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Abstract
Multiwinner voting rules are used to select a s-
mall representative subset of candidates or item-
s from a larger set given the preferences of voter-
s. However, if candidates have sensitive attributes
such as gender or ethnicity (when selecting a com-
mittee), or specified types such as political leaning
(when selecting a subset of news items), an algo-
rithm that chooses a subset by optimizing a mul-
tiwinner voting rule may be unbalanced in its se-
lection – it may under or over represent a particu-
lar gender or political orientation in the examples
above. We introduce an algorithmic framework for
multiwinner voting problems when there is an ad-
ditional requirement that the selected subset should
be “fair” with respect to a given set of attributes.
Our framework provides the flexibility to (1) speci-
fy fairness with respect to multiple, non-disjoint at-
tributes (e.g., ethnicity and gender) and (2) spec-
ify a score function. We study the computational
complexity of this constrained multiwinner voting
problem for monotone and submodular score func-
tions and present several approximation algorithms
and matching hardness of approximation results for
various attribute group structure and types of score
functions. We also present simulations that suggest
that adding fairness constraints may not affect the
scores significantly when compared to the uncon-
strained case.

1 Introduction
The problem of selecting a committee from a set of candi-
dates given the preferences of voters is called multiwinner
voting and arises in various social, political, and e-commerce
settings; from electing a parliament, to choosing a committee,
to selecting products to display. Formally, there is a set C of
m “candidates” that can be selected (i.e., people, products, or
other items) and a set A of n “voters” who have (possibly in-
complete) preference list over the m candidates; we assume
these lists are given. The goal is to select a subset of C of size
k based on these preferences.

It remains to specify how the selection will be made.
One common approach is to define a “total” score function
scoreA : 2C → R≥0 which gives a score that depends on the
voters’ preferences to each potential committee. If the voter
set A is clear from the context, we use score for short. This
reduces the selection to an optimization problem: choose a

committee of size k that maximizes the score. Different views
on the desired properties of the selection process have led
to a number of different scoring rules and, consequently, to
a variety of different algorithmic problems. Prevalent ex-
amples include committee scoring rules [Aziz et al., 2017b;
Elkind et al., 2014], approval-based rules [Aziz et al., 2017a],
OWA-based rules [Skowron et al., 2015b], variants of the
Monroe rule [Betzler et al., 2013; Monroe, 1995; Skowron
et al., 2015a] and the goalbase rules [Uckelman et al., 2009].

However, it has been shown that voting rules, in the most
general sense, can create or propagate biases; e.g., negatively
affecting the fraction of women in the US legislature [Rep-
resentation2020, 2017], and resulting in an electorate that
under-represents minorities [Faliszewski et al., 2016]. Fur-
thermore, such algorithmic biases have been shown to influ-
ence and reinforce human stereotypes [Kay et al., 2015]. An
increasing awareness of such problems has led governments
to generic [Bundy, 2017] and specific [Zealand, 1986] rec-
ommendations that aim to ensure sufficient representation of
minority populations.

In response, “proportional representation” rules [Mon-
roe, 1995], that represent the electorate proportionately in
the elected body, have been developed. Formally, let
P1, . . . , Pp ⊆ [m] be p disjoint groups of candidates where
i ∈ {1, . . . , p} represents a given group. For any i ∈ [p], let
fi be the fraction of voters who belong to (or, more generally,
prefer) group i. Then, a voting rule achieving full propor-
tionality would ensure that the selected committee S satisfies⌊
k ·fi

⌋
≤ |S∩Pi| ≤

⌈
k ·fi

⌉
; [Brill et al., , Definition 5]. Pro-

portional representation schemes include the proportional ap-
proval voting rule [Brill et al., ] and the Chamberlain Courant
rule [1983]. Other approaches consider different notions of
“fairness” in representation; e.g., in degressive proportionali-
ty it is argued that minorities should have disproportionately
many representatives.

We present the first algorithmic framework for multiwin-
ner voting problems that can (1) incorporate general notions
of fairness with respect to arbitrary group structures (e.g., sat-
isfying fairness across multiple attributes simultaneously) and
(2) outputs a subset that maximizes the given score function
subject to these constraints. This requires the development
of new approximate algorithms (Section 6) and hardness of
approximation results (Section 5) which depend on both the
score function and the structure of the fairness constraints.
Empirically, we show that existing multiwinner voting rules
may introduce bias and that our approach not only ensures
fairness, but does so with a score that is close to the (uncon-
strained) optimal (see Section 7).

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

144



2 Our Contributions
Model. In a multiwinner voting setting, we are given m
candidates, n voters that each has a (potentially incomplete
and/or non-strict) preference list over the m candidates, a
score function score : 2[m] → R≥0 defined by these list-
s, and a desired number k ∈ [m] of winners. In addition,
to consider fair solutions, we are given arbitrary (potential-
ly non-disjoint) groups of candidates P1, . . . , Pp ⊆ C, and
fairness constraints on the selected winner set S of the for-
m: `i ≤ |S ∩ Pi| ≤ ui, ∀i ∈ [p] for given numbers
`1, . . . , `p, u1, . . . , up ∈ Z≥0.

