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Abstract
We put forward a modeling and algorithmic frame-
work to design and optimize mechanisms in dy-
namic industrial environments where a designer
can make use of the data generated in the pro-
cess to automatically improve future design. Our
solution, coined reinforcement mechanism design,
is rooted in game theory but incorporates recent
AI techniques to get rid of nonrealistic modeling
assumptions and to make automated optimization
feasible. We instantiate our framework on the key
application scenarios of Baidu and Taobao, two of
the largest mobile app companies in China. For the
Taobao case, our framework automatically designs
mechanisms that allocate buyer impressions for the
e-commerce website; for the Baidu case, our frame-
work automatically designs dynamic reserve pric-
ing schemes of advertisement auctions of the search
engine. Experiments show that our solutions out-
perform the state-of-the-art alternatives and those
currently deployed, under both scenarios.

1 Introduction
Over the past decade, China has become one of the leading
countries of smart-phone usage: as of 2016, the total number
of daily active users on Wechat, the largest instant messaging
application in China, is around 800 million and more than
half of this amount spend at least 1.5 hours daily on this app
alone; the total gross transaction volume of Taobao (Nasdaq:
BABA), the largest e-commerce platform in China, is around
426 billion US dollars. To put the number in perspective, this
is more than twice of the total transaction volume of eBay
and Amazon combined in the same year. Massive user im-
pressions brought by gigantic scales present huge business
opportunities to these app companies.

To monetize these impressions, all these companies have
adopted some sort of economic mechanisms (to be described
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in detail shortly) that allocates these impressions to inter-
ested parties (advertisers for search engines and retail sellers
for e-commerce platforms) who make monetary transfers to
these app companies in return. While standard economic the-
ory [Myerson, 1981; Mas-Colell et al., 1995; Milgrom, 2004;
Shoham and Leyton-Brown, 2009] provide good mechanism
frameworks for these companies to begin with, they typically
only work under very idealized environments, where the par-
ticipants are perfectly rational, play only once, and their pri-
vate information is single-dimensional, statistically known or
doesn’t change over time, etc. None of these assumptions
hold in the practices of these nationwide mobile apps, where
players may have different levels of rationality, come to and
leave the app over time, and have private information that
may also change over time.

As a result, what the classic theory provides to these com-
pany is merely one mechanism in some, usually parameter-
ized, class and these companies all deploy a team of engineers
and scientists to constantly tune and optimize within the class
so as to accommodate dynamical information reflected in the
huge amount of data generated by daily executions of the
mechanisms1. Such manual optimizations turn out to be use-
ful in the sense that tiny improvements in a single mechanism
can lead to huge revenue gain due to large scale and high ex-
ecution frequency. On the other hand, they also waste costly
human resources and can be erroneous and ad hoc at times.
A more sophisticated procedure that can automatically incor-
porate dynamic information and optimize mechanism param-
eters should be in place.

1.1 High Frequency Mechanism Design
In this paper, we aim to design automated meta-mechanisms
that produce optimized mechanisms in the dynamic environ-
ments. These environments, coined high frequency mecha-
nism design environments, share the following features:

• There is a large, sometimes variable, set of players;

• Players are strategic to some extent, however, informa-
tion that affects players’ decisions may be complex, un-
known and changes dynamically over time. Moreover,
different players may have different levels of rationality;

1See a field experiment conducted by Yahoo! on manually test-
ing and optimizing reserves prices on keyword auctions [Ostrovsky
and Schwarz, 2011]
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• Players partially observe the mechanism parameters and
the outcome, or feedbacks that are relevant to them;
• Mechanisms are executed at high frequencies;
• The designer is flexible to adjust parameters of the

mechanism within some predefined class;
• The designer has massive data from past executions of

the mechanisms, however, all the data are typically gen-
erated from few mechanisms in the class;
• The designer is interested in long-term objectives such

as cumulative (discounted) revenue over the next couple
of months.

