
Deep Abnormality Detection in Video Data

Hung Vu
Centre for Pattern Recognition and Data Analytics (PRaDA), Deakin University, Australia

hungv@deakin.edu.au

Abstract
Automated detection of anomalous events plays
an important role in video surveillance systems in
practice. This task, however, requires to deal with
three challenging problems of the lack of annotated
training data, the inexact description of what to be
“abnormal” and the expensive feature engineering
procedure. Most anomaly detection systems are
only able to satisfy some of these challenges. In
this work, we propose a deep abnormality detection
system to handle all of them simultaneously. Deep
abnormality detection is a deep generative network
that is an unsupervised probabilistic framework to
model the normality and learn feature representa-
tion automatically. Furthermore, unlike other exist-
ing methods, our system can detect abnormality at
multiple levels and be used as a powerful tool for
video analysis and scene understanding.

1 Introduction
Nowadays, due to the rise of terrorism and crimes, there are
more and more increasing concerns for intelligent systems
to automatically discover unexpected behaviors or anomaly
events in videos. Anomalous events are commonly assumed
to be rare or significantly different from the others [Sodemann
et al., 2012]. Video anomaly detection is a non-trivial task
because it faces both issues of anomaly detection in general
and video processing. In particular, this dissertation speci-
fies three key challenges. Firstly, anomaly objects cannot be
explicitly defined, and then systems have to deal with the un-
certainty. The second is the shortage of labeled training data,
since video annotation (usually at the pixel-level) is expen-
sive and labor-intensive, and hence annotated datasets are not
large enough to learn effective anomaly detectors. Thirdly,
video processing relies on hand-crafted features (e.g. his-
togram of orientation gradients or optical flow), which require
exhaustive prior knowledge and expensive computation. As a
result, feature engineering is a time-consuming phase in de-
signing and developing anomaly detection systems.
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Most existing methods are only able to deal with the first
two issues of uncertainty and insufficient labeled data (via
unsupervised probabilistic frameworks). Recently there have
been several anomaly detection studies [Xu et al., 2015;
Hasan et al., 2016] that have adopted deep learning tech-
niques to automatically learn high-level representations, and
then avoid the requirement of domain experts in designing
features. However, they are non-probabilistic methods, and
hence may fail to model the uncertainty.

This work introduces a solution to address three aforemen-
tioned issues simultaneously via deep generative networks.
By capturing the distribution of regular events in unlabeled
data, learned models can isolate abnormal events with low
probabilities. Meanwhile, as deep learning networks, our
models can automatically learn the data transformation at dif-
ferent levels and produce hierarchical feature representation.
Moreover, unlike other systems that detect anomaly objects
once after feature representation, by extending from deep
generative networks, we propose a novel deep abnormality
detection system which is able to produce anomaly detection
results in every feature representation layer of the network.

2 Proposed Method
We discover three generative models, each of which is related
to a project of the dissertation. In the first project, we start off
with a shallow generative net which is known to be effective
and efficient to do learning and inference. Next, we upgrade it
to a deep generative model with a powerful capacity of higher
level representations. The final project focuses on designing
a deep network that specializes in anomaly detection.

2.1 Project 1: Detection Using Shallow Networks
Restricted Boltzmann machine (RBM) [Freund and Haussler,
1994] is an undirected generative network of a visible layer
and a hidden layer. Due to its bipartite structure, the RBM can
learn the data distribution efficiently in comparison to deep
generative networks. RBMs are also extended for compli-
cated data structures such as multiway tensor data [Nguyen
et al., 2015]. Furthermore, their pretraining roles contribute
to the success in training deep networks and mark the rise
of deep learning [Salakhutdinov and Hinton, 2009]. For this
reason, we use RBMs in the first project to examine the pos-
sibility of applying generative networks to video anomaly de-
tection.
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Figure 1: The framework overview.

To localize anomaly events in videos, we design a frame-
work as demonstrated in Figure 1. In general, our system
consists of two phases of training and detection.

Training phase: The purpose of this phase is to learn RBM
models from a collection of unlabeled videos. We firstly split
frames into 50% overlapping h × w patches, and then group
similar patches intoC clusters. All patches that are associated
with the cth cluster are used as training data to learn the cth

model.
Detection phase: We divide an input video of L frames

into patches xi,j
t , where t is the frame index and (i, j) is

the patch location. Each patch is fed into the correspond-
ing learned model to yield the reconstructed patch x̃i,j

t . The
patch error ēi,jt = ||x̃i,j

t − xi,j
t ||2/ (h× w) is then compared

with a predefined threshold β. By discarding small objects
spanning less than γ frames, we obtain the abnormalities in
the video. One advantage of our proposed framework is that
it is immediately amendable to a streaming and distributed
implementation.

2.2 Project 2: Detection Using Deep Generative
Nets

Deep generative nets (e.g. DBM) are multilayer networks
with more than two layers. Multi-layer architecture enables
the ability of better distribution modeling and hierarchical
feature representation. Nevertheless, such architecture causes
learning and inference to be more tricky. Hence, efficient
learning and inference algorithms in deep networks should
be intensively studied in this project. One direction should be
investigated is the use of convolutional networks to improve
the performance of anomalay detection in video data.

2.3 Project 3: Deep Abnormality Detection System
While the first two projects perform feature extraction and
anomaly detection separately, this project aims to design a
novel deep network that incorporates abnormality detection
in every layer of the network. As a special generative net-
work proposed for anomaly detection problem, our network
is expected to produce better accuracy and hierarchical detec-
tion results. The coarse-to-fine detection ability allows our
system to analyze and understand the video scenes accurately
(e.g., in the scenario of pedestrian footpath, the bicycle and
the rider can be considered as abnormality at a coarse level
but only bicycle is abnormal at a fine level).

3 Current Results
At the current stage, we have developed a system using shal-
low generative nets. This section reports the experimental re-
sults of the first phase where we use RBMs to detect anomaly

Ped1 Ped2 Avenue
AUC EER AUC EER AUC EER

PCA 60.28 43.18 73.98 29.20 74.64 30.04
OC-SVM 59.06 42.97 61.01 44.43 71.66 33.87

GMM 60.33 38.88 75.20 30.95 67.27 35.84
ConvAE 81.00 27.90 90.00 21.70 70.20 25.10

RBM 64.83 37.94 76.70 28.56 74.88 32.49
S-RBM 70.25 35.40 86.43 16.47 78.76 27.21

Table 1: Anomaly detection results at frame-level. Higher AUC and
lower EER indicate better performance. Best scores are in bold.

events in videos. Table 1 shows the detection results in AUC
(Area Under Curve) and EER (Equal Error Rate) of our RBM
and its streaming version (S-RBM) and some existing meth-
ods. Overall, our methods outperform PCA, OC-SVM and
GMM while S-RBM obtains fairly comparable results with
ConvAE [Hasan et al., 2016]. This result is promising be-
cause ConvAE is a state-of-the-art deep networks with 12
layers, compared to only 2 layers in our RBMs.

4 Contributions
Our work contributes a powerful and generalized tool with
capacity of unsupervised learning and hierarchical represen-
tation in localizing irregular objects in videos. This research
also provides a comprehensive understanding of the use of
deep generative networks for anomaly detection. In addi-
tion, we introduce a deep abnormality detection model that
is a deep generative network designed to localize abnormal-
ity effectively and hierarchically. Finally, many practical ap-
plications such as video analysis, traffic monitoring, fighting
detection, will benefit from our proposed system.
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