The goal of the constrained multiwinner voting problem is
to select a committee of size k that maximizes score(S) and
satisfies all fairness constraints. If the score function is mono-
tone and submodular we call the problem the constrained MS
multiwinner voting problem. This includes the well-studied
Chamberlin-Courant (CC) rule, the Monroe rule, the OWA-
based rules and the goalbase rules.

Results. The algorithmic problems that arise largely remain
NP-hard, hence we focus on developing approximation algo-
rithms. An important practical parameter, that also plays a
role in the complexity of the constrained multiwinner voting
problem, is the maximum number of groups to which a candi-
date can belong; we denote it by ∆. In real-world situations,
we expect ∆ to be a small constant, i.e., each candidate on-
ly belongs to a few groups. Our main results (classified by
the kind of fairness parameters) are summarized in Tables 1
and 2.

When ∆ = 1, e.g., when the groups partition the candi-
dates, we present a (1− 1/e)-approximation algorithm (The-
orem 14) which is optimal given the (1−1/e−ε)-hardness of
approximation result by [Nemhauser et al., 1978]. However,
when ∆ ≥ 3, unlike the unconstrained case, even checking
whether there is a feasible solution becomes NP-hard (Theo-
rem 6). The problem of finding a solution that violates cardi-
nality or fairness constraints up to any multiplicative constant
factor remains NP-hard (Theorem 7 and 8). Moreover, even
if the feasibility is guaranteed, the problem remains hard to
approximate within a factor of Ω(log ∆/∆) (Theorem 9).

To bypass this issue, we assume that the problem instance
always has a feasible solution, and suggest natural sufficient
conditions that guarantee feasibility. For instance, if the frac-
tion of each group in the selected committee is allowed some
slack as compared to their proportion in the set of candidates
(`i ≤ k(|Pi|/m − 0.05) and ui ≥ k(|Pi|/m + 0.05)), then
a random committee of size k is feasible with high probabili-
ty. When feasibility is guaranteed, for the class of MS voting
rules we give a near-optimal bi-criterion approximation algo-
rithm that only violates each fairness constraint by a small
multiplicative factor (Theorem 11).
Techniques The algorithmic results combine two existing
tools that have been extensively used in the monotone sub-
modular maximization literature. The first, “multilinear ex-
tension” (Definition 10), extends the discrete MS score func-
tion to a continuous function over a relaxed domain. By ap-
plying a continuous greedy process via multilinear extension,
a fractional solution with a high score can be computed ef-
ficiently. The second is to round the fractional solution to a

committee of size k by “dependent rounding”. In the case
of ∆ ≥ 2 (Theorem 11), we use a swap randomized round-
ing procedure introduced by [Chekuri et al., 2010]. In the
case of ∆ = 1 (Theorem 14) we design a two-layered de-
pendent rounding procedure that runs in linear time. Some
of the algorithmic results are achieved by reduction to well-
studied problems, like the monotone submodular maximiza-
tion problem with ∆-extendible system (Theorem 12) and
constrained set multi-cover (Theorem 13). The hardness re-
sults follow from reductions from well-known NP-hard prob-
lems, including ∆-hypergraph matching, 3-regular vertex
cover, constrained set multi-cover and independent set, and
borrow techniques from a recent work on fairness for ranking
problems [Celis et al., 2018b].

We also study special cases; setting in which the fairness
constraints involve only lower bounds (Theorem 13) or only
upper bounds (Theorem 12). We further consider a certain
specific MS score functions such as SNTV [Cox, 1994], or
α-CC and β-CC [Chamberlin and Courant, 1983] where the
unconstrained problem has recently received considerable at-
tention. See Table 2 for a summary of these results, and nat-
ural corollaries which are described in the full version of the
paper [Celis et al., 2017b].

Generality. This approach is general in that 1) it can handle
arbitrary MS score functions, 2) multiple sensitive attributes
which can take on arbitrary group structures, 3) interval con-
straints that need not specify exact probabilities of represen-
tations for each group, and in doing so 4) can satisfy many
different existing notions of fairness.

Note that fairness can be simultaneously ensured across
multiple sensitive attributes (e.g., ethnicity and political par-
ty) – the number of attributes a single candidate can have is
captured by ∆. For example, in the New Zealand parliamen-
tary election [Zealand, 1986] the parliament is required to
include sufficient representation across 3 types of attributes:
political parties, special interest groups, and Maori represen-
tation. Each candidate has an identity under each attribute,
i.e., ∆ = 3.