Examples abound. Typical environments include that of
advertisement auctions on search engines where auctions
happen hundreds of times per second and search engines get
to dynamically adjust the reserve prices under the generalized
second price (GSP) auction class [Edelman et al., 2007] or
the “squash” class [Lahaie and Pennock, 2007], and observe
revenue generated afterwards. They also include designing
ranking mechanisms for electronic commerce sites where a
ranking of sellers (and their related products) will be calcu-
lated whenever a buyer query is entered, typically hundreds of
times per second. The sites dynamically adjust ranking mech-
anisms (and thereby adjust allocations of buyer impressions)
and observe the revenue, or total transaction volume gener-
ated afterwards [Cai et al., 2016]. They also include scenarios
of online ride-sharing platforms where matchings and pric-
ing need to be calculated every few seconds and the platform
gets to adjust their matching and pricing mechanisms dynam-
ically and observe the revenue or GMVs (gross merchandise
volumes) afterwards.

1.2 Challenges
Non-standard environments described above raise a few chal-
lenges that seem hard to reconcile when one tries to adopt
standard theories and techniques in the field.

Challenges to game theory and mechanism design
There are a few perhaps obvious challenges to the theory
and practice of mechanism design. First of all, there is no
clear utility model for players of this kind. If one were to
model players using Bayesian games, one clear challenge is
that there is no explicit definition of type in these applica-
tion domains. Each player’s decision is affected by multiple
factors (sometimes without physical meanings) that lie im-
plicitly in the data. Even if one were able to extract these
factors, when it comes to revenue, despite considerable ef-
forts from the community, the nature of the optimal mecha-
nism is still not well understood [Tang and Sandholm, 2012;
Hart and Nisan, 2012; Cai et al., 2012; Yao, 2015; Tang and
Wang, 2016; Mirrokni et al., 2016]. Furthermore, due to in-
formational and computational constraints, the players are not
fully rational. Finally, the dynamic nature of the problem fur-
ther excludes surviving candidates from existing theories.

Challenges to machine learning
Difficulties in modeling may make one wonder the possibility
to use a data-driven approach. That is, to use the data gener-
ated in the process to learn the player’s type and hence the

utility model. Indeed, this is the approach adopted in a recent
attempt to model players in sponsored search auctions via no-
regret learning [Nekipelov et al., 2015] where the authors try
to infer advertisers’ valuations from bidding data under the
GSP framework, under the assumption that the bidders must
use a strategy that yields zero regret (as opposed to best re-
sponse) in the long run. They still assume each bidder has a
single dimensional type and they are rational in that they use
a no-regret strategy. In addition, their results yield a range of
valuations of advertisers that fit the data, not exact values.

Perhaps an even more challenging obstacle is the lack of
variety in data. That is, the designer only has data generated
by mechanisms defined by only few sets of parameters. This
is typically due to lack of exploration in the past. It is the-
oretically challenging to make use of this data to predict the
mechanism performance with a similar set of parameters2.

There are a few papers that take the initiative to tackle
the challenging problems above. In the context of revenue
optimization in auction design, two recent papers [Mohri
and Medina, 2016; 2015] apply learning algorithms to ex-
ploit past auctions. Their algorithms focus on estimation
of the underlying bid distribution, thus depending on the
assumption that players do not change their behavior over
time. Another line of work [Mohri and Munoz, 2015;
2014] aims to maximize revenue with strategic buyers who
aim to maximize their cumulative discounted surplus. They
give online pricing algorithms with desirable regret bounds.
These works still assume that there exists an underlying bid
(value) distribution and the buyers are perfectly rational with
respect to this single-dimensional type.

In the sponsored search context, two related papers [He et
al., 2013; Tian et al., 2014] assume that buyers are Marko-
vian in that their decisions only depend on observations from
the previous day and try to find the optimal static mechanism,
as opposed to our goal of finding the optimal dynamic mech-
anisms. They also restrict their player model to be a linear
combination of several simple behavior patterns. In addition,
they seem to mitigate the game-theoretical effects for dif-
ferent parameters of the mechanism by assuming a uniform
markov model across all games.

