
Multi-Agent Systems of Inverse Reinforcement Learners in Complex Games

Dave Mobley
University of Kentucky, dave.mobley@uky.edu

Abstract
Reinforcement Learning (RL) allows an agent to
discover a suitable policy to achieve a goal. How-
ever, interesting problems for RL become complex
extremely fast, as a function of the number of fea-
tures that compose the state space. The proposed
research is to decompose a core problem into tasks
with only the features required to solve the task.
The core agent then uses the reward for the task,
without knowing the underlying task model. This
paper discusses task-based RL and Inverse Rein-
forcement Learning to train the tasks.

1 Introduction
We want to use machine intelligence to solve real-world prob-
lems such as driving a car efficiently and safely, or managing
a retail business. Real-world problems exhibit a few defin-
ing criteria that make them challenging, such as resource and
task management. Knowing how much fuel is in a car or how
to deal with approaching sirens are important to the overall
goal of driving. For a restaurant you worry about how much
to staff tonight, or what to do if a shipment of arrives late, all
while trying to keep the store operating. Each of these tasks
requires many features that describe the problem and state of
the system. As the number of features grows, the problem
becomes nearly intractable. Furthermore, the agent may not
know how to quantify a reward for each task nor for the ul-
timate goal. Do we value getting to the next destination as
fast as possible regardless of safety or with absolute safety
but at a walking pace? Is the purpose of a restaurant about
making a profit or employing people in the community? An-
other set of complex problems is computer games. Games
exhibit overarching goals with many small subproblems. I
am exploring tiered Reinforcement Learning techniques as a
starting point for satisfactory baseline results when learning
to play role-playing games. I use existing expert policies as a
starting point to learn how to play and extrapolate ideal goals
and rewards.

1.1 Modeling Problems as MDPs
Problems as complex as driving a car or managing a restau-
rant can be modeled as Markov Decision Processes (MDPs).
An MDP is a collection of states where each state exhibits

the Markov Property, an action can be chosen to transition
states, and a reward is given on state change. The Markov
Property says that future states can be determined from the
current state and chosen actions, independent of prior states.
Transitions between states are determined by actions. Each
transition provides a reward. A policy is a mapping from
states to actions or distributions over actions. The value for
a policy can be estimated as the current reward for an action
plus the sum of expected rewards for following the rest of the
policy.

1.2 Reinforcement Learning
In Reinforcement Learning (RL), the goal is to devise a pol-
icy based on the current model of the problem, given state
space S and action space A and rewards R associated with
those state/action transitions. Dynamic programming tech-
niques, e.g., value iteration and policy iteration learn through
step-wise improvements on a given policy. Off-policy algo-
rithms such as Q-Learning update Q values, the state-action
pair values. These algorithms are off-policy because they al-
low the learner to learn while following another policy, even
a random policy [Sutton and Barto, 2016], updating expected
rewards from an action taken from a given state. The result is
that a set of known rewards can be mapped to a policy.

When the rewards are not known, a policy cannot be calcu-
lated. Exploring the state space and actions and determining
expected rewards is called Q-learning. In complex problems,
there may be no way of evaluating a reward for a single ac-
tion, but having a working policy and mapping that policy
to rewards can give an approximation of the rewards. This
technique is called Inverse Reinforcement Learning (IRL).

1.3 Big Problems Means Big Data
Complex problems require many features to define the myr-
iad possible states. When the number of features grows, the
problem size grows exponentially. Another source of com-
plexity is the “Curse of Dimensionality:” more features used
implies more data required to efficiently train a system. If you
have a training set that trains each state only once, then adding
one features doubles the size of the training set required since
the extra feature doubles the state space. Thus, the data set
must grow exponentially with the number of features. Most
interesting problems exhibit this curse; optimization quickly
becomes intractable. One cannot come up with enough data

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5191



(or time) to begin to significantly test a problem with a large
number of variables. However, there are ways to get around
the sparsity of data.

1.4 Learning by Example
There are tasks, like driving a car or managing a restaurant,
that are considered hard, even by human standards. To look
at teaching a computer to understand the goals, and not just
mimic a teacher, we must use a system that can reward find-
ing effective policies and improving upon them [Abbeel and
Ng, 2004]. Abbeel has shown that by using IRL, computers
can be taught through apprenticeship, using a teacher and in-
ferring their goals. Examples currently demonstrated are auto
driving in a simulator, and teaching a system to perform aero-
batics with a helicopter [Abbeel et al., 2007]. Many complex
problems can be decomposed into smaller problems. Though
a system can be modeled to learn from all features compos-
ing each state, subproblems, like braking a car, can be treated
as an independent action with a probability and reward. The
braking problem itself can be modeled as an MDP and trained
through RL or IRL as well.