This type of constraints generalize notions of proportion-
ality that have arisen in the voting literature such as fully
proportional representation [Monroe, 1995], by letting `i =⌊
k·ni/n

⌋
and ui =

⌈
k·ni/n

⌉
for all i. (Here, ni is the num-

ber of voters who prefer type i.) Similarly, one can ensure
other notions such as degressive proportionality [Koriyama
et al., 2013] (e.g., satisfying Penrose’s square root law [Pen-
rose, 1946]) and flexible proportionality [Brill et al., ]. In
particular, the percent of representation need not be exactly
specified, rather one can input an allowable range.

This is also general enough to ensure the outcome satisfies
existing notions of fairness, such as disparate impact, statis-
tical parity, and risk difference. For example, consider the
case of groups that form a partition, and let mi denote the
number of voters that have type i. Given some ξi ∈ [0, 1],
for each Pi, we say committee of size k satisfies ξ-statistical
parity if ||S∩Pi|/k − mi/n| ≤ ξi (see [Dwork et al., 2012] for
the original definition). We can set fairness constraints that
guarantee ξ-statistical parity by setting `i and ui such that
ξi ≥ 1−max {|`i/k − mi/n| , |ui/k − mi/n|} for all i.
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∆ ≥ 3 ∆ = 1 only ui only `i p = O(1) Unconstrained
A (1− 1/e− o(1))-bi (Thm. 11) 1− 1/e (Thm. 14) 1

∆+1 -bi (Thm. 12) 1− 1/e− o(1) (Thm. 13) 1− 1/e (Full) 1− 1/e (NWF78a)
C Feasibility NP-hard (Thm. 6-8) 1− 1/e + ε O(log ∆/∆) (Thm. 9) Feasibility NP-hard (Thm. 7) 1− 1/e + ε 1− 1/e + ε (NW78)

Table 1: A summary of the results for the constrained monotone submodular (MS) multiwinner voting problem; each column denotes a
different kind of group structure of the attributes. In Row “A” (for algorithm), the entry “θ” means that there exists a θ-approximation
algorithm; “θ-bi” means that the algorithm produces a θ-approximate solution compared to the optimal solution but the fairness constraints
may be violated by a small multiplicative factor. In Row “C” (for complexity), the entry “θ” means that under the assumption P 6= NP ,
there does not exist a polynomial time algorithm that will always find a solution whose value is at most a θ factor from the optimal solution;
“Feasibility NP-hard” means it is NP-hard to check whether there is a feasible solution satisfying all fairness constraints. ε > 0 is an arbitrary
constant. Each entry is either a reference for the result, a theorem (Thm. i) in this paper, or will appear in the full version (Full) of this paper.

Voting Rules ∆ ≥ 3 ∆ = 2 ∆ = 1 p = O(1) Unconstrained

SNTV A (1− o(1))-bi (Thm. 11) P (Full) P (Full) P (Full) P
C Feasibility NP-hard (Thm. 6-8) P P P P

α-CC A (1− 1/e− o(1))-bi (Thm. 11) (1− 1/e− o(1))-bi (Thm. 11) 1− 1/e (Thm. 14) 1− 1/e (Full) 1− 1/e (LB11)
C Feasibility NP-hard (Thm. 6-8) 1− 1/e + ε (SFS15) 1− 1/e + ε (SFS15) 1− 1/e + ε (SFS15) 1− 1/e + ε (SFS15)

β-CC A (1− 1/e− o(1))-bi (Thm. 11) (1− 1/e− o(1))-bi (Thm. 11) 1− 1/e (Thm. 14) 1− 1/e (Full) PTAS (SFS15)
C Feasibility NP-hard (Thm. 6-8) 1− 1/e + ε (Full) 1− 1/e + ε (Full) 1− 1/e + ε (Full) NP-hard (PRZ08)

Table 2: A summary of our results for the constrained monotone submodular (MS) multiwinner voting problem using three variants of the
Chamberlin-Courant rule; each column denotes a different kind of group structure of the attributes. The definitions of (Thm. i), (Full), “A”,
“C”, “θ-bi”, “Feasibility NP-hard” and ε are the same as in Table 1. “P” means there exists a polynomial time exact algorithm.

Finally, we note that the fair multiwinner voting rule that
results after adding fairness constraints continues to satisfy
many nice properties (e.g., consistency, monotonicity, and
fair variants of weak unanimity or committee monotonicity;
see [Elkind et al., 2014] for formal definitions) of the (uncon-
strained) voting rule. We refer the reader to the full version
of this paper for the details [Celis et al., 2017b].

3 Preliminaries
Now we present the formal definition of our model and the
definitions of three monotone submodular voting rules: S-
NTV, α-CC and β-CC, which we consider as special cases.
Definition 1 (Our model: constrained multiwinner voting)
We are given a set C of m candidates, n voters together with
R = {�i}i∈[n] where�i is the preference list (potentially in-
complete and/or non-strict) over the m candidates for voter
i, and a score function scoreR : 2[m] → R≥0 with an evalu-
ation oracle, a desired number k ∈ [m] of winners, arbitrary
groups P1, . . . , Pp ⊆ C and integers `1, . . . `p, u1, . . . up ∈
Z≥0. Given a size-k committee S, define the fairness con-
straints by `i ≤ |S ∩ Pi| ≤ ui, ∀i ∈ [p].

