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Abstract
This extended abstract presents my PhD research
project on learning and reasoning in Hybrid Do-
mains. In particular, it focuses on my current work
on exact probabilistic inference in these domains,
as well as presenting other research directions that
are going to be explored.

1 Introduction
Hybrid Domains are characterized by a mixture of continu-
ous and discrete variables, as well as logical and algebraic
constraints involving them. Reasoning in these domains is a
daunting task and currently few approaches have been pro-
posed. Developing methods that can efficiently handle Hy-
brid Domains is of primary importance, as they would al-
low to model a wide range of problems in a more expressive
way, as well as performing learning and inference tasks more
efficiently by leveraging the knowledge encoded in the con-
straints.

Currently, my research focuses on performing exact proba-
bilistic inference in Hybrid Domains by leveraging Weighted
Model Integration, a generalization of Weighted Model
Counting to continuous distributions.

2 Background
Weighted Model Counting (WMC) [Chavira and Darwiche,
2008] is the problem of computing the weighted sum of the
models of a propositional formula.

WMC(ϕ,w) =
∑
µ|=ϕ

WEIGHT(µ,w)

where typically the weight of each model µ is computed as
the product of the weights associated to its literals `:

WEIGHT(µ,w) =
∏
`∈µ

w(`)

Recently, it was shown that probabilistic inference in the
case of discrete distributions can be posed as a WMC prob-
lem [Chavira and Darwiche, 2008; Choi et al., 2013; Suciu et
al., 2011; Fierens et al., 2013].

Satisfiability Modulo Theories (SMT) [Barrett et al., 2009]
generalizes propositional satisfiability to theories such as Lin-
ear Arithmetic over Real or Integers. A SMT formula is a

(typically quantifier-free) formula in which the atoms can ei-
ther be Boolean or theory atoms. Encoding a problem in SMT
allows to represent logical and algebraic constraints involving
the variables, like:

(A→ ((0 ≤ x) ∧ (x < 3))) ∧ (A ∨ ¬(x+ y < 10))

Weighted Model Integration [Belle et al., 2015a] (WMI) is
a recent generalization of WMC to the case of continuous
variables, in which the problem is encoded as a SMT formula
and the weighted sum of models is replaced with the sum of
the definite integrals of the weight functions of each model,
which act as unnormalized density functions.

WMI(ϕ,w) =
∑
µ|=ϕ

∫
µLRA

WEIGHT(µ,w)dx

The integral is computed over the subspace defined by the
truth assignments on the numerical constraints, which in the
case of Linear Arithmetic over Reals (LRA) is a convex
polytope.

3 Weighted Model Integration, Revisited
We present a reformulation of WMI which fixes some theoret-
ical limitations of the original formulation and we provide a
novel algorithm which drastically improves the performance.
A drawback of the original formulation is that the WMI of
the same weight function may give different results on two
different LRA-equivalent formulas. For instance, consider:

w((0 ≤ x)) = w((x ≤ 3)) = 1

w((x ≤ 1)) = w(¬(x ≤ 1)) =
1

2
ϕ1 = (0 ≤ x) ∧ (x ≤ 3)

ϕ2 = ((0 ≤ x) ∧ (x ≤ 1)) ∨ (¬(x ≤ 1) ∧ (x ≤ 3))

Then WMI(ϕ1, w) = 3 6= WMI(ϕ2, w) = 3
2 . A major

source of inefficiency in the original method is that it requires
to find (and integrate over) total truth assignments, although
in many cases this is not necessary. As an intuitive example,
consider two models having the same associated weight and
differing only on the truth assignment of a single theory atom
(e.g. such atom has constant weight 1 regardless of its truth
value). In the original method, this would require to compute
two integrals with the same integrand and sum up the results.

Instead of formulating the weight of a model as the product
of the weights associated with its literals, we define the no-
tion of conditional weight function. In this formulation, the
weight function is described by:
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Figure 1: Query execution times of WMI-PA and PRAISE for in-
creasing path length.

• a support formula χ, which defines the subspace of the
assignments in which the function is defined (strictly
positive),

• a set Ψ of formulas called conditions
such that each (partial) assignment to the atoms of χ and Ψ
intuitively represents a branch of a weight function defined
by means of nested if-then-elses.

Our algorithm exploits state-of-the-art SMT-based Predi-
cate Abstraction techniques [Graf and Saı̈di, 1997] together
with this refined formulation of weight function to find and
integrate over the partial truth assignments which are relevant
in the query computation. The advantage is twofold: first,
finding the truth assignments is significantly faster compared
to the original method. Second, the number of integrals to be
computed is minimal wrt the query.

This approach was applied to the Strategic Road Network
dataset 1, which contains traffic data on the motorways man-
aged by the English Highways Agency. From this dataset
we extrapolated polynomial distributions of journey times be-
tween all junctions, with a 15 minutes granularity. In this
setting, the task is to perform queries of the form:

P (tarrival ≤ k1|path ∧ (tdeparture = k2))

To the best of our knowledge, the only other system that can
perform exact probabilistic inference in this hybrid setting
is PRAISE, which implements a method called Probabilistic
Inference Modulo Theories [de Salvo Braz et al., 2016]. We
compared the execution times of our implementation (WMI-
PA) with PRAISE for increasingly longer paths. In this set-
ting, our method is significantly more efficient, as shown in
Figure 1.

4 Future work
Future plans include exploiting decomposition and caching
techniques to further improve scalability by partitioning the
problem in independently-integrable components, as it was
done for WMC [Sang et al., 2004; Bacchus et al., 2009]. This
could be implemented by building the dependency graph of
variables, in which two variables are connected by an edge if
they appear in the same atom. Finding a partitioning would
require to find the connected components on such graph. One
of the main issues here is that in many scenarios, unlike in the

1
https://data.gov.uk/dataset/dft-eng-srn-routes-journey-times

purely propositional case, numerical variables tend to be cou-
pled together by appearing in the same theory atoms. Never-
theless, implementing such techniques would allow to effec-
tively broaden the set of problems that can be solved by our
method. Another direction is to leverage the exact approach
as a basis to perform approximate inference in Hybrid Do-
mains, as it was done for the original WMI formulation [Belle
et al., 2015b].
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