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Abstract
Online pricing mechanisms have been widely ap-
plied to resource allocation in multi-agent systems.
However, most of the existing online pricing mech-
anisms assume buyers have fixed valuations over
the time horizon, which cannot capture the dynamic
nature of valuation in emerging applications. In
this paper, we study the problem of revenue maxi-
mization in online auctions with unknown time dis-
counting valuations, and model it as non-stationary
multi-armed bandit optimization. We design an
online pricing mechanism, namely Biased-UCB,
based on unique features of the discounting valu-
ations. We use competitive analysis to theoretically
evaluate the performance guarantee of our pricing
mechanism, and derive the competitive ratio. Nu-
merical results show that our design achieves good
performance in terms of revenue maximization on
a real-world bidding dataset.

1 Introduction
Online pricing mechanisms have been widely adopted for al-
locating resources in multi-agent systems. Typical applica-
tions include cloud resource allocation [Zhang et al., 2017],
online advertising [Sumita et al., 2017], microtask crowd-
sourcing [Hu and Zhang, 2017] and crowdsensed data pric-
ing [Zheng et al., 2017]. These emerging applications also
require online pricing mechanisms to handle new features,
one of which is time discounting valuations. For example,
advertisers’ willingness-to-pay usually decays over the time
horizon in new mobile ad auctions, where ad space is sold
in different time slots [Mehta et al., 2017]. The time dis-
counting valuation phenomenon also shows up in more gen-
eral e-commerce scenarios, as customers always prefer newly
released products [Chawla et al., 2016].

In this paper, we study revenue maximization for posted
price online auctions with unknown time discounting valua-
tions. The items sold in the auctions can be digital goods,
such as information, digital music, and software, or reusable
goods, such as cloud computing processors and advertising
impressions. The seller sequentially interacts with a set of

∗F. Wu is the corresponding author.

buyers, and offers each buyer a price, without knowing the
valuations of buyers. The buyer has time discounting valua-
tions over the items, and decides whether to take the price by
comparing her current valuation with the price. The seller’s
objective is to maximize the overall revenue, by setting the
proper prices based on the observation of buyers’ responses
to prices.

Designing an online pricing mechanism for revenue max-
imization with time discounting valuations in an incom-
plete information environment has three major challenges.
The first challenge is the unknown valuation setting, mean-
ing that the seller does not know the buyers’ valuations,
even the valuation distributions. Most of dynamic pricing
works from management science literature [Myerson, 1981;
Gallego and Van Ryzin, 1994] assume that seller has the ac-
curate knowledge of the valuation distribution. However, this
assumption seldom holds in practice, as it requires a long-
term marketing research and the results can still contain inac-
curacies. The related works from computer science commu-
nity handle this challenge by formulating the online pricing
problem as a multi-armed bandit (MAB) optimization [Klein-
berg and Leighton, 2003]. The intuition behind these works
is to maintain a weight vector for the performance of candi-
date prices, and make a trade-off between exploiting the cur-
rent best price and exploring the potential ultimate optimal
price. However, the MAB-based pricing schemes only work
for fixed valuation model. It is non-trivial to extend them to
handle time discounting valuation settings.

The second challenge is the multi-dimensional private in-
formation. Since both the valuation distribution and the dis-
counting function are unknown, a price offer may be rejected
due to either the buyer originally possesses a low valuation,
or the buyer’s valuation goes through a large discount in the
past few time slots. The traditional pricing mechanisms can-
not distinguish these two cases under such limited informa-
tion environments, making it difficult to determine whether
to lower the price for future buyers at certain time.

The third challenge comes from the misalignment of his-
torical and future valuations in time discounting valuation
scenarios. When valuations are time discounting, historical
information cannot provide accurate descriptions of future
valuations, causing the revenue loss of methods that rely on
historical valuations. The MAB-based pricing scheme, one
representative of such methods, refers to the previous perfor-
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mance of prices to determine the prices for future buyers, who
have significantly lower valuations than the previous buyers.
These price offers inevitably get rejected by the future buy-
ers, leading to the decrease of revenue. It is not an easy job
to extend the MAB-based pricing schemes to handle the mis-
alignment of historical information and future information,
and thus new technical tools are needed.