LetB ⊆ 2[m] denote the family of all size-k committees that
satisfy all fairness constraints. The goal of the constrained
multiwinner voting problem is to select an S ∈ B that maxi-
mizes scoreR(S). If the score function is monotone submod-
ular, 1 we call the problem the constrained MS multiwinner
voting problem.

If R is clear from the context, we denote scoreR by score.
This succinct description of B and score allows us to design
fast algorithms despite the fact that B can be exponentially.

For a preference order � and a candidate c ∈ C, we write
pos�(c) to denote the position of c in � (candidate ranked
first has position 1 and ranked last has position m). Given a
size-k committee S ⊆ C, we denote pos�(S) := (i1, . . . , ik)
to be the sequence of positions of the candidates in S sorted

1Recall that a function f : 2[m] → R≥0 is a monotone submod-
ular (MS) function if f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B) for
all A,B ⊆ [m] and f(A) ≤ f(B) for all A ⊆ B.

in increasing order with respect to �. Define [m]k to be the
set of all size-k increasing sequences of elements from [m].
Definition 2 (CC) In the Chamberlin-Courant rule, there ex-
ists a positional score function γm : [m] → R satisfy-
ing that γm(i) ≥ γm(j) if 1 ≤ i < j ≤ m. De-
fine γm,k(i1, . . . , ik) = maxj∈[k] γm(ij) = γm(i1) for any
(i1, . . . , ik) ∈ [m]k. The total score function is defined by
score(S) :=

∑
i∈[n] γm,k (pos�i(S)).

Now we define three CC rules: SNTV, α-CC and β-CC.
Definition 3 The SNTV rule uses the following positional s-
core function: γm(1) = 1 and γm(i) = 0 for i > 1. Observe
that SNTV only requires that each �i includes the most pre-
ferred candidate of voter i.
Definition 4 The α-CC rule uses the following positional s-
core function: γm(i) = 1 for i ≤ k and γm(i) = 0 for i > k.
Observe that α-CC only requires that each �i includes the
top k preferred candidates (without ordering) of voter i.
Definition 5 The β-CC rule uses the following positional s-
core function: γm(i) = m− i.

4 Related Work
The study of total score functions and their resulting opti-
mization problems have received much attention in recen-
t years. Often the optimization problem turns out to be
NP-hard; both α-CC and β-CC are NP-hard [Procaccia et
al., 2008], 1 − 1/e is the best approximation ratio for α-
CC [Skowron et al., 2015a], the Monroe rule is computa-
tionally hard even if the voting parameters are small [Bet-
zler et al., 2013], and the OWA-based rules are hard in gen-
eral [Skowron et al., 2015b] as are the goalbase rules in
various settings [Uckelman et al., 2009]. Hence, one must
largely resort to developing approximation algorithms for
these problems. Towards this, there has been a rich line of
work [Lu and Boutilier, 2011; Skowron et al., 2015a; 2015a;
2015b]. The majority of score functions for multiwinner
voting rules that have been studied are monotone submod-
ular. Algorithm design for such score functions have bene-
fitted from theoretical developments in the area of monotone
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submodular function maximization [Nemhauser et al., 1978;
Calinescu et al., 2011].

Some recent work also considers aspects of fairness in vot-
ing. Goalbase score functions, which specify an arbitrary
set of logic constraints and let the score capture the num-
ber constraints satisfied [Uckelman, 2010; Uckelman et al.,
2009], could be used to ensure fairness. However, there are no
known efficient algorithms to solve goalbase functions. Some
recent literature studies single-winner voting in the multi-
attribute setting; see the survey of Lang and Xia [2016]. The
bi-apportionment model can handle up to two attributes (of-
ten political party and district) [Serafini and Simeone, 2012;
Lari et al., 2014]. Another related model is called constrain-
t approval voting (CAP), with constraints on the numbers of
winners from different categories of candidates, proposed by
Brams [1990] and Potthoff [1990]. However, there is no effi-
cient algorithm since the input in CAP is exponentially large
in the number of attributes. Lang and Skowron [2016] al-
so consider the problem of committee selection with multiple
partitions; however, the goal is to produce a committee close
to a given target composition of attributes as opposed to max-
imizing a score function.

