
Computational Aspects of the Preference Cores of Supermodular Two-Scenario
Cooperative Games

Daisuke Hatano1 and Yuichi Yoshida2

1 RIKEN Center for Advanced Intelligence Project
2 National Institute of Informatics

daisuke.hatano@riken.jp, yyoshida@nii.ac.jp

Abstract

In a cooperative game, the utility of a coalition of
players is given by the characteristic function, and
the goal is to find a stable value division of the
total utility to the players. In real-world applica-
tions, however, multiple scenarios could exist, each
of which determines a characteristic function, and
which scenario is more important is unknown. To
handle such situations, the notion of multi-scenario
cooperative games and several solution concepts
have been proposed. However, computing the value
divisions in those solution concepts is intractable in
general.
To resolve this issue, we focus on supermodular
two-scenario cooperative games in which the num-
ber of scenarios is two and the characteristic func-
tions are supermodular and study the computational
aspects of a major solution concept called the pref-
erence core. First, we show that we can compute
a value division in the preference core of a su-
permodular two-scenario game in polynomial time.
Then, we reveal the relations among preference
cores with different parameters. Finally, we pro-
vide more efficient algorithms for deciding the non-
emptiness of the preference core for several spe-
cific supermodular two-scenario cooperative games
such as the airport game, multicast tree game, and
a special case of the generalized induced subgraph
game.

1 Introduction
Cooperative games are useful frameworks for analyzing co-
operation among individuals or players. A popular such
model is a characteristic function game in which the utility
of a coalition among players is specified by a function called
a characteristic function and the division of total utility by
the grand coalition among the players is called a value divi-
sion. Given a set of players and a characteristic function, the
typical goal of such games is to find the value division in the
core [Gillies, 1959]; in other words, no individual or group
can receive larger utility by deviating from the grand coali-
tion.

Unfortunately, it is NP-hard to decide the non-emptiness
of the core of a cooperative game. However, for supermodu-
lar (or convex) cooperative games in which the characteristic
functions are supermodular, the cores are known to always
be non-empty [Shapley, 1971]. Moreover, the value division
called the Shapley value is always in the core, and in some
classes of supermodular games we can compute this in poly-
nomial time [Shapley, 1967].

There has been research interest in extending the conven-
tional notion of a cooperative game to more general ones that
can be applied to real-world problems that involve two or
more characteristic functions. Therefore, in this study, we fo-
cus on multiple scenario cooperative games [Hinojosa et al.,
2005; Borrero et al., 2016]. Such games are suitable when
the costs, or the negative utilities, of coalitions are uncertain
and the players have to pay the cost in advance before this
uncertainty dissipates. For example, suppose that some cities
jointly apply for a service on their roads such as a road clean-
ing, waste collection, and patrolling. Although the service
provider is determined by a competitive bidding process and
the actual cost of each city is influenced by the route chosen
by the service provider, the cities must pay their fees in ad-
vance. This situation can be represented by introducing sev-
eral characteristic functions, each of which corresponds to a
potential route (scenario).

As the notion of a core is tailored to conventional coop-
erative games, some generalizations of the core for multi-
scenario cooperative games have been proposed, including
the preference core, dominance core, and generalized least
core [Hinojosa et al., 2005]. Unfortunately, however, com-
puting a value division in these cores requires exponential
time in the number of players in general.

1.1 Our Contributions
To resolve the above-mentioned issue, in this work, we focus
on a supermodular two-scenario cooperative game in which
the number of scenarios is two and each characteristic func-
tion is supermodular to examine the computational aspects
of the notion of the preference (ε1, ε2)-core [Hinojosa et al.,
2005].