In this paper, jointly considering the above challenges, we
present an online pricing mechanism for revenue maximiza-
tion in unknown time discounting valuation settings. To han-
dle the first two challenges, we associate each candidate price
with a reward distribution varying with time, and model the
online pricing problem as a non-stationary MAB optimiza-
tion. Specifically, we introduce an attenuation factor to at-
tach more importance to recent intersections with buyers than
transactions long ago. This procedure does not need to know
the information of valuations, valuation distribution, and dis-
counting function, but only relies on buyers’ responses to
prices. To address the third challenge, instead of simply feed-
ing historical records into the weight vector, we proactively
predict for future valuations. We modify the weight update
scheme of candidate prices, and make our mechanism bi-
ased towards lower prices. Such biased operation amends the
misalignment between historical information and future dis-
counting valuations. Combing the above ideas, we propose
the first online pricing mechanism, namely biased-UCB, for
time discounting valuation setting, and derive a good compet-
itive ratio in terms of revenue maximization.

We summarize our contributions in this paper as follows.
• First, we formulate the revenue maximization prob-

lem in online auction with time discounting valuations,
based on the observations of dynamic nature of valua-
tion in emerging applications. We model this problem
as a non-stationary multi-armed bandit optimization.
• Second, we fully exploit the time discounting character-

istic in valuations, and present an online pricing mecha-
nism, namely Biased-UCB, that is biased towards lower
prices. We theoretically analyze Biased-UCB, and pro-
vide the competitive ratio in the worst case, which is
a function of the price discretization level and reaction
time towards stepwise valuation changes.
• Finally, based on a real world real-time bidding dataset,

we evaluate Biased-UCB in advertising auctions. Nu-
merical results show that Biased-UCB outperforms the
existing mechanisms in terms of revenue, and ap-
proaches to the optimal revenue.

2 Preliminaries
In this section, we present the model of posted price online
auction with time discounting valuations.

A seller has unlimited supply of identical items and se-
quentially interacts with a set of buyers. The time hori-
zon is divided into T slots, and is denoted by a set T =
{1, 2, . . . , T}. In each slot t, one buyer bi shows up and re-
quests one copy of the item. We use g(t) to denote the inher-
ent discounting function for the “quality” of the item over the
time horizon. For example, in mobile ad auctions, the click-
through rate of the ad space decreases with time [Mehta et

al., 2017]; in data marketplace, the accuracy of the data de-
cays over time [Zheng et al., 2017]. Since buyers may have
different responses to the quality decrease of the item, we
represent buyer bi’s discounted valuation at slot t as

vi(t) = max{vi · di(g(t)), 1} (1)

where di(g(t)) is the discounting function for buyer bi, and
vi is the original valuation, denoting the valuation for the
item with the highest quality. We consider the independent
identical valuation case, in which the original valuations of
buyers follow the same distribution with cumulative distri-
bution function F (x). For the convenience of analysis, we
normalize buyers’ original valuations into the range of [1, v̄].
Since di(g(t)) is also a function of t, we simply use di(t)
to denote the discounting function of buyer bi in the follow-
ing discussion. A discounting function can be any decreasing
function subject to di(t) ∈ (0, 1] for all t ∈ T. We assume
that different discounting functions are bounded by a con-
stant, i.e., di(t)

dj(t) ≤ η for all i, j and t. This assumption is
based on the observation that the buyers usually have differ-
ent but similar perspectives over the quality of the item, mak-
ing the discounting functions not far away from each other.
We denote d(t) = mini di(t). Following traditional prior-
independent mechanism design [Goldberg et al., 2001], we
assume that both the cumulative distribution function and dis-
counting functions are unknown to the seller.

At each slot t, the seller offers a price pt to the current
buyer bi. We restrict the candidate prices to be discrete.
Specifically, at each slot t, we allow the seller to select a price
from a discrete candidate price vector p̂ = (p̂0, p̂1, · · · , p̂H),
where p̂k = (1 + β)k for any 0 ≤ k ≤ H and β > 0. Since
vi is normalized into [1, v̄] and di(t)’s are upper bounded by
1, we have H = blog1+β v̄c. The pricing strategies with dis-
crete prices will bear a loss of the revenue by at most a (1+β)
factor, and thus β can be regarded as a trade-off between op-
timality and computational complexity. Bidder bi will decide
whether to take the offer by comparing the price pt with her
current discounted valuation vi(t). Based on the decision, the
utility function of buyer bi can be expressed as

ui =

{
vi(t)− pt, if bi accepts the offer,
0, otherwise.