More generally, our results contribute to the growing set
of algorithms that incorporate fairness constraints to counter
algorithmic bias in fundamental algorithmic problems such
as classification [Dwork et al., 2012; Zemel et al., 2013;
Zafar et al., 2017b; 2017a], sampling [Celis et al., 2016;
2017a; 2018a], ranking [Celis et al., 2018b; Yang and S-
toyanovich, 2017] and personalization [Celis and Vishnoi,
2017]. Independently of this paper, [Bredereck et al., 2018]
also propose a model for multiwinner voting with a type of
fairness constraints (referred to as diversity constraints).
5 Hardness Results
Here we outline hardness results for the constrained multi-
winner voting problem; we refer the reader to the full ver-
sion of this paper for the formal proofs [Celis et al., 2017b].
We first address the complexity of the feasibility problem.
Recall that ∆ is the maximum number of groups in which
a candidate can be. When a candidate may be part of 3 or
more groups, just the feasibility problem can become NP-
hard; even under mild feasibility conditions.
Theorem 6 (NP-hardness of feasibility: ∆ ≥ 3) The con-
strained multiwinner voting feasibility problem is NP-hard
for any ∆ ≥ 3, even if all `i = 0 or all ui = |Pi|.
The proof uses a reduction from two NP-hard problems ∆-
hypergraph matching problem [Hazan et al., 2003] and the
3-regular vertex cover problem [Alimonti and Kann, 1997].

Furthermore, the next two theorems show that the feasibil-
ity problem remains hard even if one allows the size of the
committee or the fairness constraints to be violated.
Theorem 7 (Hardness of feasibility with committee size vi-
olation) Let ui = |Pi| for all i ∈ [p]. For any ε > 0, the
following gap version of the constrained multiwinner voting
feasibility problem is NP-hard: 1) Output YES if the input in-
stance is feasible. 2) Output NO if there is no feasible solution
of size less than (1− ε)k ln p.
The proof uses a reduction from the constrained set multi-
cover problem, which is hard to approximate [Berman et al.,
2004].

Theorem 8 (Hardness of feasibility with fairness violations)
Assume `i = 0 for each i ∈ [p]. For every θ > 1, the follow-
ing violation variant of the constrained multiwinner voting
feasibility problem is NP-hard: 1) Output YES if the input in-
stance is feasible. 2) Output NO if there is no solution S of
size k such that |S ∩ Pi| ≤ θui for all i ∈ [p].
The proof relies on an inapproximability result for indepen-
dent set [Zuckerman, 2006].

Lastly, we show that even if the constrained multiwinner
voting instance is feasible, the hardness does not go away.
Theorem 9 (Inapproximability for feasible instances) A fea-
sible constrained multiwinner voting problem that satisfies
`i = 0 for each i ∈ [p] is NP-hard to approximate within
a factor of Ω(log ∆/∆).
The reduction is from maximum ∆-hypergraph matching,
which is hard to approximate within a factor of Ω(log ∆/∆)
[Hazan et al., 2003] and works even when the scoring func-
tion is the SNTV rule.

6 Algorithmic Results
Here we present our algorithmic results for the constrained
multiwinner voting problem and sketch the proofs; we refer
the reader to the full version of this paper for the complete
proofs [Celis et al., 2017b]. We first recall the notion of “mul-
tilinear extension”.
Definition 10 (Multilinear extension) Given a monotone
submodular function f : {0, 1}m → R≥0, the multilin-
ear extension F : [0, 1]m → R≥0 is defined as follows:
For y = (y1, . . . , ym) ∈ [0, 1]m, denote ŷ to be a random
vector in {0, 1}m where the jth coordinate is independently
rounded to 1 with probability yj or 0 otherwise. Then we let
F (y) = E [f(ŷ)] =

∑
R⊆[m] f(R)

∏
i∈R yi

∏
j /∈R(1− yj).

Define B ⊆ 2[m] as the family of all committees of size k that
satisfy the fairness constraints. Denote the polytope B :={
y ∈ [0, 1]m |

∑
i∈[m] yi = k; `j ≤

∑
i∈Pj yi ≤ uj , ∀j ∈

[m]
}

to be the set of all vectors that satisfy the cardinality
constraint and all fairness constraints. Let F : [0, 1]m → R≥0

denote the multilinear extension of the total score function
score. Let OPT be the optimal score of the constrained MS
multiwinner voting problem.

6.1 The Case of ∆ ≥ 2
Theorem 8 implies that it may be hard to find a committee on-
ly violating the fairness constraints by a small amount when
∆ ≥ 3. The following theorem shows that a constant ap-
proximation solution can be achieved that violates all fairness
constraints by at most a multiplicative factor for feasible in-
stances. By taking the violation factors into account, the de-
sired fairness can be achieved by setting tighter constraints.
Theorem 11 (Bi-criterion algorithm when ∆ ≥ 2) Consid-
er a feasible constrained MS multiwinner voting instance
with OPT � Ω(1). Let L := mini∈[p] `i and U :=

mini∈[p] ui. Assume 2
√

ln p/
√
U ≤ 1. There exists a random-

ized polynomial-time algorithm that outputs a committee S of
size k with score at least (1−1/e−o(1))OPT with constant
probability, and S satisfies the following for all i ∈ [p]:

(1− 2
√

ln p/
√
L) `i ≤ |S ∩ Pi| ≤ (1 + 2

√
ln p/
√
U)ui. (1)
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The approximation ratio is 1− o(1) for the SNTV rule.