Using an approach that breaks out features into subprob-
lems should ease the need for data to train the system. Sub-
problems will only need enough data to sufficiently train
them, and results can be funneled back to the primary learner.
Splitting problems and training the individual pieces is typ-
ically faster than trying to train the whole of the problem
monolithically. Finally, the outcome for complex problems
shouldn’t need to be optimal, but rather a system that starts
at human level competency as a lower boundary and can be
continually trained to improve over time. In the next section,
I present proposed benchmark problems, then describe my
proposed research.

2 Description of Games
Role Playing Games (RPGs) are some of the hardest games
for players to learn to play well. They have a set of over-
arching goals, but have many smaller tasks that contribute
to different parts of this goal. Overarching goals may be as
simple as completing the game, not dying, or improving the
player avatar. Tasks can include fighting in combat, perform-
ing a sub-game to receive rewards, or just walking around
collecting goodies. In such a game it’s hard to understand
and quantize complex, intertwined rewards. Another disad-
vantage of these games is that players might not exhibit the
policy choices for rare game states.

I am looking at two types of games. The first is a text-based
RPG, as the states and actions are easy to teach to a system.
This type of RPG, called a MUD (Multi-User Dungeon) is a
gridworld-like game with a collection of quests alongside pri-
mary goals of staying alive and improving a character. I will
use expert trainers to teach individual learners how to perform
complex actions such as combat, map navigation, and heal-
ing, while allowing a higher level learner to focus on bigger
goals such as deciding the value of having a combat (chance
of death vs. growth), quest completion, and avatar advance-
ment trajectory.

The second type of game is a graphical RPG, Pirate101, a
first-person RPG produced by KingsIsle. It has similar tasks

of combat, map navigation, healing, and quests. Being graph-
ical, the environment and possible actions are more varied
and nuanced. Also the world-space is much larger, making it
similar to the text RPG, but with more complexity.

3 Novelty of Research
RPGs can be modeled as factored MDPs. There is a set of
variables that defines the current state of the game, and a set
of available actions. To teach a system to play an RPG, two
levels of learning must occur. The top level, which uses IRL,
learns the general goals of the expert and uses those rewards
to train the game playing agent. For sub-tasks, learners are
taught using a combination of learner types depending on the
sub-task. For example, a Deep IRL learner trains to handle
combat by an expert. Another type of learner can learn to
navigate using a Deep Q Network, as rewards can be created
without an expert to teach the system. The fact that the sub-
tasks are played in a competitive space adds complexity. To
compensate for that, adversary actions also must be consid-
ered as part of the state/action transition. Littman [Littman,
1994] suggests a minimax strategy using Q-learning that
helps account for the action of the other participant.

To properly model complex problems, I’m looking at using
Hierarchical Task Networks (HTNs) in combination with IRL
tasks to show that the MDPs can be decomposed into smaller
tasks and solved independently from the main problem. The
results, and expected reward, should flow up to the primary
learner so it doesn’t have to manage all of the features for
each sub-task as part of its learning.

I am looking at ways to teach learners to perform as well
as humans because they are trained by human experts. I as-
sume that this training forms a lower bound on the ability for
the learners, meaning that, though they may not be optimal,
they are at least satisfactory in performance. Training systems
using multiple experts gives a sample set that provides expec-
tations of rewards for different aspects of the system, but also
allows the establishment of what the goals should be based on
consensus. This new interpolated group goal is the starting
point that a new reinforcement learner can be trained. By cy-
cling between expert training and estimating a more refined
final goal, we expect to monotonically improve the rewards
estimates and goals, ultimately converging on knowledge of
goals and rewards.

References
[Abbeel and Ng, 2004] Pieter Abbeel and Andrew Y Ng. Appren-

ticeship learning via inverse reinforcement learning. In Pro-
ceedings of the twenty-first international conference on Machine
learning, page 1. ACM, 2004.

[Abbeel et al., 2007] Pieter Abbeel, Adam Coates, Morgan
Quigley, and Andrew Y Ng. An application of reinforcement
learning to aerobatic helicopter flight. Advances in neural
information processing systems, 19:1, 2007.

[Littman, 1994] Michael L Littman. Markov games as a framework
for multi-agent reinforcement learning. In Proc. ICML, volume
157, pages 157–163, 1994.

[Sutton and Barto, 2016] R.S. Sutton and A.G. Barto. Reinforce-
ment Learning: An Introduction. A Bradford book. Cambridge
University Press, 2016.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5192