2 Reinforcement Mechanism Design
In this section, we describe a framework to tackle the high
frequency mechanism design problem. We first present, with
certain degree of abstraction, the structure of our framework
and then present two instantiations of this framework with
implementation details under representative application sce-
narios, one with the ranking mechanism design setting with
Taobao [Cai et al., 2017] and the other with the sponsored
search auction design setting with Baidu [Shen et al., 2017].

2.1 Dynamic Mechanism Design as an MDP
Our key insight is to model the high frequency mechanism de-
sign problem as a policy finding problem in a related Markov

2For example, it is interesting whether players’ behavior (say,
Nash equilibrium strategies) possesses continuity when the game
under consideration continuously moves in the parameter space.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5147



decision process (MDP), where a state encodes all histori-
cal action profiles and outcomes produced by mechanisms in
past rounds3; an action is a set of parameters that defines a
mechanism in the class; an immediate reward (say, revenue
of this round) is defined to be a function of the outcome of
this round; a state transition in this case is simply to append
the action and outcome data to the previous state.

In other words, in the current state where the designer
possesses all the historical data so far, he takes an action
and hence chooses a new mechanism from the parameterized
class. The players observe, either fully or partially; directly
or indirectly, the parameters, take into account their local in-
formation and then react strategically to the new mechanism.
At the end of the day, the designer observes the outcome as
well as the immediate reward associated with the outcome.
The global state then progresses to the next day by appending
the data generated today to the current state while each player
also locally progresses to the next day by incorporating infor-
mation he or she observes today. One can easily verify that
the definition above satisfies the Markov property.

The designer’s goal is to find a policy, one action for each
state on the planning trajectory, that enjoys desirable cumula-
tive discounted reward.

2.2 Players Model
The basic idea here is to model each player as an indepen-
dent4, local Markov decision process, where a local state
encodes the part of historical actions and outcomes that the
player can observe so far (again, we can also model a local
state of a player to be the set of records observable of the past
k rounds and the Markov property persists); an action in the
local MDP is exactly a feasible action defined by the mech-
anism; the player then observes the partial outcome on this
state and derives his or her utility as immediate reward in the
MDP; the player incorporates new data observed, updates his
local records and the local state is updated accordingly.

Consequently, a strategy (or policy) of a player is a func-
tion that maps each local state to a distribution of actions.

An alternative way to model the mechanism-player interac-
tion above is by general-sum Markov games (see e.g., [Leibo
et al., 2017] where each local state is modeled as an observa-
tion. We comment that, when it comes to design optimization
algorithms, this alternative optimization does not seem to give
much technical convenience.

2.3 Solving the Designer’s MDP
There are a few facts about the above MDP that makes it non-
trivial to solve. First of all, the number of states scales ex-
ponentially with respect to the number of players. For realis-

3In implementation, one can view a state as the set of records of
the past k rounds, with fixed k. The Markov property still persists.

4Here, “independence” is in the same spirit as elaborated in
[Leibo et al., 2017]: each individual’s decision processes are in-
dependent of one another in the sense that each regards the others
as a part of the environment. As a result, the others’ strategies af-
fect this agent only implicitly by affecting the environment of this
agent. One can regard this assumption as a form of bounded ratio-
nality where players do not explicitly reason and react to what others
do, but reason from what the player can observe at its local state.

tic applications, the number of players can easily be several
hundreds. So standard methods such as value and policy iter-
ations are unlikely to work in such settings. Secondly, states
and immediate rewards are generated and observed online
(i.e., unknown in advance), so optimization algorithms need
to explore for sufficient rounds to gather reward information,
which slows down convergence. Last but not least, the action
space is sometimes continuous, which further slows down
convergence. In the following sections, we design optimiza-
tion algorithms, tailored for each problem domain, that solve
or circumvent these difficulties.