Supermodular two-scenario cooperative games have sev-
eral important applications. For example, suppose that a com-
pany has a research department and a development depart-
ment, and the manager of the company is planning to reward
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employees based on the proceeds they earn. The tasks for
earning proceeds can be categorized into research and de-
velopment ones, and employees are involved in several tasks
from both categories. Then, the manager wants to distribute
the proceeds based on the amount of research and develop-
ment to which every employee or group of employees com-
mitted. This problem can be represented by extending a su-
permodular cooperative game called the induced subgraph
game [Deng and Papadimitriou, 1994] to the two-scenario
case, where one scenario represents the research tasks and
the other represents the development tasks.

The preference (ε1, ε2)-core is parameterized by two non-
negative real values ε1 and ε2, which represent slackness in
the two scenarios. Intuitively speaking, the value division is
in the preference (ε1, ε2)-core if it violates the condition of
the core up to the additive error of ε1 and ε2 for the first and
second scenarios, respectively.

Our contributions can be summarized as follows: First, we
show that we can compute a value division in the preference
(ε1, ε2)-core in polynomial time by exploiting the submodu-
lar intersection problem. Then, we show that the preference
(ε1, ε2)-core is non-empty if and only if ε1+ε2 is no less than
some threshold, which we call the preference core value of
the game. Finally, we provide efficient algorithms for com-
puting the preference core values for several specific super-
modular two-scenario games such as the induced subgraph
game generalized to hypergraphs, airport game, and multicast
tree game.

2 Related work
2.1 Supermodular Games
Supermodular games are a well-studied class of cooperative
games. Examples of supermodular games include the airport
game [Littlechild and Owen, 1973], public good game [Oishi
and Nakayama, 2009], bidder collusion game [Graham et al.,
1990], multicast tree game [Feigenbaum et al., 2001], and
bankruptcy game [O’Neill, 1982], and a special case of the in-
duced subgraph game [Deng and Papadimitriou, 1994]. Each
of these games can be extended to the two-scenario setting,
and our characterization of the least core value can be ap-
plied.

Although computing the value division in the core of
a cooperative game is intractable in general, it becomes
polynomial-time tractable if the characteristic function of
the game admits supermodularity. Recently, [Hatano and
Yoshida, 2017] extended this result to strong and weak least
cores, which were originally introduced to study games with
empty cores [Shapley and Shubik, 1966].

2.2 Generalizations of Cooperative Games
To handle real-world applications with multiple objectives,
conventional cooperative games have been extended in sev-
eral directions.

Multi-scenario cooperative games, on which we focus in
this study, are one such extension. This notion is introduced
in [Nishizaki and Sakawa, 2001], who studied extensions to
the least core and nucleolus for multi-scenario cooperative

games. In [Hinojosa et al., 2005], the notions of the prefer-
ence core, dominance core, generalized least core, and gener-
alized nucleolus for multi-scenario cooperative games were
introduced. The preference core and dominance core are
value divisions for which no player deviates from the grand
coalition in any scenario and the coalition in at least one sce-
nario, respectively. We note that the preference core coincides
with the preference (ε1, ε2)-core with ε1 = ε2 = 0. Those
notions are reduced to the core in conventional cooperative
games. The generalized least core is a set of value divisions
in which a value division provides a minimum loss of vec-
tors corresponding to scenarios and any two value divisions
are non-dominated with respect to the minimum loss. Re-
cently, core solutions have been presented for multi-scenario
cooperative games with partial information that represent the
relative importance or probability of occurrences of scenar-
ios [Borrero et al., 2016].

In a multi-attribute coalitional game [Ieong and Shoham,
2006], the value of the characteristic function of a coalition
is determined by an attribute matrix A ∈ Rm×n, where n
is the number of players and m is the number of attributes
and aggregation functions. The computational complexities
of the Shapley value and core have also been studied. The
difference from multi-scenario cooperative games is that each
player obtains a single value.

A multi-criteria cooperative game [Jörnsten et al., 1997]
has several criteria (i.e., several characteristic functions). In
this game, we compute a value division for each criterion
and regard it as the value division in a multi-criteria coop-
erative game. Some solution concepts, such as the general-
ized core [Jörnsten et al., 1997], dominance core, and pref-
erence core [Fernández et al., 2004], have been defined for
multi-criteria cooperative games. However, in multi-scenario
cooperative games, we only provide a single value division.