(2)

As buyers are rational, buyer bi takes the offer if and only if
vi(t) ≥ pt. The seller’s objective is to maximize the revenue,
which is defined as the sum of all accepted prices along the
time horizon.

We emphasize two important features of the above posted
price online auction model. First, the seller would not learn
the valuation vi(t) of any buyer, but only observes buyers’
responses to the prices. Second, in each time slot, the seller
has to decide the price for the current buyer before seeing
the next buyer. In an online auction, the seller has to utilize a
pricing mechanism that can gradually learn the optimal prices
through interacting with the buyers.

Following [Goldberg et al., 2001], we adopt the concept of
competitive analysis to measure the performance of different
pricing mechanisms. If the cumulative distribution function
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Algorithm 1: DescendUponRejection
1 k ← H;
2 for t← 1 to T do
3 Offer price p̂k to the buyer at slot t;
4 if price p̂k is rejected then
5 k ← k − 1;

F and discounting function di(t)’s are known, the best strat-
egy for the seller is to compute

p∗t = arg max
p∈[1,v̄]

p · F (1− p

di(t)
) (3)

and then offer price p∗t to the buyer at slot t. Follow-
ing [Kleinberg and Leighton, 2003], we call this strategy the
ex ante optimal strategy, and call the revenue obtained by this
strategy the ex ante optimal revenue, in that it only observes
the distribution F , but not the individual realization of actual
vi’s. We will utilize this revenue as a benchmark to evaluate
the performance of different pricing mechanisms.

3 Online Pricing Mechanism Design
In this section, we present the pricing mechanism to maxi-
mize revenue in online auction with time discounting valua-
tions. We begin with a simple setting, where all buyers’ orig-
inal valuations are fixed as a constant value. We provide a
trivial pricing strategy that can perfectly fit in this setting. We
further consider the general setting, where the original valu-
ations are random variables following the same distribution,
and propose a new pricing mechanism, namely Biased-UCB.

3.1 A Simple Case: Fixed Original Valuations
In this case, vi(t) is non-increasing in t since all vi’s are equal
to an unknown constant v∗ and di(t)’s are non-increasing.

For convenience of analysis, we introduce the notation of
segment. We divide the whole time horizon T into H + 1
segments S = {S0, S1, · · · , SH}, where Si is the set of slots
in which p̂i is the optimal discrete price regarding to the lower
bound of buyers’ discounted valuations. Formally,

Si = {t ∈ T | p̂i ≤ v∗ · d(t) < p̂i+1}. (4)

Please note that one or more segments may be empty if
v∗ < p̂H . In the following, we only refer to the non-empty
segments when using the term segment. We assume that ev-
ery segment is sufficiently long, such that |Si| ≥ 2(H + 1)
for all Si ∈ S. Note that we can always make this inequality
hold true by choosing an appropriate value for β.

We now provide a naive pricing strategy, DescendUpon-
Rejection in Algorithm 1. This strategy performs well in
the fixed valuation setting, and is 1

2η -competitive to the dis-
crete ex ante optimal strategy even from worst-case analy-
sis. DescendUponRejection makes only one “error guess” in
each segment, except for the very first segment, where it may
spend up to H + 1 slots seeking the optimal price.

The effectiveness of DescendUponRejection relies on the
fact that the discounted valuation vi(t)’s are non-increasing
in t. Nevertheless, its performance can be arbitrarily bad in

Algorithm 2: Biased-UCB
1 Initialize ui,t ← 0, ni,t ← 0 for all t ∈ T, 0 ≤ i ≤ H;
2 for t← 1 to H + 1 do
3 Offer price p̂t−1 at slot t;
4 UpdateWeight(t− 1, t);
5 for t← H + 2 to T do
6 for i← 0 to H do
7 n̂i,t−1 ←

∑t−1
s=1 ni,s;

8 m̂i,t−1 ←
∑t−1
s=1 γ

t−sni,s;

9 ûi,t−1 ←
∑t−1

s=1 γ
t−sui,s

m̂i,t−1
;

10 wi,t−1 ← ûi,t−1 +
√

c·ln (t−1)
n̂i,t−1

;

11 k ← arg max0≤i≤H wi,t−1;
12 Offer price p̂k at slot t;
13 UpdateWeight(k, t);

