring rules and discussed the settings where they are (or
could be) used. However, it is not always clear which com-
mittee scoring rule is most suitable to which task. Indeed, if
one were simply presented with the definition of the ay-PAV
rule, it would not be immediately clear that the rule selects
committees that represent the voters in a proportional way.

Challenge A. Find axiomatic properties that should be
satisfied by rules suitable for respective applications, test
which well-known committee scoring rules have these
properties, and find ways of synthesizing new committee
scoring rules that satisfy them.

Next we discuss some results inspired by this challenge,
and outline more specific challenges.

3.1 Properties of All Committee Scoring Rules

One of the most spectacular results regarding single-winner
scoring rules is their axiomatic characterization, due to
Young [1975]. This characterization says that positional scor-
ing rules are the only single-winner rules that are symmetric,
continuous, and consistent. (Informally put, a rule is symmet-
ric if it treats equally all candidates and all voters, it is contin-
uous if it is possible to ensure a candidate’s victory by adding
sufficiently many copies of an election where he or she wins,
and it is consistent if merging two elections that have the same
winner w gives an election where w still wins). Since symme-
try and continuity are satisfied by most of the practical voting
rules, Young’s characterization says that if one cares about the
rules’ consistency, one’s choice is limited to scoring rules.

Skowron et al. [2016b] obtained a characterization of com-
mittee scoring rules that is analogous to that of Young, but in
the setting where multiwinner rules not only output the win-
ning committees, but also allow one to compare two commit-
tees (their setting is analogous to that of social welfare func-
tions from the world of single-winner elections?). Thus the
following challenge remains.

Challenge A.1. Provide an axiomatic characterization of
committee scoring rules for the case where multiwinner
rules are viewed as outputting families of winning com-
mittees (as in the model presented in this paper).

In addition to the characterization of Skowron et
al. [2016b], there are also several other properties possessed
by all committee scoring rules. For example, all committee
scoring rules satisfy candidate monotonicity [Elkind er al.,
2017b] (i.e., if a candidate ¢ belongs to some winning com-
mittee and we shift him or her forward in some preference
order, then c still belongs to some winning committee) and
all of them satisfy nonimposition [Faliszewski ef al., 2016al

>The characterization of single-winner scoring functions holds
both if we view voting rules as providing winners only [Young,
1975] and if we view them as providing rankings of candi-
dates [Smith, 1973; Young, 1974].
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(for every committee W there exists an election where W is
the unique winning committee).?

Challenge A.2. Seek further axiomatic properties satis-
fied by all committee scoring rules.

3.2 C(lassification of Committee Scoring Rules

The class of committee scoring rules is so diverse that to
obtain interesting results one often has to consider its sub-
classes. So far, the following ones attracted most attention
(see the work of Faliszewski et al. [2016a] for a more detailed
discussion):

(Weakly) Separable Rules. A rule is weakly separable if it
can be defined through a scoring function of the form
Sk (its oo ik) = Ymk(i1) + -+ 4 Ym,x(ir), where
Ym, & are single-winner scoring rules. If additionally the
functions +y,,  do not depend on k, then the rule is sepa-
rable. SNTV and k-Borda are separable, whereas Bloc is
only weakly separable. The class of (weakly) separable
rules was introduced by Elkind et al. [2017b].

Representation-Focused Rules. A rule is representation-
focused if it can be defined through a scoring function
that (for a given number of candidates and a given com-
mittee size) depends only on the position of the most-
preferred committee member. SNTV and -CC are ex-
amples of representation-focused rules. This class was
introduced by Elkind et al. [2017b].

Top-k-Counting Rules. A rule is top-k-counting if it can be
defined using a scoring function that (for a given number
of candidates and a given committee size) depends only
on the number of committee members ranked on the top
k positions. Bloc, a-CC, and «-PAV are examples of
top-k-counting rules. This class was introduced by Fal-
iszewski et al. [2016b].

OWA-Based Rules. OWA-Based rules are defined using
scoring functions of the form f,, x(i1,...,%) =

m,k . m,k .
A Yk (i) + -+ A Ymok(ik), where 7, 1 are
single-winner scoring functions and A" are coeffi-
cients; sequences ()\gn’k, .. .,)\Zl’k) are referred to as

OWA operators. This class was introduced by Skowron
et al. [2016al.

Decomposable Rules. Decomposable rules are defined us-
ing scoring functions of the form fp, x(i1,...,0x) =
Yk, 1 (81) +Ym k2 (12) -+ Ym &k (71 ), Where Yo g ¢
are single-winner scoring functions. This class was in-
troduced by Faliszewski et al. [2016a].