3 Preliminaries
For an integer k, we denote the set {1, 2, . . . , k} by [k]. The
set of non-negative real values is denoted by R+. We use
bold symbols such as x to denote the vectors. Let N be a
finite set. For a vector x ∈ RN or a function x : N → R
and a set S ⊆ N , we denote by x(S) the value

∑
v∈S

x(v).

For a set S ⊆ N , we denote by χS ∈ RN the characteristic
vector of S, that is, χS(v) = 1 for v ∈ S and χS(v) = 0 for
v ∈ N \ S.

3.1 Submodular Functions
A function f : 2N → R is called submodular (resp., super-
modular) if

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T )
(resp., f(S) + f(T ) ≤ f(S ∩ T ) + f(S ∪ T ))

for all S, T ⊆ N . We say that a function f : 2N → R is
normalized if f(∅) = 0.

The submodular polyhedron and base polyhedron of a sub-
modular function f : 2N → R are defined as

P (f) = {x ∈ RN | x(S) ≤ f(S) (S ⊆ N)}, and
B(f) = {x ∈ P (f) | x(N) = f(N)},
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respectively. It is known that f(S) = max{〈w,χS〉 | w ∈
B(f)}, where 〈·, ·〉 denotes inner product. (See, e.g., [Fu-
jishige, 2005].)

In the submodular intersection problem, we are given two
submodular functions f1, f2 : 2N → R, and the goal is to
maximize x(N) subject to x ∈ P (f1) ∩ P (f2). For this
problem, the following min-max theorem is well known.
Theorem 1 ([Edmonds, 2003]). Let f1, f2 : 2N → R be
normalized submodular functions. Then, we have

max{x(N) | x ∈ P (f1) ∩ P (f2)} (1)
= min{f1(S) + f2(N \ S) | S ⊆ N}. (2)

Moreover, we can compute an optimal solution to (1) (and
hence that of (2)) in polynomial time in |N |.

3.2 Cooperative Games
We now briefly describe the framework of cooperative games.
For more details, readers are referred to [Chalkiadakis et al.,
2011] and the references therein. A cooperative game G is
a pair (N, ν), where N is a set of players and ν : 2N →
R+ is a function called the characteristic function of G. We
can regard ν(S) as the utility when the players in S form a
coalition. We always assume that ν(∅) = 0. We say that a
vector x ∈ RN is a value division if x(N) = ν(N); in other
words, the value division is a distribution of the total utility to
the players.

Suppose that a value division x ∈ RN satisfies x(S) <
ν(S) for some S ⊆ N . In such a case, the players in S will
form a coalition and leave N . We say that a value division is
in the core if such an S does not exist. More formally, a value
division x ∈ RN is in the core if x(S) ≥ ν(S) for every
S ⊆ N .

In general, the core of a cooperative game may be empty.
To handle such a case, the notion of ε-core has been studied,
where ε ∈ R+ is a parameter. We say that the value division
is in the ε-core if x(S) ≥ ν(S) − ε for every S ⊆ N . Note
that the 0-core coincides with the standard core. The least
core value of a game G, denoted by lcv(G), is the minimum
ε ∈ R+ for which the ε-core is non-empty. We note that the
least core value of a cooperative game can be computed by
solving the following linear program (LP):

minimize ε,
subject to x(S) ≥ ν(S)− ε (∅ ⊆ S ⊆ N),

x(N) = ν(N),
x ∈ RN ,
ε ∈ R+.

(3)

We say that a cooperative game (N, ν) is supermodular if ν
is supermodular. Supermodular games are sometimes called
convex games in the literature. The core of a supermodular
cooperative game is non-empty; in particular, a value divi-
sion called the Shapley value is always in the core [Shapley,
1967]. Hence, the optimal value of (3) for a supermodular
cooperative game is always 0.