Algorithm 3: UpdateWeight
Input: Two integers k and t, indicating price p̂k is

offered at slot t
1 if Price p̂k is accepted at slot t then
2 for i← 0 to k do
3 ui,t ← p̂i;
4 ni,t ← 1;

5 else
6 for i← k to H do
7 ui,t ← 0;
8 ni,t ← 1;

the general setting, where the original valuations are not con-
stant. The reason is it cannot tell whether the price is rejected
by a small vi from F , or by a sharp discount in d(t). For ex-
ample, consider the non-discounting case where d(t) = 1 for
all t ∈ T, and the vi’s are drawn from a Gaussian distribu-
tion. Every time this naive strategy is rejected by a small vi,
it will descend to a lower price, even though the valuation is
actually not discounting in time. Soon enough, this strategy
will end up offering only the lowest price.

3.2 General Case: Random Original Valuations
In the general case where vi’s are random variables, we pro-
pose the Biased-UCB algorithm in Algorithm 2. Parameter
ui,t denotes the profit made at slot t by offering price p̂i to
the buyer. Parameter ni,t reflects whether price p̂i has been
tried at slot t. We have ui,t = p̂i, ni,t = 1 if price p̂i is tried
and accepted at slot t, ui,t = 0, ni,t = 1 if price p̂i is tried but
rejected, and ui,t = 0, ni,t = 0 if price p̂i is not tried. Param-
eter c determines the trade-off between the exploitation and
exploration. γ is the attenuation factor that measures to what
extent the historical information is valued, where 0 < γ ≤ 1.
The UpdateWeight procedure is defined in Algorithm 3.

The Biased-UCB algorithm follows the Upper Confidence
Bound (UCB) framework from bandit problems. In the clas-
sical UCB1 algorithm proposed in [Auer et al., 2002], the
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authors keep a record of the average reward (ûi,t) of each
arm, and use the number of plays (n̂i,t) to denote the uncer-
tainty of the arms. In our problem, however, since the reward
distribution behind each candidate price is not fixed, we are
confronted with a non-stationary MAB problem, and thus we
value the recent information more than the historical records
a long time ago. In this case, we utilize the parameter γ to
make the value of information attenuate over time.

Additionally, in UpdateWeight, instead of only updating
the weight of one particular price p̂k, we update the weights
of all the prices no higher than (or no lower than) this offered
price. Here, we distinguish the expression of trying a can-
didate price from offering a candidate price. Only one price
will be offered to the buyer at one slot, but we can imagine
the results of trying some other prices. For example, if p̂k
is offered and accepted at a certain slot, we are sure that all
the prices no higher than p̂k will also be accepted. We then
hypothetically try these prices and also update their informa-
tion accordingly (line 3 and 4). On the other hand, if p̂k is
rejected, the profit information of all the prices no lower than
p̂k will be updated with 0 (line 7 and 8).

Our proposed algorithm is biased, in that it always encour-
ages lower prices and suppresses higher prices. In the fol-
lowing subsection, we will see this biased characteristic fits
perfectly in the discounting setting, as well as provides much
convenience for mathematical analysis.

3.3 Theoretical Analysis of Biased-UCB
In [Kleinberg and Leighton, 2003], the authors provide math-
ematical analysis for applying UCB1 algorithm to posted-
price online auctions. However, the techniques they em-
ployed cannot be applied to our non-stationary MAB setting.
One of the fundamental challenges in our problem is that
the reward distribution behind each non-stationary arm is not
constant, and thus the Chernoff-Hoeffding bound is not avail-
able. Therefore, we have to carry out our theoretical analysis
from a brand-new perspective.

We will first analyze the performance of Biased-UCB in
the fixed original valuation case as defined in 3.1, and then
extend the proof idea to the general case. In the following
discussion, we focus on the discounting function lower bound
d(t), and by doing so we bear a loss of revenue by no more
than a factor η.

We propose three properties, namely, accurate start, sta-
ble optimality, and quick reaction. Accurate start requires an
algorithm to find exactly the optimal price at the very begin-
ning; stable optimality guarantees the algorithm will stick to
the optimal price once it is found; and quick reaction asks the
algorithm to find the new optimal price quickly once the opti-
mal price changes. These three properties together ensure the
pricing mechanism is competitive.

We show Biased-UCB indeed possesses these properties,
and its competitive ratio towards discrete ex ante optimal
strategy is lower bounded by 1

η (1 − βr)(1 − 1
1+βr ), where

r = min(b
√

2−1
β c, H + 1).