Before presenting the proof sketch, we discuss the assump-
tion and the consequences of Theorem 11. First, the assump-
tion OPT � Ω(1) is reasonable for several voting rules,
such as the CC rule, the OWA-based rule, and the Monore
rule. This is due to the fact that, if enough (e.g., at least
n/10) voters have at least one representative in the optimal
committee, then the total score of these rules is at least n/10.

Under reasonable assumptions, the violation in fairness
constraints in the above theorem can be seen to be small.
First, assume that no group is too small: |Pi| ≥ 0.15m ∀i ∈
[m]. Groups corresponding to gender, ethnicity and political
opinions are often large. Combining this with the following
conditions: k � 100 ln p, and `i ≈ k (|Pi|/m− 0.05) , ui ≥
k (|Pi|/m + 0.05) for all i ∈ [p], we observe that 2

√
ln p/
√
L�

0.66 is a small number. Similarly, we can check that
2
√

ln p/
√
U � 0.45 = Ω(1) is also a small number. Thus, the

violation of the group-fairness condition by Theorem 11 is s-
mall. We expect such algorithmic solutions to be deployed for
the development of automated systems, such as movie selec-
tion on the airplane and news recommendation for websites,
for which the above assumptions are natural.

Proof Sketch [of Theorem 11] We first obtain a frac-
tional solution y ∈ B by the continuous greedy algorith-
m in [Calinescu et al., 2011, Section 3.1]. It follows that
F (y) ≥ (1 − 1/e)OPT � Ω(1) by [Calinescu et al., 2011,
Appendix A]. Next, we run the randomized swap rounding
algorithm in [Chekuri et al., 2010] and obtain a size-k com-
mittee S. By [Chekuri et al., 2010, Theorem 2.1], we have
E [score(S)] ≥ F (y) ≥ (1 − 1/e)OPT, and for any i ∈ [p]

and any δ1, δ2 > 0, Pr [|S ∩ Pi| ≤ (1− δ1)`i] ≤ e−`iδ
2
1/2,

Pr [|S ∩ Pi| ≥ (1 + δ2)ui] ≤
(
eδ2/(1+δ2)1+δ2

)ui
.

Let δ1 = 2
√

ln p/
√
L and δ2 = 2

√
ln p/
√
U . Then by applying

the union bound, we can show that S satisfies Equation (1)
with probability at least 1− 2/√p. On the other hand, we have
for any δ > 0, Pr [score(S) ≤ (1− θ)F (y)] ≤ e−F (y)θ2/8

by [Chekuri et al., 2010, Theorem 2.2]. Let θ = 0.01. Since
F (y) � Ω(1), we have score(S) ≥ (1 − 1/e − 0.01)OPT
with probability 1− o(1). 2

We now present the algorithmic results when there are only
upper/lower fairness constraints. We first consider the case
that all `i = 0, i.e., each group is only required not to be
over-represented. We call an algorithm (γ, θ)-approximation
(γ ∈ [0, 1], θ ≥ 1) if the algorithm outputs a γ-approximate
solution S such that |S ∩ Pi| ≤ θ · ui, ∀i ∈ [p].

Theorem 12 (Bi-criterion algorithm when `i = 0) Consid-
er the constrained MS multiwinner voting problem satisfy-
ing `i = 0 for all i ∈ [p]. Suppose we have a feasible
solution Ŝ in advance. For any 0 < ε < 1, the follow-
ing claims hold: 1) There exists a (1/∆+1, 2)-approximation
algorithm that runs in O(mk/∆) time. 2) Suppose ui ≥
6 log p/ε2 and k ≥ 6 log p/ε2. There exists a polynomial-
time (1− 1/e−O(ε), 2)-approximation algorithm.

The assumption that we have a feasible solution Ŝ is often sat-
isfied and does not add computational overhead under natural

conditions on the data. For instance, let ai denote the num-
ber of candidates that belong exclusively to group i. Then, if
ai > `i for all i and

∑
i min{ai, ui} > k, a feasible solution

exists and can be found in linear time via a greedy algorithm.

Proof Sketch [of Theorem 12] Define B′ to be the
collection of committees that have at most k candidates
and satisfy all fairness constraints. For the first claim,
we can prove that (C,B′) is a ∆-extendible system S-
ince score is monotone submodular, we reduce the prob-
lem of finding arg maxS∈B′ score(S) to the monotone sub-
modular maximization problem with ∆-extendible system,
which has a (1/∆+1)-approximation algorithm in O(mk/∆)
time by [Feldman et al., 2017, Theorem 1]. Therefore,
we can compute a committee S1 ∈ B′ with score(S1) ≥
(1/∆+1)OPT in O(mk/∆) time by [Feldman et al., 2017,
Theorem 1]. Then from Ŝ \ S1, we arbitrarily select a set
S2 ⊆ Ŝ of k− |S1| candidates. We can verify that S1 ∪ S2 is
a (1/∆+1, 2)-approximation solution.