3.3 Two-Scenario Cooperative Games
An instance of a two-scenario cooperative game G is a tuple
(N, ν1, ν2, T ), whereN is a set of players, ν1, ν2 : 2N → R+

are characteristic functions, and T ∈ R+ is the total utility to
be distributed. We say that a two-scenario cooperative game
is supermodular if both ν1 and ν2 are supermodular. For two-
scenario cooperative games, we say that a vector x ∈ RN is
a value division if x(N) = T . We always assume νi(N) ≤
T (i ∈ {1, 2}) so that there is a valid value division for the
game (N, νi) for each i ∈ {1, 2}.

Let G = (N, ν1, ν2, T ) be a supermodular two-scenario
game. Although both games (N, ν1) and (N, ν2) have non-
empty cores, they do not intersect in general. To find a value
division satisfiable in both scenarios, we define a variant of
the least core for two-scenario games.

Definition 2. For ε1, ε2 ∈ R+, we say that a value division
x ∈ RN is in the preference (ε1, ε2)-core (or, simply (ε1, ε2)-
core) of G if x(S) ≥ ν1(S)− ε1 and x(S) ≥ ν2(S)− ε2 for
every S ⊆ N .

4 Preference Cores of Supermodular
Two-Scenario Games

In this section, we study the computational aspects of the
(ε1, ε2)-cores of supermodular two-scenario games. First, we
provide a polynomial-time algorithm for finding a value divi-
sion in the (ε1, ε2)-core for fixed ε1 and ε2 (if exists). Then,
we see that the non-emptiness is determined solely by the sum
ε1 + ε2, rather than the pair (ε1, ε2). Finally, we show the re-
lations among (ε1, ε2)-cores with ε1 + ε2 being fixed.

4.1 Non-Emptiness of a Preference Core
Fix a supermodular two-scenario game G = (N, ν1, ν2, T )
and parameters ε1, ε2 ∈ R+. Here, we characterize the non-
emptiness of the (ε1, ε2)-core of G.

From the definition, the non-emptiness of the (ε1, ε2)-core
can be checked by solving the following feasibility problem:

x(S) ≥ ν1(S)− ε1 (∅ ⊆ S ⊆ N),
x(S) ≥ ν2(S)− ε2 (∅ ⊆ S ⊆ N),
x(N) = T.

(4)

To rephrase the problem (4), we define fi : 2N → R as
follows:

fi(∅) = 0,
fi(S) = −νi(S) + εi (∅ ( S ⊆ N).

(5)

We can easily confirm that fi is normalized submodular.
Then, by replacing x with −x and using fi, the problem (4)
can be rephrased as the following submodular intersection
problem:

x(N) ≥ −T, and x ∈ P (f1) ∩ P (f2). (6)

First, we start with the following simple observation:

Theorem 3. We can find a value division in the (ε1, ε2)-core
of G in polynomial time in |N | if it is non-empty.

Proof. Immediate from Theorem 1.

The following theorem states that the feasibility of the
problem (6) is determined by the sum ε1 + ε2 rather than the
pair (ε1, ε2).
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Theorem 4. The (ε1, ε2)-core of G is non-empty if and only
if ε1 + ε2 ≥ ε∗, where ε∗ is

max{ν1(S) + ν2(N \ S) | ∅ ⊆ S ⊆ N} − T. (7)

Moreover, we can compute ε∗ in polynomial time in |N |.