Accurate Start
Recall that in 3.1, one severe drawback of DescendUponRe-
jection is that it may waste a long time in seeking the opti-

mal price in the first segment. To address this issue, we want
a competitive pricing strategy to “start” in a reasonably fast
way in the first segment. Since the UCB framework forces
our algorithm to try each price at least once in the first H + 1
slots, we put the accurate start constraint on the (H + 2)-th
slot by proving the following theorem.

Theorem 3.1. At the (H + 2)-th slot, Biased-UCB always
offers the optimal price of the first segment.

Proof. Let Se denote the first segment, where e not necessar-
ily equals H . According to our previous definitions, p̂e de-
notes the optimal price of segment Se, i.e., p̂e ≤ v∗ · d(t) <
p̂e+1 for all t ∈ Se. It’s then equivalent to prove that
we,H+1 > wk,H+1 for all k ∈ {0, 1, . . . , e−1, e+1, . . . ,H}.

For any candidate price p̂k1(e < k1 ≤ H), we must have
ûk1,H+1 = 0 and n̂k1,H+1 = k − e, since every time a price
lower than p̂k1 is offered and rejected, p̂k1 will also be hy-
pothetically tried and rejected. Similarly, for any candidate
price p̂k2(0 ≤ k2 ≤ e), we must have n̂k2,H+1 = e− k2 + 1

and ûk2,H+1 =
∑H+1

s=1 γt−suk2,s∑H+1
s=1 γt−snk2,s

= (1 + β)k2 . Therefore, the

following two inequalities trivially hold true:

• For e < k1 ≤ H , we,H+1 = (1 + β)e +
√

c·ln(H+1)
1 >

0 +
√

c·ln(H+1)
k1−e = wk1,H+1.

• For 0 ≤ k2 < e, we,H+1 = (1 + β)e +
√

c·ln(H+1)
1 >

(1 + β)k2 +
√

c·ln(H+1)
e−k2+1 = wk2,H+1.

Stable Optimality
The stable optimality property requires that once an algorithm
finds the optimal price of a segment, it will stick to that price
until the end of this segment. We show Biased-UCB partially
possesses this property by proving the following theorem.

Theorem 3.2. For the first r segments, once Biased-UCB
offers the optimal price of this segment at a certain slot,
it will continue offering that optimal price in the following
slots of this segment. By abandoning the last e − r + 1
segments and the first ∆ slots in each remaining segment,
the competitive ratio towards discrete ex ante optimal rev-
enue is lower bounded by 1

η (1 − βr)(1 − 1
1+βr ), where

r = min(b
√

2−1
β c, H + 1).

Proof. We leave the proof of Theorem 3.2 to our technical
report [Mao et al., 2018] due to limitation of space.

Quick Reaction
According to the stable optimality property, p̂h is the offered
price by the end of segment Sh. When first entering segment
Sh−1, where price p̂h will be rejected and produce 0 profit, it
may take some time for our algorithm to realize p̂h is not op-
timal anymore and adjust the weights accordingly. The quick
reaction property requires that our algorithm should spend no
more than a bounded number (∆) of slots seeking the new op-
timal price p̂h−1. We show Biased-UCB partially possesses
this property by proving the following theorem.
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Figure 1: Cumulative revenue of different mechanisms.
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Figure 2: Cumulative revenue for dispersed valuations.

Theorem 3.3. For the first r segments, it takes Biased-UCB
no more than ∆ slots before switching to the new optimal
price when entering a new segment. The value of r and the
competitive ratio remain the same as in Theorem 3.2.

Proof. We leave the proof of Theorem 3.3 to our technical
report [Mao et al., 2018] due to limitation of space.

Now we extend the preceding proof idea to the general
case. Since buyers’ original valuations are not fixed in the
general case, our previous definition of segment no longer
holds. We present a slightly different definition of segment
based on the price p∗t offered by the discrete ex ante optimal
strategy at slot t.

Si = {t ∈ T | p∗t = p̂i}. (5)

In the general case, the validity of the three properties re-
lies on a further assumption that buyers’ original valuations
are not too dispersed. Formally, we assume v̄ ≤ d(t)

d(t+δ) for
all t ∈ T, where the value of δ determines the balance be-
tween the stringency of the cumulative distribution function
F and optimality of the guaranteed revenue. Intuitively, this
assumption ensures that violations of the three properties can
only occur near the two endpoints of a segment.