3 Case Study I: Buyer Impression Allocations
in E-commerce Platforms

As a joint project with Taobao [Cai et al., 2017], we instan-
tiate our framework on the domain of electronic commerce
where platforms allocate buyer impressions/visits to sellers,
aiming to maximize the total revenue generated by the plat-
form. When a buyer types a keyword query (normally hun-
dreds of times per second), the website returns to the buyer
with a ranking list of sellers for this item, together with the
corresponding prices. Different rankings correspond to dif-
ferent allocations of click through rates (CTRs), so that the
above process can be regarded as an instance of repeated re-
source allocation problem in which the sellers choose their
prices at each round and the platform decides how to allocate
the impressions, based on the chosen prices and the historical
transactions of each seller.

3.1 MDP Formulation
Formulated using the language in Section 2, a state of the
corresponding MDP consists of the records (action, alloca-
tion outcome, etc) of all sellers in the last k rounds; an action
in this case is for the platform to choose an allocation of im-
pressions, i.e., a division of each unit of buyer impression to
all sellers related to the buyer query; the immediate reward
to the platform is the total expected revenue generated in this
round; and the new state is simply the sellers records of the
last k rounds, looking back from the next day. Performance of
an allocation algorithm is evaluated by the average expected
total revenue over the next k0 rounds.

3.2 Sellers’ Behavior Model
Given a price p set by a seller, the probability that the item is
purchased is given by λ(1− F (p)) where F (p) estimates the
probability that an average buyer’s valuation is below p and λ
is the fraction of impression allocated to this seller. In [Cai et
al., 2017], we generalize this probability to the case where a
buyer’s purchase probability is also dependent on the seller’s
historical transaction record.

Given buyers’ behavior, a seller’s model is as follows:
At round 0, each seller posts a random price. At any other

round τ + 1 (with τ ≥ 0), for some εi ∈ [0, 1],
• with probability 1−εi, seller i selects a price drawn from

the empirical distribution of her historical price choices
in the previous k rounds;
• with probability εi, seller i picks the price of round τ0

with the maximum discounted profit in the last k rounds
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(a) DDPG in training (b) GRU in training

(c) DDPG in testing (d) GRU in testing

Figure 1: Rewards/round of algorithms in training and testing

and furthermore adds Gaussian noise for exploration;
that is, the seller posts a price piτ0 + a at round τ + 1,
where a is the Gaussian noise. The use of the dis-
count factor follows the standard assumption that recent
records will factor more in the decision of a seller.

According to existing data, the model above fits well with
sellers’ behavior in Taobao. A similar yet different idea has
been proposed lately [Ortega and Stocker, 2016] to model
rationality-statistics tradeoff in repeated games.

3.3 Optimization via Deep Reinforcement
Learning

As argued in the previous section, the MDP has continuous
action spaces and exponential many states in the number of
sellers. To handle the continuous action space, we borrow
insights from the Deep Deterministic Policy Gradient algo-
rithm [Lillicrap et al., 2015]. To handle the huge number of
states, we decompose the original neural network into a set
of sub-networks, one of each seller, to make use of the in-
dependence property mentioned in footnote 4 as well as the
factor that the Q value (aka. state-action value) of an action
(an allocation) is the sum of the Q values of each individual
allocation. As a result, our algorithm scales linearly in the
number of sellers and converges on large realistic instances.

3.4 Experiments

We compare our algorithm (called GRU) with the DDPG al-
gorithm and several other algorithms, the readers are referred
to [Cai et al., 2017] for a full description of the experimental
results. We list in Figure 1 the comparison with DDPG. It
can be seen that the (normalized) average reward of our algo-
rithm is higher in both testing and training data. The reason
that there are fluctuations in the testing data is that we sample
sellers’ cost functions from a distribution every few rounds to
simulate the dynamic environment and thus both algorithms
need several rounds to adjust to the new cost functions.

Figure 2: Comparison of reserve pricing schemes

4 Case Study II: Dynamic Reserve Pricing in
Sponsored Search Auctions

As a joint project with Baidu [Shen et al., 2017], the largest
search engine in China, we instantiate our framework to opti-
mize reserve prices in sponsored search auctions5.

