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Abstract
Algorithm selection approaches have achieved im-
pressive performance improvements in many ar-
eas of AI. Most of the literature considers the of-
fline algorithm selection problem, where the ini-
tial selection model is never updated after training.
However, new data from running algorithms on in-
stances becomes available while an algorithm se-
lection method is in use. In this extended abstract,
the online algorithm selection problem is consid-
ered. In online algorithm selection, additional data
can be processed, and the selection model can
change over time. This abstract details the on-
line algorithm setting, shows that it is a contextual
multi-armed bandit, proposes a solution methodol-
ogy, and empirically validates it.

1 Online Algorithm Selection
Many AI-problems are NP-complete: there exists no gen-
eral efficient algorithm to solve them with. Nevertheless, the
problems are often solved efficiently using heuristics. Such
heuristics work well in some cases, but not in others. The idea
of algorithm selection is to compose a set of complementary
algorithms, with each algorithm performing well on different
kinds of instances, and to predict for each new instance which
algorithm is best suited to solve it. This problem of predict-
ing which algorithm is best for each instance is known as the
algorithm selection problem.

Algorithm selection methods use supervised learning tech-
niques to build a selection mapping (λ), which maps each
instance to the algorithm believed to be best for it. To do so,
instances are characterised by a set of cheaply-computable
features, correlated with their difficulty. The selection map-
ping is initialised based on offline training data, consisting
of the performance of the algorithms on a set of training in-
stances. Once created, the selection mapping is consulted to
make predictions for new online problem instances, but it is
never modified. If the training data did not accurately capture
the problem, poor selections will be made, resulting in poor
performance that will always remain poor.
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Every time a prediction for a new online instance is made,
the performance of the selected algorithm on that instance
becomes known. Offline algorithm selection methods throw
away this free data. The idea of online algorithm selection is
to process it, aiming to improve the selection mapping. On-
line algorithm selection is most useful when training data is
expensive to obtain or fails to accurately capture the problem.

Online algorithm selection is a generalisation of the offline
problem, allowing the selection mapping to change when new
data becomes available. A solution strategy for online algo-
rithm selection (β) defines how to choose the selection map-
ping, based on all data available so far (H): both the train-
ing data and the online data. This data consists of records
{i, ϕ, a, p}, with i an instance, ϕ its feature values, a an algo-
rithm, and p the observed performance. Algorithm 1 shows
the general procedure for online algorithm selection.

Algorithm 1 Online algorithm selection

1: Input: training data HT

2: Input: online strategy β
3: H = HT

4: for instance i do
5: λ = β(H) //Get selection map, based on all data
6: a = λ(i) //Make selection
7: Solve i with a, observing performance p
8: H = H ∪ {i, ϕ, a, p} //Add newly generated data

A common approach to offline algorithm selection is to
learn a regression model for each algorithm in the portfolio.
These regression models predict the performance of the cor-
responding algorithm on an instance, based on the instance’s
feature values. The algorithm with best predicted perfor-
mance is then selected. These methods can easily take the
online data into account, by updating the regression model of
the selected algorithm after each online instance. This makes
them a good candidate for an online strategy.

A popular alternative is to use a classifier to directly pre-
dict the best algorithm for a new instance. However, such a
method cannot be directly applied to online algorithm selec-
tion, because it cannot process the online data, which con-
sists of the performance of only one algorithm for each in-
stance. Based on such incomplete data, it is impossible to
know which algorithm is best, which is a requirement for the
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classifier. [Malitsky, 2014] proposed a work-around for this
issue. A clustering technique is used to initialise a selection
mapping, selections are made, and the mapping remains the
same as long as the online instances are similar to those in
the training data. However, when a substantially different on-
line instance is encountered, all algorithms are run on it, and
the clustering is updated. The disadvantages of this method
are that it cannot process the data generated by the similar in-
stances, and that it needs to run all algorithms on the dissim-
ilar instances. In contrast, regression-based method can use
all online data and need never run additional experiments.

2 Online Algorithm Selection as a Contextual
Multi-armed Bandit Problem

Online algorithm selection can be modelled as a contextual
multi-armed bandit problem.

In the standard multi-armed bandit problem, a gambler has
access to a set of slot machines (bandits) and he must decide
on a strategy in which order to pull their arms. His goal is
to realise as much profit as possible. Each time an arm is
pulled, the gambler receives a random reward sampled from
a distribution belonging to the selected arm. Initially, all dis-
tributions are unknown, but as the gambler gambles on he ob-
tains more information about the distributions of the available
arms, and can make better-informed choices.

The contextual multi-armed bandit problem generalises the
multi-armed bandit problem by introducing side information:
before pulling an arm, the gambler sees a context vector. This
context vector describes the current situation, and the reward
of each arm depends on it. The gambler’s goal is again to
maximise profit, but in order to do so he has to learn how the
context vector relates to the rewards.

The online algorithm selection problem is a contextual
multi-armed bandit problem: each algorithm corresponds to
an arm and pulling an arm is the equivalent of selecting an al-
gorithm. Features are used as basis for the selection, which is
the equivalent of seeing a context vector. Maximising profit
is the equivalent of maximising performance.

Multi-armed bandit literature shows that the simple greedy
strategy of always pulling the predicted best arm can perform
poorly. Instead, a predicted non-best arm should occasionally
be explored, to increase the probability that it is indeed worse,
and had not not simply been unlucky before.

3 Empirical Validation
Experiments were run to test the validity of online algorithm
selection, using the greedy strategy described at the end of
section 1 and two exploring strategies: ε-greedy and a UCB-
variant. All strategies used random forest as regressor. Tests
were run on 18 scenarios of the algorithm selection bench-
mark ASLIB [Bischl et al., 2016]. The online setting was
simulated by splitting each scenario’s instances in three sub-
sets: 10% used to initialise the models, 80% used as online
instances, and 10% held out to measure how model quality
evolves over time. As a baseline, a regression forest trained
on 10% of the data but never updated was used. This is a
classic offline strategy. As a final reference, the benchmark
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Figure 1: Evolution of model-quality over time aggregated over all
scenarios. Opaque lines show the mean and semi-transparent lines
one sd above and below.

performance obtained by running regression forest on 90%
of the data and testing it on the remaining 10% was used.

The greedy strategy performed better than the offline base-
line in 15 of the 18 scenarios. Both exploring strategies
always performed worse than the greedy strategy, and per-
formed worse than the baseline in about half. The cost of
exploring was not compensated sufficiently by later gains.

Figure 1 plots selection-mapping-quality in function of the
percentage of online instances handled, averaged over all sce-
narios. To aggregate, the performances of each experiment
were normalised in relation to the single best solver (always
selecting the same algorithm, performance 0) and the virtual
best solver (selecting the best algorithm for each instance,
performance 1). This plot shows that all online strategies
learned better models over time, but that the exploring strate-
gies did not learn better models than greedy.

4 Conclusions and Future Work
The contributions of the research carried out so far are that
the problem of online algorithm selection has been formally
defined, that is has been shown to be a contextual bandit, that
a solution methodology has been proposed, and that an exten-
sive empirical study has been performed on benchmark data,
illustrating the validity of the method and providing a frame-
work for future experiments.

Future work is to investigate why the exploratory strategies
did not learn better models than the online greedy strategy.
Other future work is to apply the methodology to a concrete
application, to obtain better insight than possible with bench-
mark data, by having access to unlimited instance generation.
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