For the second claim, we compute y ∈ (1 − ε)B′ :=
{S ⊆ C : |S| ≤ (1− ε)k; |S ∩ Pi| ≤ (1− ε)ui, ∀i ∈ [p]}.
Then we round y to a committee S1 using the swap
randomized rounding procedure in [Chekuri et al., 2010].
By [Chekuri et al., 2010, Theorem 5.2], S1 can be guaranteed
to be in B′, and score(S1) ≥ (1 − 1/e − O(ε))OPT . Then
by the same argument as in the first claim, we can obtain a
(1− 1/e−O(ε), 2)-approximation solution. 2

We now present the result for the case when we only have
lower bound constraints, i.e., the upper bound constraints
ui = |Pi| for all i ∈ [p]. Further, we assume that a commit-
tee of size o(k/ ln ∆) satisfying all fairness constraints exists,
which is reasonable since, in practice, ∆ roughly represents
the number of attributes, like gender and ethnicity. Though
there may exist many groups, the number of attributes is usu-
ally limited.
Theorem 13 (Approximation algorithm when ui = |Pi|)
Given a constrained multiwinner voting instance satisfying
ui = |Pi| for all i ∈ [p] with a promise that a size-o(k/ ln ∆)
committee satisfying all fairness constraints exists, there ex-
ists a (1− 1/e− o(1))-approximation algorithm.

6.2 The Case of ∆ = 1
In this section, we consider the case ∆ = 1, i.e., Pi ∩ Pj = ∅
for all 1 ≤ i < j ≤ p and prove the following theorem.
Theorem 14 (Algorithm for ∆ = 1) Given a feasible
constrained MS multiwinner voting instance with ∆ =
1, there exists a randomized polynomial-time (1 − 1/e)-
approximation algorithm.

Algorithm DegreeOne.
1. Compute a fractional solution y ∈ B by the continuous

greedy algorithm in [Calinescu et al., 2011, Section 3.1].
2. For j ∈ [p], iteratively do the following until Pj has at

most 1 non-integral coordinate: Arbitrarily select two can-
didates ci, ci′ ∈ Pj with fractional coordinates yi, yi′ . Let
δ1 = min {1− yi, yi′} and δ2 = min {yi, 1− yi′}. Let
ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}m. Construct two
vectors y1 = y+δ1(ei−ei′) and y2 = y+δ2(ei′−ei). Let
y ← y1 with probability δ2/δ1+δ2 and y ← y2 otherwise.
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Figure 1: Depicts the winners for the unconstrained (left) and prop
w.r.t. voters (right) Bloc rule from all 1000 experiments; the con-
straints force all four quadrants to get the same number of winners.

3. W.l.o.g., assume y1, . . . , yγ are the remaining fractional
coordinates. Iteratively do the same procedure as in Step
2 until y becomes an integral solution.

4. Output S whose indicator vector is y = 1S .

Proof Sketch [of Theorem 14] It is not hard to verify the
feasibility of S and the running time. For the approximation
ratio, we have F (y) ≥ (1 − 1/e)OPT in Step 1 by [Ca-
linescu et al., 2011, Appendix A]. Then by [Calinescu et
al., 2011, Section 2.1], we can prove that E [F (y)] ≥ F (y)
for each iteration of Step 2 and 3. Thus, we conclude that
E[score(S)] ≥ F (y) ≥ (1− 1/e)OPT . 2

7 Empirical Results
We compare the performance of winning committees without
fairness constraints and with fairness constraints, under sever-
al commonly used MS multiwinner voting rules. We assume
that the voter preferences are generated according to a two-
dimensional Euclidean model as in [Schofield, 2007] which
suggests that voters’ political opinions can be described suf-
ficiently well in two dimensions. Multiwinner voting rules
may introduce or exacerbate bias in such preference model-
s. We show that the fairness constraints can prevent this, and
moreover, the score attained by the fair result is close to the
score attained by the optimal unconstrained (and hence, bi-
ased) committee.

7.1 Setup
Voting Rules. We consider five MS multiwinner voting
rules: SNTV, Bloc, k-Borda, α-CC and β-CC. The definitions
of SNTV, α-CC and β-CC appear in Section 3. Bloc output-
s the k candidates that have the most voters listing them in
the top k of their list. k-Borda outputs the k candidates with
the largest sum of the Borda scores (Definition 5) that she re-
ceives from all voters. As a baseline, we also consider the
Random voting rule that simply selects a committee uniform-
ly at random. In all cases, we let k = 12 be the size of the
desired committee.

Sampling Candidates, Voters and Preferences. We gen-
erate 400 voters and 120 candidates where each voter and
candidate is represented by a point in the [−3, 3] × [−3, 3]
square. 1/4 of the voters are sampled uniformly at random
from each quadrant, and 1/3 of the candidates are sampled u-
niformly from the first quadrant, 1/4 the second quadrant, 1/6
the third quadrant, and 1/4 the fourth quadrant. As in [Elkind
et al., 2017], we use Euclidean preferences; given a pair of

candidates ci, cj ∈ R2, a voter a ∈ R2 prefers ci to cj if
d (ci, a) < d (cj , a) where d (·, ·) is the Euclidean distance.

