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Abstract

Resistance to autonomous systems comes in part
from the perceived unreliability of the systems.
Concerns can be addressed by guarantees of the
probability of success. This is achieved in chance-
constrained constraint programming (CC-CP) by
imposing constraints required for success, and pro-
viding upper-bounds on the probability of violat-
ing constraints. This extended abstract reports on
novel uncertainty representations to address prob-
lems prevalent in current methods.

1 Introduction

In decision making under uncertainty, a subset of decisions
are under the control of the agent, and the rest are assigned
by the environment. Chance-constrained constraint program-
ming (CC-CP) allows the specification of a set of constraints
over controllable variables assigned by the agent, and uncon-
trollable variables assigned by the environment, as well as a
probabilistic bound on satisfying subsets of the constraints.
Current weakness in CC-CP are as follows:

e Current chance-constrained problems are typically cast
as nonlinear optimisation problems, and processed with
generalised solvers (eg TPOPT [Wichter and Biegler,
2006], SNOPT [Gill et al., 2005]). Feasible problems
are typically small. Faster solution methods are required
to extend the chance-constrained approach to real-world
problems.

e Current chance-constrained techniques rely on reason-
able probability distributions to represent uncertainty.
When distributions are fitted from historical data, for ex-
ample with kernel density estimation (KDE), there are
concerns with over-fitting. The alternative, prevalent in
robust optimisation, is to construct a unique robust set
from data [Bertsimas et al., 2017]. Such techniques do
not take the objective function or constraints into con-
sideration when constructing the robust sets, leading to
over-conservatism.

2 Problem Formulation And Approach

The problem to be investigated is a mixed constraint system,
with variables with integer and real domains, and linear and
nonlinear constraints over the variables. Formally:
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Problem 1. (Data-driven cc-MINLP)
Let (Q, F,P) be a probability space and u : Q — RNV be vec-
tor of random variables, where u'? is the j-th random variable.

Given a set of samples {ﬁgj)7 ﬁ(Qj), ey ﬁg\zl)] } for each random vari-

able u'?),
mgn]E [(e(x,u(w))]

s.t.P (Aix + Au(w) < by, fi(x, u(w)) < di) > A
vi € {0,1,...,Nc}
where:
e x € RVE x ZNZ js vector of decision variables;
o c:RVR x ZNZ x RNU — R is an objective function;
e A;are N;iin X (Nr + Nz) matrices;
. Az are N; 1in X Ny matrices;

o f;: RVE x 7Nz « RNU — RNintin gre vector-valued mea-
surable functions mapping from the space of the decision vari-
ables and random variables; and

e b; € RVitin gpd d; € RNintin gre vectors of constants.

The problem description assumes an underlying probabil-
ity distribution for the random variables, although only sam-
ples are available. The problem requires assignments to deci-
sion variables which optimises expected utility while bound-
ing the probability of constraint violation.

2.1 [Initial Approach

In the initial approach, I will address the problem of uncer-
tainty representation by constructing uncertainty sets from
data rather than fitting distributions. Unlike prior work in ro-
bust programming, I will derive multiple uncertainty sets to
be reasoned over during optimisation.

One way of providing probabilistic guarantees is to con-
struct robust sets which cover a set of outcome with a suf-
ficient probability mass, and then performing robust optimi-
sation. The key idea is thus to estimate the location of the
lower and upper quantiles. Due to the finite set of samples,
the methods must be robust with respect to variations in sam-
pling. I will thus also provide a confidence for estimates, a
bound on the probability of estimates being incorrect.

Rather than directly fitting a cumulative distribution func-
tion from the data, I extend results from confidence intervals
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Figure 1: Probabilistic guarantee from bounds on quantiles.

for quantiles using order-statistics [Gibbons and Chakraborti,
2011] to find lower- and upper-bounds for the values of the
quantiles, with the required confidence. For ordered sample
uy out of N samples, with probability «, it is:

e greater than the ¢ = 1 — B~ 1(a, N — k + 1,k) lower
quantile bli;

e smaller than the ¢ = 1 — B~Y(a, k, N — k + 1) upper
quantile b*;

for B~!(a, a, b) the a-quantile of the Beta(a, b) distribution.

