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Abstract
The automatic generation of realistic behaviour
such as tactical intercepts for Unmanned Aerial
Vehicles (UAV) in air combat is a challenging
problem. State-of-the-art solutions propose hand–
crafted algorithms and heuristics whose perfor-
mance depends heavily on the initial conditions and
specific aerodynamic characteristics of the UAVs
involved. This demo shows the ability of domain–
independent planners, embedded into simulators, to
generate on–line, feed–forward, control signals that
steer simulated aircraft as best suits the situation.

1 Application Domain
In computational operations research (OR), multi-agent sim-
ulations (MAS) are often used to model, analyse and under-
stand complex socio-technical systems [Heinze et al., 2008].
In the defence domain, such simulations are used to sup-
port the acquisition of new aircraft, to evaluate system up-
grades, to assess tactical behaviour [Heinze et al., 1998;
Tidhar et al., 1998] and to explore future operational con-
cepts such as employment of autonomous systems [Byrnes,
2014].

Multi-agent simulations of air combat are challenging due
to both the highly dynamic and adversarial nature of the do-
main and the complexity in the systems and the team tac-
tics being modelled. These challenges manifest themselves
across the entire spectrum of the software engineering and op-
erational analysis processes, from specifying complex team
tactical behaviour [Heinze et al., 2000; Evertsz et al., 2015],
up to representing these complex behaviours within agent rea-
soning frameworks for verification and validation.

2 Problem Scenario
In this demo, we consider a simulated adversarial scenario
consisting of two UAVs. The goal of each UAV is to maneu-
ver itself behind the other and to maintain this for a certain pe-
riod of time. In the terminology of air combat this is known
as a stern conversion [Shaw, 1985]. The purpose of a stern
conversion is to put the target aircraft in the right position
to satisfy specific engagement criteria. These include con-
straints on the distance to the target, relative angles between

the directions of aircraft motions, speed (both in absolute and
relative terms) and altitude, which all need to be upheld over
a given period of time. The purposes of manoeuvring and
maintaining a relative astern position go beyond the engage-
ment of a weapon system. These may include employing a
sensor to positively identify a target aircraft, positioning for
flying in formation, or following ground vehicles or surface
vessels in civilian surveillance operations.

3 ACE Multi-Agent Simulation Environment
In this demonstration we show how automated plan-
ning [Ghallab et al., 2004] can be used in the context
of a MAS environment called ACE (Air Combat Environ-
ment) [McDonald et al., 2015]. ACE is a team-oriented MAS
currently under development by the Australian Defence Sci-
ence and Technology (DST) Group. ACE is designed to sim-
ulate teams of aircraft in adversarial n-versus-m air combat
missions to conduct OR studies. ACE is used to both inform
the acquisition of new aerospace systems and explore how
best to employ them1.

A typical adversarial scenario modeled in ACE consists of
two UAVs on opposing sides, blue and red, with the goal of
each UAV being to successfully engage the other. Each UAV
can be modeled either with simplified or high–fidelity flight
dynamics, sensor and decision making models, which can be
selected dynamically when the simulation is initialised. In
addition to the core simulation kernel, ACE also provides
analysts with tools for specifying scenarios as well as the
capability to export the histories resulting from the simula-
tion in formats amenable for 3D visualisation and statistical
analysis [McDonald and Papasimeon, 2015]. Regarding de-
cision making frameworks, at the timing of writing this, ACE
allows the simulated pilots to be implemented via scripts,
finite–state machines (FSMs), two–player hybrid game con-
trollers [Isaacs, 1965; Park et al., 2016], and model–based
predictive control [Camacho and Bordons, 2013] via hybrid
planning [Fox and Long, 2006]. This demonstration focuses
on the last type of controller, whose technical foundations and
interest from an innovation perspective are discussed next.

1For more details we refer the reader to the DST
Group website for the research team responsible for ACE-
2 https://www.dst.defence.gov.au/capability/
aerospace-capability-analysis.
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4 PDDL+ Domain Predictive Control
Model (Based) Predictive Control (MPC) refers to a range of
control methods, rather than a specific control strategy, which
make explicit use of models of processes — aircraft dynam-
ics in our case – to obtain the control signal by minimizing
an objective function [Camacho and Bordons, 2013]. While
MPC is a general framework, most existing approaches have
trouble dealing with systems where dynamics can reconfig-
ure spontaneously or where they are required to handle con-
straints that rule out specific combinations of control inputs.