Faliszewski et al. [2016b; 2016a] have pointed out
that all weakly-separable, representation-focused, and top-
k-counting rules are OWA-based, and that all OWA-based

3Interestingly, there are committee scoring rules that fail the 2-
nonimposition property. That is, there is a committee scoring rule
R and two committees 1/, and Wa (of the same size k) such that
for every election E we have that R(E, k) # {W1, W2} [Lackner
and Skowron, 2017]. On the other hand, every single-winner scoring
rule satisfies 2-nonimposition.
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rules are decomposable. Further, they characterized weakly-
separable rules within the class of committee scoring rules
as the only ones that satisfy non-crossing monotonicity*
and they discovered the class of top-k-counting rules while
characterizing committee scoring rules that satisfy the fixed-
majority criterion.’ In their presentations (but not in the pa-
pers themselves, since the results were not available suffi-
ciently early), they also announced similar characterizations
of separable rules and representation-focused rules. Finally,
they also suggested a variant of the non-crossing monotonic-
ity property such that if a committee scoring rule satisfies it,
then the rule must be decomposable. Thus, as far as character-
izing important subclasses of committee scoring rules goes,
the most pressing challenge is as follows.

Challenge A.3. Characterize OWA-based and decom-
posable rules within the class of committee scoring rules.

Using their characterizations, Faliszewski et al. [2016b;
2016a] also characterized the Bloc rule: It is the only com-
mittee scoring rule that is non-crossing monotone and fixed-
majority consistent. Providing further such characterizations
(and seeking to understand the meaning of particular ax-
iomatic properties in the context of particular applications)
would be a way to solve one part of our Challenge A.

Challenge A.4. Provide characterizations of specific
rules within the class of committee scoring rules.

Finding new subclasses of committee scoring rules with
desirable properties would provide a way for synthesizing
new interesting committee scoring rules.

3.3 Experimental Verification

Another approach to tackling our Challenge A is to per-
form experimental evaluation of particular rules. For exam-
ple, Elkind et al. [2017a] generated elections using the 2D
Euclidean model and visualized their aggregated results.

4 Challenge: How to Compute the Rules?

It turns out that many interesting committee scoring rules
are NP-hard to compute (weakly separable rules are a no-
table exception), but there are many ways to circumvent these
hardness results. For example, even though computing win-
ning committees under Chamberlin—Courant rules is NP-
hard [Procaccia et al., 2008; Lu and Boutilier, 2011], there
are good approximation algorithms [Lu and Boutilier, 2011;
Skowron et al., 2015al, there are fixed-parameter tractable al-
gorithms [Betzler et al., 2013], and there are polynomial-time

*A rule is non-crossing monotone if the following holds: If ¢ is a
member of some winning committee 1 and we shift ¢ forward, but
without passing any other member of W, then W is still winning.

3The fixed-majority criterion requires that if a strict majority of
voters rank members of some committee W on their top positions
(not necessarily in the same order), then W is the unique winning
committee.
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algorithms that work correctly provided the input votes sat-
isfy appropriate restrictions [Betzler ef al., 2013; Skowron et
al., 2015b; Peters and Elkind, 2016; Cornaz et al., 2012].

Challenge B. Seek approximation, FPT, and heuristic
algorithms for computing as wide a class of committee
scoring rules as possible, as well as algorithms for com-
puting these rules’ results under restricted domains.

4.1 Approximation Algorithms

Below we focus on polynomial-time approximation algo-
rithms. Currently there is a polynomial-time approximation
scheme for the 3-CC rule [Skowron et al., 2015al, but for
most other committee scoring rules either inapproximability
results are known [Skowron et al., 2016a] or the standard
greedy algorithm of Nemhauser et al. [1978] for optimizing
submodular set functions, achieving the 1 — % approximation
ratio, is the best known. Finding efficient a]gorithms, with
better approximation guarantees, for a wide class of commit-
tee scoring rules is a major challenge. One possible way of
tacking this challenge would be to consider OWA-based rules
based on the Borda scoring function.

Challenge B.1. Seek efficient approximation algorithms
for OWA-based rules with scoring functions of the form
Fmx(i, . yix) = AB(i1) + -+ \pB(ix), where the
OWA operators (A1,..., ;) are nonincreasing. One
particularly interesting OWA operator to consider is the
sequence of k/2 ones followed by k/2 zeros. Another

one is sequence (1,1 — %71 — %’ 1 k;l)'

We ask about the rules based on the Borda scoring
functions because other well-known functions (such as k-
Approval) often lead to hardness of approximation [Skowron
et al., 2016a] (but there are counterexamples, such as the sur-
prising result of Byrka et al. [2017] regarding the PAV rule).

4.2 Fixed-Parameter Tractability

It is also interesting to seek FPT algorithms for committee
scoring rules. While parametrization by the number of can-
didates leads to immediate FPT results and there are results
that suggest that parametrization by the committee size would
typically lead to W[1]-hardness results [Betzler et al., 2013],
parametrization by the number of voters seems promising (in-
deed, Faliszewski et al. [2016b] already obtained some en-
couraging results for the case of top-k-counting rules).

Challenge B.2. Seek FPT algorithms for committee
scoring rules, parametrized by the number of voters.

S Summary

We have presented some of the current work on committee
scoring rules and suggested avenues for future work. We be-
lieve that committee scoring rules are an exciting topic and
hope that more researchers would join the force!
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