Using the formulation of Section 2, the search engine’s
state is described by the bidding data and past allocations and
payments, while an action in each round is to design a new
sets of reserve prices, one for each advertiser. The immedi-
ate reward is the per round revenue generated by the search
engine.

In this project, instead of explicitly modeling each adver-
tiser’s bidding strategy as what we did in the case of Taobao,
we use a deep neural network (LSTM) to adaptively learn
from its past bidding data and feedback, and predict its future
bid distribution. To optimize the designer’s MDP, we first
discretize the action space and then make use of the Monte-
Carlo tree search (MCTS) algorithm to speed up the forward-
looking search. Readers are referred to [Shen et al., 2017]
for the implementation details.

We compare our approach with several dynamic reserve
schemes as well as static ones, including the one that is
currently deployed by Baidu, using a 8 month real bidding
dataset of 400 keywords. The results are listed in Figure 2.

Our algorithm (MCTS) yields the highest revenue at con-
vergence. Another dynamic algorithm called GREEDY, that
in each round selects one with the largest gradient of revenue,
also performs very well. Dynamic pricing schemes outper-
form all static schemes with large margins, including the one
(BAIDU in the figure) that is currently deployed.

5 Concluding Remarks
By making use of recent advances in AI, we demonstrate that
one can automatically design and optimize economic mech-
anisms at nationwide scales for important industrial applica-
tions. We are currently experimenting with DiDi, the largest
ride-sharing app in China, to further validate our framework.

5In a parallel work, we implement our approach to optimize
ranking rules in sponsored search auctions [Shen and Tang, 2017].
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Éva Tardos. Econometrics for learning agents. In Proceedings
of the Sixteenth ACM Conference on Economics and Computa-
tion, EC ’15, Portland, OR, USA, June 15-19, 2015, pages 1–18,
2015.

[Ortega and Stocker, 2016] Pedro A Ortega and Alan A Stocker.
Human decision-making under limited time. In Advances in Neu-
ral Information Processing Systems, pages 100–108, 2016.

[Ostrovsky and Schwarz, 2011] Michael Ostrovsky and Michael
Schwarz. Reserve prices in internet advertising auctions: a field
experiment. In Proceedings 12th ACM Conference on Electronic
Commerce (EC-2011), San Jose, CA, USA, June 5-9, 2011, pages
59–60, 2011.

[Shen and Tang, 2017] Weiran Shen and Pingzhong Tang. Practical
versus optimal mechanisms. In Proceedings of the 16th Confer-
ence on Autonomous Agents and MultiAgent Systems, pages 78–
86. International Foundation for Autonomous Agents and Multi-
agent Systems, 2017.

[Shen et al., 2017] Weiran Shen, Binghui Peng, Hanpeng Liu,
Michael Zhang, Ruohan Qian, Yan Hong, Zhi Guo, Zongyao
Ding, Pengjun Lu, and Pingzhong Tang. Reinforcement mech-
anism design, with applications to dynamic pricing in sponsored
search auctions. Working paper, 2017.

[Shoham and Leyton-Brown, 2009] Yoav Shoham and Kevin
Leyton-Brown. Multiagent Systems: Algorithmic, Game
theoretic and Logical Fundations. Cambridge Uni. Press, 2009.

[Tang and Sandholm, 2012] Pingzhong Tang and Tuomas Sand-
holm. Mixed bundling auctions with reserve prices. In AAMAS,
2012.

[Tang and Wang, 2016] Pingzhong Tang and Zihe Wang. Optimal
auctions for negatively correlated items. In Proceedings of the
2016 ACM Conference on Economics and Computation, EC ’16,
Maastricht, The Netherlands, July 24-28, 2016, pages 103–120,
2016.

[Tian et al., 2014] Fei Tian, Haifang Li, Wei Chen, Tao Qin, En-
hong Chen, and Tie-Yan Liu. Agent behavior prediction and its
generalization analysis. arXiv preprint arXiv:1404.4960, 2014.

[Yao, 2015] Andrew Chi-Chih Yao. An n-to-1 bidder reduction for
multi-item auctions and its applications. In Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015,
pages 92–109, 2015.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5150


