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Abstract
Knowledge graphs have challenged the existing
embedding-based approaches for representing their
multifacetedness. To address some of the issues,
we have investigated some novel approaches that
(i) capture the multilingual transitions on different
language-specific versions of knowledge, and (ii)
encode the commonly existing monolingual knowl-
edge with important relational properties and hier-
archies. In addition, we propose the use of our ap-
proaches in a wide spectrum of NLP tasks that have
not been well explored by related works.

1 Introduction
Knowledge graph (KG) embeddings are the essential tools
that transfer the important concepts of the complicated hu-
man languages into machine-understandable representations.
The past half decade of research has paid much attention to
translation-based methods, which provide simple techniques
to encode entities in low-dimensional spaces and capture re-
lations as means of translations among entity vectors.

Although efforts have been made to improve such meth-
ods by introducing various forms of relation-specific entity
projections (see [Chen et al., 2017] for summary), almost al-
l works focus on characterizing monolingual knowledge de-
fined on simple or multi-mapping relations. This is far from
enough for completely representing the KGs, inasmuch as
KGs usually contain more complicated forms of knowledge,
including multilingual knowledge that synchronizes multiple
versions of KGs [Mahdisoltani et al., 2015], as well as mono-
lingual knowledge that enforces relational properties such as
transitivity and symmetry, and forms hierarchies [McGuin-
ness et al., 2004]. We propose some embedding approaches
that pursue to joint learning of monolingual and multilingual
knowledge, and better preserving relational properties and hi-
erarchies of monolingual knowledge in learning process. So
far as related works largely limit the use of KG embeddings
to tasks directly associated with KGs [Ji et al., 2016], like re-
lation extraction and triple classification, we propose the use
of our approaches in a wider spectrum of NLP tasks.

2 Proposed Approaches
We give the formalization of the corpora, with the highlight
on the multi-faceted knowledge we consider.

2.1 Formalization of Corpora
In a knowledge base KB , we use L to denote the set of lan-
guages, and L2 to denote the unordered language pairs. For
L ∈ L, GL denotes the language-specific KG of L, and EL
and RL respectively denote the corresponding vocabularies
of entities and relations. T = (h, r, t) denotes a triple in GL
such that h, t ∈ EL and r ∈ RL. Boldfaced h, r, t rep-
resent the embedding vectors of head h, relation r, and tail
t. For a language pair (L1, L2) ∈ L2, δ(L1, L2) denotes the
alignment set which contains the aligned pairs of triples.

Within a GL, we extend the relations by RL = Rtr ∪
Rs∪Rh∪Ro, which respectively denote the sets of transitive,
symmetric, hierarchical, and other simple relations. Thereof,
Rh = Rr∪Rc whereRr denotes refinement relations that di-
vide entities to finer ones, and Rc denotes coercion relations
that merge entities to coarser ones [Chen et al., 2016].

2.2 Learning Multilingual Knowledge
Leveraging KG embeddings to multilingual knowledge no
doubt provides more generic representations that benefits
cross-lingual NLP. But it is non-trivial for several reasons: (i)
multilingual knowledge has far larger domains than monolin-
gual relations; (ii) it applies to both entities and relations with
incoherent vocabularies in every language; (iii) usually only a
small portion of KB has been aligned with such knowledge.

We have proposed the MTransE model [Chen et al., 2017]
that employs two model components to learn on the two
facets of KB : knowledge model that encodes the entities and
relations from each language-specific graph structure, and
alignment model that learns cross-lingual transitions. It is
noteworthy that, MTransE is defined on a pair of language.
A set of model for each (Li, Lj) ∈ L2 composes the solution
for more than two languages w.l.o.g.
Knowledge Model. For each language L ∈ L, a dedicated
embedding space RkL is assigned for vectors of EL and RL,
where R is the field of real numbers. We employ TransE [Bor-
des et al., 2013] for each language by adopting the objec-
tive function SK =

∑
L∈{Li,Lj}

∑
(h,r,t)∈GL

‖h+ r− t‖,
which benefits the cross-lingual NLP tasks with the uniform
representation of entities under different contexts of relations.
Alignment Model. Alignment model constructs the transi-
tions between the vector spaces of Li and Lj according to the
objective function SA =

∑
(T,T ′)∈δ(Li,Lj)

Sa(T, T
′). The

alignment score Sa(T, T ′) thereof iterates through all pairs
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of aligned triples. Three different techniques to represent
the alignment scores are considered, i.e., distance-based axis
calibration, translation vectors, and linear transforms. These
techniques lead to five forms of Sa.