The Domain Predictive Control (DPC) framework [Löhr
et al., 2012] exploits the observation that both of these as-
pects are a central part of domain–independent automated
planning [Ghallab et al., 2004]. Like MPC, DPC uses an ex-
plicit model to predict future states, but instead of relying on
ad–hoc descriptions of states and transitions, these are com-
pactly described by means of a domain description given in
a formal abstract language. This effectively decouples the
model from the algorithms used to seek sequences of control
signals that steer aircraft towards goal states. The ACE MPC
module implements Löhr’s DPC framework with a twist. In-
stead of relying on linear dynamics that can be solved analyt-
ically and then used to construct a numeric planning domain
description [Fox and Long, 2003], PDDL+ [Fox and Long,
2006] is used instead. This allows for the representation of
arbitrary hybrid dynamical systems [Goebel et al., 2009] di-
rectly, to model the simulated aircraft dynamics. Since the
dynamics, control inputs and associated constraints are given
in a symbolic, declarative form, direct manipulations like that
of “relaxing” the fidelity of the dynamics used by the simula-
tion do not require any programming.

At every time step of the simulation where the pilot agent is
required to generate a control signal, a call is made to a hybrid
planner2, which seeks plans for goals, in our case, steering
aircraft to be astern of the target, by means of heuristic search.
Plans are then interpreted into control signals in a straightfor-
ward manner, projecting the trajectories induced by them over
the variables that keep track of the evolution of control sig-
nals over time. While in principle, any hybrid planner could
be used off-the-shelf, we have found it necessary to develop
our own planner3 that operates in a different manner than ex-
isting systems. The reason for this follows from observing
that the temporal distance between current simulation states
and those where the controlled aircraft is astern of the target,
typically correspond to hundreds of simulation time steps. In
turn, this requires hybrid planners to navigate huge search
trees4, so run–times become long, in the orders of thousands
of seconds, when the planner finds a solution. Since we seek
high performance simulation execution, we bound the length
of the sequence of control signals considered, as is the stan-
dard practice in existing approaches [Gibbens and Medagoda,
2011] to UAV guidance based on MPC.

2See [Piotrowski et al., 2016; Scala et al., 2016] for two recent
hybrid planners.

3For an overview of how continuous change is handled we refer
the reader to Ramirez et al. [2017].

4A similar problem with conducting complete search with A* up
to the horizon becoming unfeasible is also reported by Löhr [2012].

Bounding the search in this manner corresponds with seek-
ing solutions to a net–benefit planning problem [Keyder and
Geffner, 2009], where the reward or utility function is derived
automatically from the symbolic description of the goal G.
This reward function, first proposed in [Löhr et al., 2012],
generalises the well known idea in planning that heuristic
guidance is readily available from measuring to what de-
gree each of the conditions in G are true in a given state.
For the stern conversion task we consider in this demo, G
is a quadratic equation encoding constraints on relative dis-
tances, angles and speeds between aircraft. Interestingly, in
this setting, the problem of maintaining the goal over time
is implicitly addressed. It can be shown that sequences of
control signals, maximizing the utility function derived from
G, necessarily model the LTL formula �♦G5, as long as G
is reachable from each state that follows from the selected
sequence of signals. Guidance is obtained from perform-
ing a limited lookahead search guided by the structural nov-
elty of states [Lipovetzky and Geffner, 2012] selecting con-
trol inputs on trajectories that end in state maximising the
utility function. Our current implementation uses the sim-
plest algorithm by Lipovetzky and Geffner, IW (1), as it
has already shown great performance in deterministic and
non-deterministic discrete games [Lipovetzky et al., 2015;
Geffner and Geffner, 2015]. IW (1) is a plain breadth–first
search, guaranteed to run in linear time and space, that prunes
states based on how novel they are, where a state is novel if
and only if it encounters a value of a state variable that it has
not seen before.

5 Demo Overview
The demonstration will consist in showing a set of simula-
tion histories, computed off–line, that can be readily played
for interested passers-by on ACE 3D visualization of air-to-
air combat. The action is rendered both on a screen and also
via a pair of Microsoft Hololens. The selected histories illus-
trate how the hybrid planning controller compares with hand–
programmed and game theoretic opponents, over a diverse set
of initial conditions.

6 Discussion
The proposed demo system contains a number of contribu-
tions and innovations, which are discussed next. First, the
notion of planning over simulators [Lipovetzky et al., 2015],
previously only exercised over video games, is integrated
with a realistic, professional simulation environment, ACE.
Second, a compelling and realistic application of non–linear
PDDL+ is presented, capable of performing close to real–
time. Third, we present a practical example of how to in-
stance the MPC framework using the tools, languages and
theory proposed and developed by the domain–independent
planning community. Last, by showing how efficient and ro-
bust model–based controllers can be, we look forward to dis-
pelling the entrenched notion that the model–based approach
to AI, while valid and interesting, is too expensive to be used
in systems deployed in the real world [Geist, 2017].

5This formula is referred to as “weak maintenance” or “infinitely
often” in the literature on LTL model checking [Pnueli, 1977].
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