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Abstract
We summarize some of our recent work on using
AI to improve group decision-making by taking a
unified approach from statistics, economics, and
computation. We then discuss a few ongoing and
future directions.

1 Introduction
The One Hundred Year Study on Artificial Intelligence envi-
sioned that “the field of AI is shifting toward building intelli-
gent systems that can collaborate effectively with people, and
that are more generally human-aware” [Stone et al., 2016].
My research has been well-positioned within this trend: the
goal is developing and leveraging AI techniques to help hu-
man beings and software agents make better decisions, by
bridging theory, practice, and education.

For example, suppose a university is hiring a new faculty
member. After the interviews, the committee members rank
the candidates and vote to decide the top choice. How can
the committee members reduce the uncertainty in the quality
of the candidates in regard to their potential to do influential
research, ability to teach, and their fit with the department?
How can they make a fair decision when people have con-
flicting preferences? Might the committee worry about its
members strategically misreporting their preferences and in-
formation?

This example illustrates the problem of group decision-
making. Similar challenges appear in many applications such
as political elections, meta search engines, recommender sys-
tems, crowdsourcing, etc. Evidently, addressing this fun-
damentally multi-disciplinary challenge requires considering
three types of criteria:
• Statistical criteria evaluate the quality of decisions in the

statistical sense. A typical research topic is multinomial
logistic regression in statistics.
• Socio-economic criteria include various desirable nor-

mative properties in social choice theory and sociology,
such as fairness, strategy-proofness, and ethics.
• Computational criteria are critical for big data. A typi-

cal research topic is rank aggregation.
Although there has been interdisciplinary work, much of it
has overlooked at least one aspect. For example, research in

machine learning (Statistics+Computation) often overlooks
fairness. Research in computational social choice (Eco-
nomics+Computation) often lacks considerations from statis-
tics.

2 Overview of My Research
My research tackles the multi-disciplinary challenge of group
decision-making by taking a unified approach from statis-
tics, economics, and computation. My work in the first di-
rection (Statistics+Computation) improved the state of the art
in learning from rank data; my work in the second direction
(Economics+Computation) belong to the burgeoning field of
computational social choice; and my work in the third di-
rection (Statistics+Economics+Computation) is conceptually
new.

1. Statistics + Computation:
Random Utility Models

2. Economics + Computation:
Computational social choice

3. Statistics + Economics + Computation:
Novel Frameworks

.

Statistics

Economics

Computation

Figure 1: My research on group decision-making.

3 AI’s Role
Recently there have been many discussions and concerns on
moral aspects of AI [Rossi, 2016]. In the context of group
decision-making, should we trust AI to make right decisions
for us, such as the next president, national defense strategies,
and economic policies? How can we quantitatively measure
the moral aspects of AI? How can we design moral AI algo-
rithms?

The answer certain depends on the application. For low-
stakes applications, such as a group of friends deciding where
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to go for dinner, giving AI more control may improve the effi-
ciency of decision-making without introducing too much risk.
For high-stakes applications such as presidential elections, it
seems a good idea to be more careful and use AI only as a
supporter rather than the decision-maker.

4 Research Contributions
In light of ethical considerations of AI, the general theme of
my research is using AI to support group decision-making,
rather than letting AI make group decisions. Below I will
briefly discuss three directions I have been pursuing, illus-
trated in Figure 1.

4.1 Direction 1 (Statistics+Computation):
Learning Random Utility Models

Random utility models (RUMs) [Thurstone, 1927] are one
of the most widely-justified and widely-applied models for
decision-making from rank data. For example, McFadden
was awarded the 2000 Nobel Prize in Economics for his con-
tributions in the theory and practice of discrete choice models,
which are special cases of RUMs. Other notable applications
of RUMs include to elections, crowdsourcing, recommender
systems, marketing, health care, transportation, and security.