Proof. From Theorem 1, the (ε1, ε2)-core of G is non-empty
if and only if

f1(S) + f2(N \ S) ≥ −T (8)

for every ∅ ⊆ S ⊆ N .
When S = ∅ or S = N , (8) trivially holds from the as-

sumption νi(N) ≤ T (i ∈ {1, 2}). For ∅ ( S ( V , we have
f1(S) + f2(N \ S) = −ν1(S)− ν2(N \ S) + ε1 + ε2. Then,
the (ε1, ε2)-core is non-empty if and only if

ε1 + ε2 ≥ max{ν1(S) + ν2(N \ S) | ∅ ⊆ S ⊆ N} − T,

and hence the first claim holds.
We can compute ε∗ by solving (7), which can be done in

polynomial in |N | by applying Theorem 1 on normalized sub-
modular functions −ν1 and −ν2.

Theorem 4 suggests to define the preference core value of
a game G as max{ε∗, 0} in Theorem 4, and which we denote
by pcv(G). Here, we took the maximum with 0 to emphasize
the constraint ε1, ε2 ≥ 0.

4.2 Relations among the Preference Cores
In this section, we reveal interesting relations among the
(ε1, ε2)-cores with ε1+ε2 = pcv(G) for a supermodular two-
scenario game G = (N, ν1, ν2, T ).

Theorem 5. Let x1 ∈ RN and x2 ∈ RN be solutions to (6)
with (ε1, ε2) = (pcv(G), 0) and (ε1, ε2) = (0, pcv(G)), re-
spectively. Then, for any α ∈ [0, 1], x = αx1+(1−α)x2 is a
solution to (6) with (ε1, ε2) = (α ·pcv(G), (1−α) ·pcv(G)).

Proof. First,

x(N) = αx1(N) + (1− α)x2(N) ≥ −T.

Next, for any ∅ ( S ⊆ N , we have

x(S) = αx1(S) + (1− α)x2(S)

≤ α(−ν1(S) + pcv(G)) + (1− α)(−ν1(S))
= −ν1(S) + αpcv(G).

Similarly, for any ∅ ( S ⊆ N , we have

x(S) = αx1(S) + (1− α)x2(S)

≤ α(−ν2(S)) + (1− α)(−ν2(S) + pcv(G))
= −ν2(S) + (1− α)pcv(G).

Hence, the theorem holds.

Theorem 5 implies that, once we obtain value divisions in
the (pcv(G), 0)-core and the (0, pcv(G))-core, we can con-
struct a value division in the (ε1, ε2)-core with ε1 + ε2 =
pcv(G) by linear interpolation.

5 Induced Subgraph Games
In this section, we analyze the preference (ε1, ε2)-cores of
two-scenario induced subgraph games [Deng and Papadim-
itriou, 1994] generalized to hypergraphs with nonnegative
weights of hyperedges(see, e.g., [Hatano and Yoshida, 2017]
for this generalization). This generalization can be viewed
as cooperative games represented by a (basic) MC-net [Ieong
and Shoham, 2005] under the condition that the utility of ev-
ery rule is nonnegative.

5.1 Definition
First, we define the induced subgraph game. Let G =
(N,E,w) be a hypergraph, where N is a set of vertices, E
is a set of hyperedges, and w : E → R+ is a non-negative
weight function on the edges. We often regard a hyperedge
e ∈ E as a subset of N . The induced subgraph game as-
sociated with G is a cooperative game G = (N, ν), where
ν : 2V → R+ is the total weight of the hyperedges e ∈ E
with e ⊆ S. Note that ν is supermodular because of the non-
negativity of w. A cut weight of S in G is the total weight of
hyperedges which intersect S and N \ S.

5.2 Characterization of the Preference Core Value
Let G1 = (V,E1, w1) and G2 = (V,E2, w2) be two hy-
pergraphs on the same vertex set N . Then, we consider a
supermodular two-scenario game G = (N, ν1, ν2, T ), where
ν1 and ν2 are the supermodular functions associated with G1

and G2, respectively, and T ∈ R+ is the total utility to be
distributed. Here, we characterize the preference core value
of G.

