
Abstract 
A goal-oriented meaning-based statistical 
framework is presented in this paper to solve the 
math word problem that requires multiple 
arithmetic operations with understanding, reasoning 
and explanation. It first analyzes and transforms 
sentences into their meaning-based logical forms, 
which represent the associated context of each 
quantity with role-tags (e.g., nsubj, verb, etc.). 
Logic forms with role-tags provide a flexible and 
simple way to specify the physical meaning of a 
quantity. Afterwards, the main-goal of the problem 
is decomposed recursively into its associated 
sub-goals. For each given sub-goal, the associated 
operator and operands are selected with statistical  
models. Lastly, it performs inference on logic 
expressions to get the answer and explains how the 
answer is obtained in a human comprehensible way. 
This process thus resembles the human cognitive 
understanding of the problem and produces a more 
meaningful problem solving interpretation.  

1 Introduction 
The math word problem (MWP) was frequently chosen to 
study the task of natural language understanding and 
simulate human problem solving procedure [Bakman, 2007; 
Kushman et al., 2014; Liang et al., 2016]. However, many 
previous approaches either only handled MWPs that involve 
one arithmetic operation  [Mukherjee and Garain, 2008; Roy 
et al., 2015] or solved multi-step arithmetic operations with 
various limitations (e.g., only handling Addition and 
Subtraction sequence [Ma et al., 2010; Hosseini et al., 2014; 
Mitra and Baral, 2016]). Only [Roy and Roth, 2015] and 
[Koncel-Kedziorski et al., 2015] proposed bottom-up tree 
construction approaches to handle general multi-step 
arithmetic MWPs. But both of them lacked intermediate 
understanding and explanation. It thus belongs to the worse 
direct translation approach [Pape, 2004]. In contrary, 
previous goal-oriented approaches [Slagle, 1965; Ma et al., 
2010] largely aligned with the human comprehension process, 
though they could not handle general cases and suffered from 
the difficulty of constructing a wide coverage rule-set. 

A goal-oriented meaning-based statistical approach is thus 
proposed in this paper to avoid the problems mentioned 
above via combining the goal-oriented approach with a 
statistical framework. Except the ultimate goal, all the 
desired operations and operands (including sub-goals) will be 
identified by statistical classifiers. Moreover, each quantity is 
associated with various role-tags (e.g., nsubj, verb, modifier, 
time, place, etc.) for denoting its contextual relationship. 
Since the physical meaning (represented by role-tags) of each 
quantity is explicitly used in selecting both operations and 
operands, it allows us to examine the problem in an 
incremental and intuitive manner. In each step of the process, 
we know the meaning of the associated sub-goals/operands, 
and are thus able to explain the procedure in a 
human-comprehensible way [Mayer, 1987; 1992]. 

2 System Architecture 
The block diagram of the proposed MWP solver is shown in 
Figure 1. The sentences in an MWP are first analyzed by the 
Language Analyzer (LA) (i.e., Stanford CoreNLP suite 
[Manning et al., 2014]) to obtain corresponding linguistic 
representation (i.e., dependency trees and co-reference 
chains). The Logic Form Converter (LFC) then transforms 
the linguistic representation into logic forms and constructs 
the final operation tree. Besides, the LFC also calls the 
Solution Type Classifier (STC) to determine the solution type 
and calls the Inference Engine (IE) [Liang et al., 2016] to 
evaluate the given operation tree and generate the answer for 
the question. Lastly, the Explanation Generator (EG) [Huang 
et al., 2015] generates the explanation text to explain how the 
answer is obtained according to the given reasoning chain. 
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Figure 1: The block diagram of the proposed MWP Solver  
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We adopt the same STC, IE and EG modules used in [Liang 
et al., 2016], and only describe new modules below. 