In an RUM, each alternative ai is parameterized by a utility
distribution µi, which often belongs to a parameterized fam-
ily of distributions, e.g. Gaussian distributions parameterized
by means and variances. Agent’s rankings are generated in
two steps. In the first step, a latent utility Ui for each alterna-
tive ai is generated from µi. In the second step, the alterna-
tives are ranked w.r.t. their utilities Ui in the decreasing order.
An RUM for three alternatives and the process of generating
a2 � a1 � a3 is illustrated in Figure 2.

U1 U2U3

μ3

μ2
μ1

Bradley-Terry Discrete choice

Plackett-Luce

Random utility modelsFigure 2: Generating a2 � a1 � a3 in a RUM.

However, designing efficient algorithms for learning gen-
eral RUMs is a well-known open question due to the lack of
closed-form formulas for the likelihood function. Most pre-
vious research and applications were limited to the Placket-
Luce model, which is a computationally tractable subcase.

Algorithms for learning general RUMs.
With Hossein Azari Soufiani and David Parkes, I proposed
an MC-EM algorithm [Azari Soufiani et al., 2012], which is
the first algorithm for computing the MLE of general RUMs.
This helps to improve the quality of decisions in many ap-
plications due to better fitness of general RUMs. We fur-
ther proposed a flexible rank-breaking framework to explore
tradeoffs between computational efficiency and statistical ef-
ficiency [Azari Soufiani et al., 2013a].

Using this framework, we obtained a much faster algo-
rithm that achieves competitive statistical efficiency com-
pared to the state-of-the-art algorithm [Hunter, 2004].
We characterized all consistent rank-breaking algorithms
for the Plackett-Luce model, and extended them to general
RUMs [Azari Soufiani et al., 2014a] and mixtures of Plackett-
Luce models [Zhao et al., 2016]. We also designed preference
elicitation algorithms under general RUMs according to var-
ious information-maximization principles [Azari Soufiani et
al., 2013b].

Identifiability of mixtures of Plackett-Luce models
The identifiability of mixtures of Plackett-Luce models has
been a long-standing open question. Identifiability requires
that different parameters of the model correspond to different
distributions over data. Therefore, if a model is not identifi-
able, one must be very careful when interpreting the learned
parameter, e.g. in clustering, because the ground truth can
be completely different and the difference cannot be detected
by any statistical method. However, identifiability was often
overlooked by previous work, e.g. by Gormley and Murphy
[2008]. For example, Gormley and Murphy [2008] used the
mixture of four Plackett-Luce models to fit an Irish election
dataset with five alternatives, and interpreted the learned pa-
rameters as voting blocs.

We proved the first theorems on the identifiability of finite
mixtures of Plackett-Luce models [Zhao et al., 2016] using
algebraic geometry techniques especially tensor decomposi-
tion and analysis of Kruskal’s rank. Our theorems state that
whenm ≤ 2k−1, wherem is the number of alternatives, the
mixture of k Plackett-Luce models is not identifiable, which
means that the results by Gormley and Murphy [2008] are
potentially flawed (where k = 4 and m = 5). Our positive
results are that the mixture model is identifiable for k = 2 and
m ≥ 4, and is generically identifiable under a much milder
condition, i.e. k ≤ bm−2

2 c!.

4.2 Direction 2 (Economics+Computation):
Computational Social Choice

Algorithmic game theory [Nisan et al., 2007] and computa-
tional social choice [Brandt et al., 2016] are recognized as
one of the eleven “fundamental methods and application ar-
eas” of AI, according to The One Hundred Year Study on
Artificial Intelligence [Stone et al., 2016]. Some of my work
focused on the following two key research topics.

Topic 1. Using high complexity to prevent agents’
strategic behavior
A recurring concern in the design of systems for group
decision-making is that of manipulation, where a participant
might be able to benefit by misreporting her true preferences,
beliefs, or information. A well-known impossibility result
from economic theory establishes that this is inevitable for
reasonable voting rules. Moreover, manipulation is just one
example of strategic behavior—other concerns, especially
with the advent of Internet systems, include bribery and false-
name manipulation (sometimes called a sybil attack).

For more than two decades, researchers have been inter-
ested in understanding whether computational intractability
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can provide a barrier against manipulative behavior, and un-
derstanding for which voting system computing a manipula-
tion is hard. This problem is particularly critical given that
nowadays the participants can easily access powerful compu-
tational tools.