Groups and Fairness Constraints. We consider each
quadrant to be a different group, and let Pi be the collection of
candidates in the i-th quadrant. We compare the performance
of three different types of constraints to the unconstrained op-
timal solution and the random baseline.
• Proportional w.r.t. voters: the number of winners is pro-

portional to the number of voters in each quadrant.
• Proportional w.r.t. candidates: The number of winners is

proportional to the number of candidates in each quadrant.
• Relax: The number of winners in each quadrant is allowed

to be anywhere in the range between what would be pro-
portional to voters and proportional to candidates.

Metrics. As a metic of fairness, we consider the Gini index,
a well-studied metric for inequality: Let p be the total number
of groups, and let ni be the number of winners in each group
Pi, then the Gini index is defined to be

∑p
i=1

∑p
j=1|ni−nj |

2p
∑p
i=1 nj

.
This measures, on a scale from 0 to 1, how disproportion-
ate the distribution of winners is amongst the groups (here,
quadrants), with 1 meaning complete inequality and 0 mean-
ing complete equality. In this context, the Gini index should
be interpreted relationally, observing how different methods
and constraints change the index up or down, as opposed to
thinking of it as prescribing a correct outcome.

In addition, for each voting method we measure the price
of fairness, i.e., the ratio between its score and the optimal
unconstrained score. A ratio close to 100% indicates that de-
spite adding fairness constraints the method attains close to
an optimal score.

7.2 Results
We report the mean and the standard deviation of the Gini
index, and the mean of the score ratio of 1000 repetitions in
Table 3, and, as an example, depict the outcome of 1000 rep-
etitions for the Bloc rule in Figure 1.

Unconstrained rules introduce bias. We observe that
there can be bias in the unconstrained voting rules as the Gini
index is large; in particular, for several rules, the inequality is
larger than that of a random set of candidates suggesting that
underlying disproportionalities in the set of candidates can
be exacerbated by certain rules. The intuition is that having
many candidates in the same quadrant thins their supporters
due to competition, leading to disproportionately fewer rep-
resentatives as winners.

For α-CC and β-CC, the unconstrained Gini index is close
to that the Gini index when constraints are placed to be pro-
portional with respect to candidates. However, the standard
deviation in both cases is 0.06, which suggests that there can
be significant bias in some outcomes of this process. The
constrained process, on the other hand, will always satisfy
the corresponding Gini index exactly.

The fairness constraints allow us to fix a particular distribu-
tion of winners (and hence corresponding Gini index), in this
case either proportional with respect to voters or candidates,
and hence allows us to de-bias the result in any desired man-
ner. The result of the relaxed constraints, which allow the
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Rule Unconstrained Prop w.r.t. voters Prop w.r.t. candidates Relax Random
Gini % Opt Gini % Opt Gini % Opt Gini % Opt Gini % Opt

SNTV 0.24 (0.09) 100 0 (0) 97.0 0.125 (0) 94.2 0.01 (0.02) 97.0 0.22 (0.09) 37.1
Bloc 0.28 (0.10) 100 0 (0) 91.6 0.125 (0) 88.4 0.00 (0.00) 91.6 0.22 (0.09) 61.9

k-Borda 0.24 (0.09) 100 0 (0) 98.9 0.125 (0) 99.3 0.11 (0.04) 99.3 0.22 (0.09) 72.6
α-CC 0.15 (0.06) 100 0 (0) 100 0.125 (0) 100 0.10 (0.05) 100 0.22 (0.09) 73.5
β-CC 0.11 (0.06) 100 0 (0) 100 0.125 (0) 100 0.07 (0.06) 100 0.22 (0.09) 95.8

Table 3: Under different rules, the average Gini index, the standard deviation of Gini index, and the average ratio of the constrained optimal
score over the unconstrained optimal score.

distribution of winners within these ranges vary with some
rules tending towards proportionality with respect to voters
and others with respect to candidates.

The price of fairness is small. Because the feasible space
of committees becomes smaller in the constrained settings,
the optimal constrained score may be less than its uncon-
strained counterpart. However, in Table 3 we observe that
the fairness constraints do not decrease the score by much; in
fact for the α-CC or β-CC rules the score does not decrease at
all. 2 This is not just a matter of there being many good com-
mittees; indeed a random committee in these settings does not
perform well in comparison. Hence, the “price of fairness” is
small in this setting; understanding this quantity more gener-
ally remains an important direction for future work.

8 Conclusion
In this paper, we propose a general model for multiwin-
ner voting that can handle arbitrary MS score functions, can
simultaneously ensure fairness across multiple sensitive at-
tributes and can satisfy many different existing notions of
fairness. We also develop efficient approximation algorithm-
s for our model in different settings. The empirical results
show that our model indeed eliminates bias compared to un-
constrained voting, with a controlled price of fairness.
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