2.1 Logical Form Converter  
The LFC transforms each quantity into its first-order logic 
form [Lin et al., 2015; Russell and Norvig, 2009]. All 
quantities and the main-goal are first identified by rules and 
explicitly associated with their role-tags, which carries 
context information and specifies the physical meaning of 
that quantity. For example, “quan(q1,#,apple)=3 & verb(q1, 
eat) & nsub(q1, Mary)” is generated to state ‘Mary ate 3 
apples’. In contrast with the bottom up approach adopted in 
[Roy and Roth, 2015; Koncel-Kedziorski et al., 2015], the 
LFC constructs the operation tree [Roy and Roth, 2015] in a 
top-down manner. It initializes a recursive procedure by first 
pushing the main-goal into a stack. Afterwards, it pops the 
current working goal from the stack, and then asks the STC to 
decide the desired solution type (i.e., the operator) associated 
with the goal. It then generates all possible candidates of 
sub-goals (via the rule-based Sub-goal Candidates 
Generator sub-module), and selects associated operands (via 
the statistical Operands Identifier sub-module) among all 
available known quantities and those sub-goal candidates 
just generated. Afterwards, it spawns a new level of recursion 
if the selected operand is an unknown quantity (i.e., a 
sub-goal candidate generated above), which will be regarded 
as a new sub-goal and pushed into the stack. The above 
procedure will keep going until the stack is empty. Lastly, the 
LFC identifies the corresponding IE utility (associated with the 
solution type), and calls the IE to get the answer. 

2.2 Operands Identifier 
The Operand Identifier selects the appropriate operands from 
the Operand-Candidate-Set, which is a set formed by newly 
generated sub-goals and currently available known quantities.  
An SVM classifier with linear kernel [Chang and Lin, 2011] 
is used. We adopt three different kinds of features: (1) Math 
fact pattern features (e.g., “if the operand is a known 
quantity”, etc.); (2) NP-matching features (e.g., “if the 
noun-phrases of the operand-candidate and the goal are in 
entailment relationship”, etc.); (3) Role-tag-matching 
features (e.g. “if the role-tags of operand-candidate and that 
of goal are matched”, etc.). 

3 Experimental Results  
We evaluate our system on two publicly available datasets: 
IL-562 and CC-600. IL-562 is a collection of  562 MWPs 
(with single arithmetic operation) released by [Roy et al., 
2015]. CC-600 is a dataset of 600 MWPs released by [Roy 
and Roth, 2015] to cover multi-step MWPs with four 
different arithmetic operations. We compare our system with 
the KAZB [Kushman et al., 2014] and the system proposed 
by [Roy and Roth, 2015]. Since exactly the same n-fold 
cross-validation evaluation setting is adopted, the 
performances can be directly compared. Table 1 shows that 
our system significantly outperforms theirs in overall 
performance. We believe the improvement is mainly due to 

that the system explicitly checks the physical meaning of the 
selected quantities against the meaning of the given sub-goal. 

4 Demonstration Outline 
The MWP solver comprises a web user interface and a 
processing server. The web interface is used to input the 
problem and display various outputs generated from the 
submitted MWP. The server will process the submitted 
problem to get the answer. After an MWP is submitted, 
various processing modules will be invoked in a recursion 
manner to solve the problem. Once the process is finished, 
the user can browse the outputs generated from each module: 
(1) Dependency relations, co-reference chains and linguistic 
representations generated from the  LA. (2) Logic forms 
transformed from the linguistic representation and the 
specified solution type. (3) Reasoning chain and explanation 
text (Figure 2), which explains how the problem is solved. 
An online demo is available via the following web address: 
http://nlul.iis.sinica.edu.tw/EnglishMathSolver/mathDemo
MS.py.  

5 Conclusion  
A goal-oriented meaning-based statistical framework is 
proposed to solve multi-step MWPs in a top-down, recursive 
manner. The approach resembles the human cognitive 
understanding of math word problems, and thus allows us to 
provide an intuitive human-comprehensible explanation to 
the problem-solving process.  

 IL-562 CC-600 
Our System 80.1 53.5 

Roy and Roth, 2015 73.9 45.2 
Kushman et al., 2014 73.7 2.3 

 

Table 1:  Accuracy Comparison  
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Question: An apple is priced at $ 20 and an orange is priced at $ 12 . 
How much more do 3 apples cost than 2 oranges ? 

Answer and Explanation: 
3 apples vs. 1 apple is: 3 ÷ 1 = 3-times 
3-times and 20 USDs is: 3 * 20 = 60 USDs 
2 oranges vs. 1 orange is: 2 ÷ 1 = 2-times 
2-times and 12 USDs is: 2 * 12 = 24 USDs 
60 USDs - 24 USDs = 36 USDs 
∴ 3 apples cost 36 USDs more expensive than 2 oranges. 

 

Figure 2:  The reasoning chain and explanation text 
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