My research has established the NP-hardness of manip-
ulation in many common voting schemes, which suggests
that computational complexity does provide some protection
against manipulation. Still, NP-hardness is a worst-case con-
cept and does not imply that manipulation is hard to com-
pute in practice. A series of work of mine suggestes that de-
spite worst-case results, computational complexity by itself
may not provide an effective barrier against strategic behav-
ior. Most of my results are summarized in a recent book chap-
ter [Conitzer and Walsh, 2016] and a text book in preparation
by Parkes and Seuken [2016].

Topic 2. Combinatorial voting
In many applications the number of alternatives is exponen-
tially large in a natural description of the problem. A promi-
nent example is combinatorial voting, where there are multi-
ple issues and each alternative can be uniquely characterized
by assigning a value to each issue. This is an important voting
model in public choice and also for Internet applications. For
instance, residents in Florida voted in the 2012 US election
to decide 11 issues, 5 out of which are interrelated tax poli-
cies. For each issue a resident can vote for “pass” or “deny”.
When using voting for meeting scheduling, users may need
to determine at least (1) the location, and (2) the time.

Most previous work focused on simultaneous voting,
where participants vote over issues separately and at the same
time. However, this approach is not suitable when partici-
pants’ preferences over one issue depend on what is decided
in regard to other issues. I have used compact knowledge
representation languages such as CP-nets [Boutilier et al.,
2004] to represent agents’ preferences, and designed sequen-
tial mechanisms with high computational and economic ef-
ficiency. Most of my results are summarized a recent book
chapter written with Jerome Lang [Lang and Xia, 2016].

4.3 Direction 3 (Statistics + Economics +
Computation): Novel Frameworks

There are many more group decision-making scenarios to-
day than were envisioned in classical social choice theory.
Because of this, I believe that designing application-specific
mechanisms is a promising direction where AI will play an
important role. Therefore, we proposed the following two
frameworks under the unified consideration of statistics, eco-
nomics, and computation.

Framework 1: Statistical decision-theoretic framework
We proposed a principled statistical decision-theoretic frame-
work for social choice [Azari Soufiani et al., 2014b], denoted
by F = (M,D, L), which has three parts: (1) a statistical
model M = (Θ,S, ~Pr); (2) a decision space D, and (3) a
loss function L(θ, d) that evaluates the loss of decision d ∈ D
against parameter θ ∈ Θ. This framework allows us to de-
sign new mechanisms following either the Bayesian or the
frequentist approach.

Bayesian approach. Given a framework F and a prior dis-
tribution π, the Bayesian estimator can be used for mak-
ing group decisions. We designed multiple new mecha-
nisms following the Bayesian approach, analyzed their so-
cial choice normative properties [Azari Soufiani et al., 2014b;
Xia, 2016], and designed MCMC sampling algorithms to
compute them [Hughes et al., 2015]. To the best of my
knowledge, we were the first to study fairness for sta-
tistical estimators [Azari Soufiani et al., 2014b]. I also
proved the first impossibility theorem on social choice nor-
mative properties of Bayesian estimators, which states that
no Bayesian estimator can satisfy the strict Condorcet cri-
terion [Xia, 2016]. Our MCMC algorithms are the first
sampling-based algorithms for ranking models with theoreti-
cal guarantees [Hughes et al., 2015].

Frequentist approach. Frequentists often evaluate a
decision-making mechanism fF w.r.t. a fixed parameter θ by
the frequentist loss, denoted by FL(θ, fF), which is the ex-
pected loss of the decision made by fF when the parameter is
fixed to be θ and the data is generated given θ. That is,

FL(θ, fF) = EP∼PrθL(θ, fF(P )),

where P represents the randomly-generated data. Minimaxity
is a commonly-used optimality criterion that measures the ro-
bustness of the mechanism, which is the worst-case frequen-
tist’s loss for the mechanism, where the worst-case is taken
over all parameters, namely minθ∈Θ FL(θ, fF). A mecha-
nism fF is minimax, if it has the lowest worst-case frequentist
loss among all mechanisms. Recently, I proved that for many
statistical decision-theoretic frameworks, the MLE is mini-
max [Xia, 2016]. This implies that for many frameworks,
MLEs have the minimum sample complexity, which was only
previously known for Mallows’ model [Caragiannis et al.,
2013].