MTransE minimizes the objective function J = SK+αSA
via jointly training on triples and alignment sets, where α is
a hyperparameter that weights between two model compo-
nents. Several variants of MTransE are implemented based
on different techniques applied in the alignment model.

2.3 Learning with Properties and Hierarchies
In many KGs, monolingual knowledge commonly enforces
relational properties, and forms hierarchies. For example,
85% of triples in ConceptNet [Speer and others, 2013] and
96% in Yago3 [Mahdisoltani et al., 2015] are with relational
properties, while 60% and 38% of their triples are with hier-
archical relations respectively. Thus, we investigate another
model On2Vec that forthputs the Component-specific Model
and Hierarchy Model to handle such knowledge.
Component-specific Model. Existing approaches mainly ap-
ply the same relation-specific projection on both head and tail
entities [Ji et al., 2016]. This inevitably causes conflicts on
triples with relational properties:
• Consider r ∈ Rtr and (e1, r, e2), (e2, r, e3), (e1, r, e3) ∈
GL, where e1, e2, and e3 are projected to e1r, e2r, and
e3r in the relation space of r. Since e1r + r ≈ e2r and
e2r + r ≈ e3r hold for the first and second triples, it is
impossible for e1r + r ≈ e3r to hold as r is nonzero.
• Consider r ∈ Rs and (e1, r, e2), (e2, r, e1) ∈ GL. It is

impossible for both e1r + r ≈ e2r and e2r + r ≈ e1r to
hold, since r is nonzero.
To eliminate such conflicts, the component-specific mod-

el applies two different relation-specific projections f1,r and
f2,r on head and tail entities respectively to the same rela-
tion space. f1,r and f2,r can be implemented as hyperplane
mappings [Wang et al., 2014] or linear transforms.
Hierarchy Model. Given r ∈ Rh, we define σ(e, r) as the
refine operator to fetch the finer entities that apply r with the
coarser entity e. Hierarchy model serves as an auxiliary learn-
ing process forRh towards the goal of converging the project-
ed embeddings of e′ ∈ σ(e, r) within a tight neighborhood
given each e and r, while penalizing other unrelated entities
that fall inside the margin.

Training of On2Vec jointly optimizes the objective of both
model components. Bernoulli negative sampling [Wang et
al., 2014] is adopted for more efficient learning. Experimen-
tal results on relation extraction show that On2Vec outper-
forms the related approaches [Chen, 2017], which verifies the
effectiveness of the two On2Vec model components.

3 NLP Applications
We propose to apply these approaches to several NLP tasks.
Knowledge Alignment. We have applied MTransE to both
entity and triple-wise cross-lingual alignment tasks on large
KGs derived from Wikipedia and ConceptNet, which re-
ceived promising results and outperformed approaches based
on multilingual word embeddings [Chen et al., 2017]. Results
of monolingual tasks also show that MTransE better preserves
monolingual knowledge than its monolingual counterpart.

Semantics Relatedness Analysis (SRA). Unsupervised SRA
tasks such as LP50 [Chen, 2017] request machine-estimated
document semantic distances to receive a high Pearson’s cor-
relation with human judgement. A straightforward solution
is via vector representations of documents by aggregating the
embeddings of Wikipedia entities that are recognized in each
document. Currently, as we use Annotated Skip-gram trained
on Wikipedia articles to conceive the vectors, this simple
solution is effective enough to outperform many approach-
es [Chen, 2017]. As next step, we will represent the docu-
ments by training On2Vec on the Wikipedia-derived Yago3.
Similarly, we will use MTransE to enable cross-lingual SRA.
Open Information Extraction (OpenIE). Neural openIE
[Lin et al., 2016] relies on word embeddings to obtain the
tensor representations of sentences. A practical alternative is
to use word-knowledge joint embeddings [Chen, 2017] based
on On2Vec and Annotated Skip-gram, which stands on the
assumption that KG embeddings better highlight the impor-
tant concepts in sentences [Ji et al., 2016], amongst which the
neural classier aims at predicting the relations.
Sentiment Analysis. Deep neural networks similar to the
one for openIE will be used to tackle sentiment analysis tasks
summarized in [Kim, 2014]. We will evaluate the follow-
ing sentence representation techniques: (i) joint embedding-
based tensor representations; (ii) aggregated embeddings of
highlighted KG entities; (iii) combination of (i) and (ii).
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