The preference core value of G is obtained by solving (7).
We now show that this problem can be further reduced to
a minimum cut problem on a hypergraph. To this end, we
construct a hypergraph G′ = (N ′, E′, w′) from G1 and G2.
Here, N ′ = N ∪ {s, t}, where s and t are new vertices. We
construct E′ by adding a hyperedge e ∪ {s} for each hyper-
edge e ∈ E1 and adding a hyperedge e ∪ {t} for each hyper-
edge e ∈ E2. Their weights are set to be the same as their
original hyperedges. Figure 1 shows an example.

For ∅ ⊆ S ⊆ N , let c(S) denote the cut weight of S ∪ {s}
inG′. Then, we can characterize the preference core value by
using the minimum cut in G′.
Theorem 6. We have

pcv(G) = max
{
ν1(N) + ν2(N)− min

∅⊆S⊆N
c(S)− T, 0

}
.

Proof. We have

c(S) = ν1(N)− ν1(S) + ν2(N)− ν2(N \ S).
Hence, from Theorem 4, the preference core value is equal to

max
{

max
∅⊆S⊆N

(
−c(S) + ν1(N) + ν2(N)

)
− T, 0

}
= max

{
ν1(N) + ν2(N)− min

∅⊆S⊆N
c(S)− T, 0

}
.

The minimum s-t cut of a hypergraph can be computed in
polynomial time by using the algorithm proposed by [Pisto-
rius and Minoux, 2003]. Hence, we can compute the prefer-
ence core value of G in polynomial time.
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Figure 1: Construction of G′ from two graphs G1 and G2. Here,
each square in G′ denotes a hyperedge and is connected to the ver-
tices belonging to the hyperedge.

From Theorem 6, for fixed ν1(N), ν2(N), and T , the pref-
erence core value becomes large when c(S) is small for some
∅ ⊆ S ⊆ N . This means that most hyperedges in G1 are
within S and most hyperedges in G2 are within N \ S. To
avoid deviation, we should give a large utility to players in
S and in N \ S in the first and second games, respectively.
As these demands are conflicting, the preference core value
becomes large.

6 Airport Games
In this section, we analyze the preference (ε1, ε2)-cores of
two-scenario airport games [Littlechild and Owen, 1973].

6.1 Definition
Let I = (c1, . . . , cn) be a tuple, where c1, . . . , cn ∈ R+ sat-
isfy c1 ≤ c2 ≤ · · · ≤ cn. Then, the airport game associated
with I is the cooperative game G = (N, ν), where N = [n]
and ν(S) = −maxi∈S c

i for every S ⊆ N . Here, we regard
ν(∅) = 0.

6.2 Characterization of the Preference Core Value
Fix a tuple I1 = (c11, . . . , c

n
1 ) with c11 ≤ · · · ≤ cn1 and

a tuple I2 = (cπ1
2 , . . . , cπn

2 ) with cπ1
2 ≤ · · · ≤ cπn

2 for
some ordering π1, . . . , πn of [n], that is, π1, . . . , πn is an el-
ement of the permutation of [n]. Then, we consider the two-
scenario airport game G = (N, ν1, ν2, T ), where N = [n],
ν1 : S 7→ −maxi∈S c

i
1 and ν2 : S 7→ −maxi∈S c

πi
2 are

the supermodular functions associated with I1 and I2, respec-
tively, and T ∈ R is the total utility to be distributed. Note
that T is not necessarily but is supposed to be negative in this
problem.

We first analyze the preference core value of G.

Theorem 7. We have

pcv(G) = max
{
− min

1≤i≤n−1

(
ci1 + max

i<j≤n
c
πj

2

)
− T, 0

}
. (9)

Proof. From Theorem 4, we have

pcv(G) = max
{

max
∅⊆S⊆N

(
ν1(S) + ν2(N \ S)

)
− T, 0

}
.