Framework 2: Automated mechanism design
In a position paper [Xia, 2013], I proposed to use machine
learning to automatically learn a mechanism that satisfies a
user-specified set of desirable social choice normative prop-
erties. The main idea is that many desirable normative prop-
erties can be viewed as logical rules for generating new data.
For example, monotonicity states that for any agent, raising
the position of an alternative in her ranking does not hurt the
alternative. This can be viewed as a data generation rule such
that for any positive example (P, c), where P is a profile and
c is the winner-to-be, and for any P ′ obtained from P by rais-
ing the position of c in one ranking, we have that (P ′, c) must
also be a positive example. After new data are generated ac-
cording to the normative properties, we learn a mechanism
within structured frameworks [Xia, 2015].

5 Ongoing and Future Research
It is important that theoretical results and frameworks can be
applied to improve group decision-making in practice. Below
I will briefly discuss three ongoing and future directions for
research and development.
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Figure 3: Submitting CP-nets at OPRA.

Direction 1. Group decision support systems

Previous research in group decision support systems focused
on removing communication barriers and building hardware
systems [Desanctis and Gallupe, 1987], but often overlooked
the role of decision-making mechanisms. My group has been
working on establishing principled theoretical and algorith-
mic frameworks that unify group decision support systems
and AI, especially computational social choice and machine
learning. There are many places AI and economics can signif-
icantly improve the state of the art, such as in learning users’
behavior for better UI design, measuring consensus in the
group, and using machine learning to guide heuristic search
for computing hard voting mechanisms [Jiang et al., 2017].

Direction 2. Multi-type resource allocation

In multi-type resource allocation problems, items are catego-
rized into multiple types and each agent must get at least one
item per type. For example, the problem arises in allocat-
ing courses to students, computational resources to users in
cloud computing, medical resources to patients, etc. Previ-
ously only negative results are known.

In two recent papers [Mackin and Xia, 2016; Sikdar et al.,
2017], we were able to obtain surprisingly positive results by
using AI techniques. For example, when agents’ preferences
are lexicographic and are represented by CP-nets [Boutilier
et al., 2004], we designed an extension of the classical top-
trading-cycles mechanism and proved that it satisfies many
desirable properties. I believe that establishing theoretical
and algorithmic foundations of mechanism design for multi-
type resource allocation with the help of AI is a promising
direction for future research.

Direction 3. Online Preference Reporting and
Aggregation (OPRA) system
My group has built an open-source system for online group
decision-making. The service is open to public at http:
//opra.io, and all source code can be found at Github
(https://github.com/PrefPy/opra). OPRA has
been used in classes at RPI for students to make various de-
cisions, for CS department to decide best poster awards, and
for running polls for RPI’s Grand Marshall Week.

In my view, OPRA serves as a framework for bridging so-
cial choice theory and group decision-making in practice by
collecting data, testing new mechanisms, verifying theoreti-
cal models, and providing new insights to theoretical prob-
lems. In fact, many outcomes of my research have already
been integrated to OPRA. For example, OPRA measures and
visualizes consensus in agents’ preferences by computing the
margin of victory [Xia, 2012] and mixtures of Plackett-Luce
models [Zhao et al., 2016].

As another example, Figure 3 shows OPRA’s current sup-
port for combinatorial voting and multi-type resource allo-
cation. A user is submitting a CP-net to represent her pref-
erences over two types: Topic and Date, each of which has
three items. Area 1 shows the configurable dependency graph
of the CP-net. Area 2 provides indices to all topics, and cur-
rently T2 is chosen. Area 3 offers an optimized UI for the
user to submit a ranking over the three dates conditioned on
the chosen topic (T2).
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