Fixing confidence, we can thus construct a finite number
of bounds for quantile values, drawn from sampled values.
The bounds on quantiles can be used in the same way as dis-
crete cumulative distribution functions to provide probabilis-
tic guarantees. An example is given in Figure 1, in which with
99% confidence the 5% quantile traversal is greater than 30
seconds and the 95% quantile is less than 180 seconds. Then,
with 99% confidence the traversal takes between 30 seconds
to 180 seconds with probability at least 90%.

I have implemented the algorithm Fantana which con-
structs the lower- and upper-bounds from marginal samples.
I have tested the correctness of the method empirically on a
data-set of 48361 samples of Boston subway traversal times
between two adjacent stops, Davis Square and Porter Square.
For each trial, I wished to find a lower-bound on the lower
e = 5% quantile, with confidence @ = 1%. Intuitive, I
wanted to find a traversal time, so that only 5% of traversals
will be shorter, with confidence 99%.

For each trial, I randomly assigned 4000 of the data points
to for the training data set, and the rest to the test set. I then or-
dered the samples in the training set, and found sample points
uy, where k was the largest k£ such that 1 — B’l(a, k,N —
k4 1) < 0.05, for N = 4000 the size of the training set.
For comparison, I also fit a distribution using the kernel den-
sity estimation implementation from the Scipy library [Jones
et al., 2001]. T then noted the cumulative density at u;, ac-
cording to the fitted distribution. To test the correctness of
the bound, I then determined the proportion of data points in
the test set which was smaller than the chosen bound.

Averaging over 10000 trials, the average proportion of test
data points smaller than the chosen lower-bound uj’s was
3.4%, suggesting that the method is not overly conservative.
Further, the proportion of test data points smaller than the
lower bound was less than 5% in all 10000 trials, showing
correctness with respect to the 99% confidence bound.

However, in 989 trials, the proportion of test data points
was greater than the cumulative density at uy, fitted using ker-
nel density estimation. Thus, kernel density estimation pro-
vided an incorrect bound in 9.89% of the trials.
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The contributions to CC-CP are as follows: 1) Explicit con-
fidence on the estimates enforces robustness to sampling vari-
ations; 2) constructing multiple quantile bounds allows agents
to choose robust sets with greater flexibility than existing ro-
bust optimisation methods; and 3) discrete choices for robust
set bounds allows agents to leverage techniques in discrete
search instead of optimising over nonlinear density functions.

3 Future Work

Fantana currently constructs multiple uncertainty sets with
correct probabilistic guarantees. In subsequent work, I will
demonstrate faster computation for chance-constrained con-
straint programming when the constructed sets are used for
uncertainty representation. Fantana will be used to construct
robust sets for scheduling under probabilistic uncertainty with
chance-constrained probabilistic simple temporal problems
(cc-pSTPs) [Fang et al., 20141, using data for traversal times
and wait times at station a subway line.

The key to scalable solutions to cc-pSTPs is the decom-
position of the problem into the risk management and the
temporal consistency checking subproblems. The risk man-
agement master constructs uncertainty sets for durations to
generate a candidate deterministic temporal subproblem. The
subproblem is checked with use efficient scheduling algo-
rithms, and inconsistency are explained by returning conflicts
to the master in the form of linear constraints. I will prove that
these linear constraints corresponds to Bender’s cuts for feasi-
bility, and derive corresponding optimality cuts for cc-pSTPs.
I will then generalise cut learning for chance-constrained con-
straint programs of the form in Problem 1. Cut learning
will also reduce over-conservatism by identifying restrictions
over the outcomes of uncontrollable variables, as bounds on
functions of uncontrollable variable outcomes. Measurable
functions can also be considered random variables, and un-
certainty sets can be iteratively constructed with Fantana for
subsequent risk allocation.
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