From the assumption that ν1(N) ≤ T and ν2(N) ≤ T , the
inner maximum is

max
∅(S(N

(
−max

i∈S
ci1 − max

i∈N\S
cπi
2

)
− T

= − min
∅(S(N

(
max
i∈S

ci1 + max
i∈N\S

cπi
2

)
− T

= − min
1≤i≤n−1

(
ci1 + max

i<j≤n
c
πj

2

)
− T,

which implies the claim.

Although (9) is hard to interpret, it becomes trivial when
πn = n:

Corollary 8. When πn = n, we have

pcv(G) = 0.

Proof. The first term in the outer maximum of (9) is

− min
1≤i≤n−1

(
ci1 + max

i<j≤n
c
πj

2

)
− T ≤ −cn2 − T

= ν2(N)− T ≤ 0,

where we used the assumption that ν2(N) ≤ T in the last
inequality. Hence, the claim holds.

When πn = n, it is easy to compute a value division in the
(0, 0)-core:

Theorem 9. When πn = n, the value division x ∈ RN below
belongs to the (0, 0)-core of G.

x(i) =

{
T if i = n,

0 otherwise.

Proof. First, we have x(N) = T . Now, we want to check
x(S) ≥ ν1(S) and x(S) ≥ ν2(S) for every S ⊆ N .

Let S ⊆ N be a set with n 6∈ S. Then, we have x(S) = 0
and hence we have x(S) ≥ ν1(S) and x(S) ≥ ν2(S).

Let S ⊆ N be a set with n ∈ S. Then, we have x(S) = T
and hence we have x(S) ≥ ν1(N) = ν1(S) and x(S) ≥
ν2(N) = ν2(S).

7 Multicast Tree Games
In this section, we analyze the preference (ε1, ε2)-cores of
two-scenario multicast tree games [Feigenbaum et al., 2001].
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7.1 Definition
First, we define multicast tree games. A multicast tree game
is parameterized by a tuple (N,E,w, r, p). Here, (N,E,w)
is a rooted (directed) tree, whereN is a vertex set, E is an arc
set, w : E → R+ is a weight function on the arcs, r ∈ N is
the root vertex, and p : N → R+ is a utility function on the
vertices. For a vertex v ∈ N , we define P (v) as the set of
arcs on the unique directed path from r to v. For a vertex set
S ⊆ N , we define P (S) =

⋃
v∈S P (v). The multicast tree

game associated with (N,E,w, r, p) is the cooperative game
G = (N, ν), where ν : 2V → R+ is defined as

ν(S) = p(S)− w(P (S)).
That is, ν(S) is the total utility obtained by the vertices in S
minus the total weight of the arcs needed for r to reach the
vertices in S. It is easy to confirm that ν is supermodular.

7.2 Characterization of the Preference Core Value
Let (N,E1, w1, r1, p1) and (N,E2, w2, r2, p2) be the two pa-
rameters for multicast tree games, and let ν1 : 2V → R and
ν2 : 2V → R be the corresponding supermodular functions.
Then, we let G = (N, ν1, ν2, T ) be a two-scenario multicast
tree game, where T is the total utility to be distributed.

The preference core value of G is obtained by solving (7).
This problem can be reduced to a min cut problem on a di-
rected graph. To this end, we define an auxiliary directed
graph G′ = (N ′, E′, w′) as follows. First,

N ′ = N∪{v1 | v ∈ N \{r1}}∪{v2 | v ∈ N \{r2}}∪{s, t},
where s and t are newly introduced vertices. For each v ∈ N ,
we add the arcs (s, v) and (v, t) of weights p1(v) and p2(v),
respectively, to G′. For each v ∈ N \ {r1}, we add the arc
(v, v1) of infinite weight, and for each v ∈ N \ {r2}, we add
the arc (v2, v) of inifinite weight. For each arc e = (u, v)
with u 6= r1 in G1, where u is the parent of v, we add an arc
(v1, u1) of infinite weight and an arc (v1, t) of weight w(e)
to G′. For each arc (u, v) with u 6= r2 in G2, where u is the
parent of v, we add an arc (u2, v2) of infinite weight to G′
and an arc (s, v2) of weight w2(e) to G′. Figure 2 shows an
example of the obtained directed graph.

