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Abstract
Max-margin and kernel methods are dominant ap-
proaches to solve many tasks in machine learn-
ing. However, the paramount question is how to
solve model selection problem in these methods.
It becomes urgent in online learning context. Grid
search is a common approach, but it turns out to be
highly problematic in real-world applications. Our
approach is to view max-margin and kernel meth-
ods under a Bayesian setting, then use Bayesian in-
ference tools to learn model parameters and infer
hyper-parameters in principle ways for both batch
and online setting.

1 Introduction
Max-margin is a powerful principle to construct learning
model with high generalization capacity. This principle can
be applied straightforward for linear case. To capture data
distribution with non-linear nature, the input data are trans-
formed onto a higher-or-infinite dimensional feature space
via a kernel function, then fit to a linear model. The linear
decision boundary in the feature space is a set of non-linear
contours in the input space which is sufficient to describe data
variety. Methods using this principle are named kernel meth-
ods. These methods depend solely on the kernel function
which describes the similarity between two data instances,
hence they can deal with different kinds of data, such as data
with variable length.

Nevertheless, existing max-margin and kernel methods
have no effective way to solve model selection problem, i.e,
to find the optimal hyper-parameters. In practice, grid search
is a common approach to tune hyper-parameters for a given
dataset. However, the grid search suffers from two key draw-
backs. First, the number of trials grows exponentially with
the number of hyper-parameters. Although one can paral-
lelize the grid search, it takes an expensive computational re-
source. Second, the values of hyper-parameters can be con-
tinuous and unbounded whilst the grid contains discrete val-
ues only, hence there is no guarantee that the result is optimal.

Model selection problem becomes urgent in online learn-
ing context where data come continuously, sequentially and
evolves rapidly. Because the training set changes all the time,
the optimal hyper-parameters at different moments might
be totally different. Therefore, the learning system must

keep track all models corresponding with all possible values
of hyper-parameters to obtain the optimal predictive perfor-
mance.

Bayesian inference is a powerful tool to model a particu-
lar learning problem via a graphical model. Model parame-
ters and hyper-parameters are represented as latent nodes in
graphical model whilst each data instance in the training set
is treated as an observed node. From this view, we can apply
Bayesian inference strategies, such as Markov chain Monte
Carlo (MCMC), variational inference, to learn the most likely
model parameters and infer hyper-parameters.

In this research, we want to conjoin body of two mature
theories: kernel-based methods and Bayesian modeling to
advance learning methods based on kernels and max-margin
principle. Our research objective is to develop new learn-
ing methods at the intersection of kernel-based methods and
Bayesian modeling. Our aims are to solve model selection
problem for kernels and max-margin principle. Our methods
are able to avoid grid search completely, thus reduce compu-
tational resources significantly. The remarkable point is that
our methods can work with large-scale dataset and get ready
for online learning setting.

Leveraging Bayesian approach with kernel-based methods
has been investigated [Zhu et al., 2011; Wang and Zhu, 2014].
However, they did not address model selection problem. To
our best knowledge, our research is the first study that uses
Bayesian inference to solve model selection in kernel meth-
ods and addresses model selection in online learning context.
For the rest of paper, we present our first achievements and
directions for the remaining work.

2 Multiple Kernel Learning Approach
In single kernel learning, the kernel function is usually a RBF
kernel as follows

κ (x,x′) = exp
{
−γ ‖x− x′‖2

}
However, there is a wide spectrum of linear or nonlinear ker-
nel functions to choose and each kernel function has its own
parameters to tune. A common approach is to run a grid
search over sets of parameters to obtain the optimal one, but
it is computationally expensive. A notable approach to re-
lax the grid search is to use multiple kernel learning (MKL)
[Gönen and Alpaydın, 2011]. In MKL approach, rather than
using a single kernel, one prefers combining a wide spectrum
of kernels into a linear weighted sum of kernels as follows

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5197



αxn β

yn wm,f λm,f

µ0 σ0κ0 θ0

N M × F

Figure 1: Graphical model of MKL approach.

κ (x,x′) = π1κ1 (x,x
′) + . . .+ πFκF (x,x′)

By this way, the expressiveness capacity is increased and the
best combination is automatically discovered by solving an
optimization problem [Orabona and Jie, 2011]:

min
W

(
α

2
‖W‖22,2 + β ‖W‖2,1 +

N∑
n=1

l (W;xn, yn)

)
(1)

where W = [w1,1, . . . ,w1,F | . . . | wM,1, . . . ,wM,F ],
wm,f is the hyperplane associated with m-th class in f -th
feature space and l (W;xn, yn) is a loss function.

However, this approach still requires a grid search to tune
hyper-parameters α and β. Our solution is to view MKL un-
der Bayesian view whose a (maximum a posteriori) MAP
estimation reduces exactly to the optimization problem (1).
Then, we construct a graphical model for MKL approach and
do posterior inference. Because the posterior inference is in-
tractable, we employ data augmentation technique [Polson
and Scott, 2011] by coupling each wm,f with an auxiliary
variable λm,f . Finally, we have a graphical model as pre-
sented in Figure 1. As the result, we also avoid the group
normL2,1 that makes the optimization problem of MKL com-
plicated. Then, it allows us to scale up and deal with on-
line learning by applying Stochastic Gradient Descent frame-
work. We validate our method on several benchmark datasets
in both batch and online settings. The experimental results
show that our proposed method can learn hyper-parameters in
a principled way to eliminate the expensive grid search while
gaining a significant computational speedup comparing with
the state-of-the-art baselines [Nguyen et al., 2016a].

3 Multi-Hyperplane Machine Approach
To address the scalability issue in kernel methods, multi-
hyperplane machine approach is to learn a set of hyperplanes
in the input space instead of learning in the feature space. The
optimization problem is of the form

min
W

(
α

2
‖W‖22,2 +

N∑
n=1

l (W;xn, yn)

)
where l (W; xn, yn) is a loss function, W =
[w1,1, . . .w1,K1 | . . . | wM,1, . . . ,wM,KM

] and Km is
the number of hyperplanes in m-th class. However, its
solution is usually not sparse in terms of the number of
hyperplanes for each class and the number of nonzero
components in each hyperplane. This side effect can lead
the model to be overfitted. [Wang et al., 2011] addressed
this issue by a heuristic pruning weight procedure, but it
also hurt the predictive performance. In addition, a grid

search is required for hyper-parameter tuning. For the first
issue, we solved by using the group norm L2,1 coupled with
L2,2 [Nguyen et al., 2016b]. As we know in literature, by
minimizing group norm L2,1, we can encourage the sparsity
of the solution. However, this way also introduces a new
hyper-parameter which also needs to be tuned. For the
next step, we will solve the second issue by using Bayesian
inference tools.
4 Conclusion
In this research, we have explored the use of Bayesian infer-
ence to solve model selection problem in kernel methods and
max-margin principle for both batch and online settings. Our
research can apply in many applications where they require
to deal with large-scale datasets or streaming data and where
they are incapable of using a time-consuming and expensive
grid search for tuning hyper-parameters. In future work, we
will address the model selection problem in semi-supervised
learning where the training set contains not only labeled data
but also unlabeled data.
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