For a vertex set S ⊆ N , let c(S) be the minimum weight
of a directed s-t cut for which S belongs to the s-side and
N \ S belongs to the t-side, and let C(S) ⊆ N ′ be the vertex
set that attains c(S).

For i ∈ {1, 2} and a vertex set S ⊆ N , let Ai(S) be the
ascendants of the vertices in S in Gi. Then, we have the
following.
Lemma 10. Let S ⊆ N be a set of vertices. Then, we have

C(S) = {s} ∪ S ∪ {v1 | v ∈ A1(S) \ {r1}}
∪ {v2 | v ∈ (N \A2(N \ S)) \ {r2}}.

Proof. Because of the arcs of infinite weight, we are forced
to have {v1 | v ∈ A1(S) \ {r1}} ⊆ C(S) and exclude {v2 |
v ∈ A2(N \ S) \ {r2}} ⊆ N ′ \ C(S) from S. The other
direction is easy to see. Indeed, adding one or more vertices
of the form v1 for v 6∈ A1(S) \ {r1} to C(S) only increases
the cut weight. Moreover, adding one or more vertices of the
form v2 for v 6∈ A2(N \S)\{r2} toN ′\C(S) only increases
the cut weight.

a b

c d

G1
a b

c d
a

b

c

d

t

G2

G’

b2

c2

d2d1

s
b1

c1

Figure 2: Construction of G′ from the two graphs G1 and G2. The
bold red arrows denote the arcs of infinite weight.

Theorem 11. We have

pcv(G) = max
{
p1(N) + p2(N)− min

∅⊆S⊆N
c(S)− T, 0

}
.

Proof. From Lemma 10, we have

c(S)

= w1(P1(S)) + p1(N \ S) + w2(P2(N \ S)) + p2(S)

= p1(N) + p2(N)− ν1(S)− ν2(N \ S).

Hence, from Theorem 4, the preference core value is equal to

max
{

max
∅⊆S⊆N

(
−c(S) + p1(N) + p2(N)

)
− T, 0

}
= max

{
p1(N) + p2(N)− min

∅⊆S⊆N
c(S)− T, 0

}
.

From Theorem 11, for fixed ν1(N), ν2(N), and T , the
preference core value becomes large when c(S) is small for
some ∅ ⊆ S ⊆ N . This means that there are only a few as-
cendants of S in G1 and a few ascendants of N \ S in G2,
and the total utilities of S in G1 and N \ S in G2 are large.
To avoid deviation, we should give a large utility to players
in S and in N \ S in the first and second games, respectively.
As these demands are conflicting, the preference core value
becomes large.

8 Conclusions
The contributions of this study can be summarized as fol-
lows. First, we showed that we can compute a value division
of the (ε1, ε2)-core of supermodular two-scenario coopera-
tive games in polynomial time in the number of players by
exploiting the submodular intersection problem. Second, we
showed that the non-emptiness of the (ε1, ε2)-core is deter-
mined by the sum ε1 + ε2, which we call the preference core
value, rather than the pair (ε1, ε2). Finally, we characterized
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the preference core values of several specific supermodular
two-scenario cooperative games such as the induced subgraph
game, airport game, and multicast tree game.

Whether we can obtain efficient algorithms tailored to the
case of combining two different supermodular cooperative
games (e.g., the induced subgraph game and multicast tree
game) is an intriguing question. This remains to be addressed
in future research.

It is also interesting to extend our results to three-scenario
(or more) cooperative games. An obstacle here is that it is
NP-complete to decide whether the cores of three supermod-
ular games have a non-empty intersection because finding a
Hamiltonian path can be reduced to this problem. Hence, we
need to introduce some approximation to efficiently handle
this problem.
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