Following the same procedure as the simple case, we aban-
don the first δ + ∆ slots and the last δ slots in each segment,
and argue that the remaining slots satisfy the three properties.
Therefore, Biased-UCB is at least 1

η [1 − βr − 2δ(e+1)
T ](1 −

1
1+βr )-competitive towards discrete ex ante optimal strategy

in the general case, where r = min(b
√

2−1
β c, H + 1), as-

suming v̄ ≤ d(t)
d(t+δ) for all t ∈ T. Please note that the per-

formance guarantee relies on an overly stringent assumption
on buyers’ valuations and seems relatively weak. This is be-
cause we are performing worst-case analysis without putting
any restriction on the discounting functions. Considering the
difficulty of our general discounting model, we think this rel-
atively weak bound is acceptable.

4 Numerical Results
In this section, we empirically compare our mechanism
with the upper bound of total revenue, and with mecha-
nisms adapted from existing bandit algorithms, including
UCB1 [Auer et al., 2002], D-UCB [Garivier and Moulines,
2011] and Rexp3 [Besbes et al., 2014]. The upper bound of
total revenue is defined as the sum of all buyers’ discounted
valuations, and is obviously the upper bound of any pricing
mechanism. D-UCB is a non-stationary MAB algorithm that
employs similar concept to the attenuation factor in our paper.
Rexp3 is also a non-stationary MAB algorithm. It divides the
time horizon into several batches and restarts an Exp3 algo-
rithm [Auer et al., 1995] at the beginning of each batch.

We use the real-world bidding feedback log [Zhang et
al., 2014] from the iPinYou company as our dataset. This
dataset was released in a real-time bidding competition held
by iPinYou in 2013. It contains logs of ad auctions, bids,
impressions, clicks and final conversions during ten days in
2013, and we use the 9.58× 106 records of bidding prices on
June 6, 2013 as our valuation distribution. The bidding prices
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Figure 3: Prices offered at each time slot.

range from 227 to 300 and the unit is RMB fen ×1000.
We try three discounting functions, including linear dis-

count g(t) = 1− t−1
T , exponential discount g(t) = α1−t and

non-discount g(t) = 1. We set di(g(t)) = ai · g(t), where
ai’s are independently and uniformly drawn from [0.8, 1.0].
In each run we randomly select 2000 bids (i.e., T = 2000)
from the dataset as buyers’ original valuations, and multi-
ply each price by the current value of discounting function to
get the discounted valuation. We set price discretization level
β = 0.2, exploration-exploitation control parameter τ = 0.5
for Rexp3 and c = 400.0 for other algorithms, exponential
discount factor α = 1.003, attenuation factor γ = 0.9 for
Biased-UCB and D-UCB, and batch size ∆ = 400 for Rexp3.
All results are averaged over 200 runs.

Figure 1 shows the evaluation results for cumulative rev-
enue obtained in the first t slots. We can see that Biased-UCB
performs better than existing methods. The total revenue of
Biased-UCB is 71.2% of the upper bound for linear discount,
and 69.0% for exponential discount. In the non-discount case,
Biased-UCB performs slightly worse than UCB1, since it is
designed to try lower prices first when being rejected. Never-
theless, it still achieves 89.9% revenue of UCB1.

Figure 2 shows the results for more dispersed valuations,
where the original valuations are drawn from a Gaussian dis-
tribution N (150, 302) rather than the bidding dataset. Al-
though our theoretical analysis relies on the compactness of
buyers’ valuation distribution, we can see Biased-UCB still
performs well on very dispersed valuations.

To give an intuitive description of different mechanisms,
we now plot the prices offered by different mechanisms at
each time slot. Take linear discount as an example. The
prices offered by the upper bound are exactly buyers’ actual
discounted valuations. These prices roughly form a triangular
shape in Figure 3, and at the first slot, buyers’ discounted val-
uations are in the range of [0.8× 227, 1.0× 300]. The UCB1
algorithm is a stationary MAB algorithm. It first finds an
optimal price at the early stage, accumulating (overly) large
weight on that price, and then stick to that price ever since.
Therefore, the prices offered by UCB1 basically form a hor-
izontal line in Figure 3. The prices offered by Rexp3, unsur-
prisingly, show an obvious restarting pattern. The D-UCB
algorithm possesses a similar restarting pattern as Rexp3,
only with shorter restarting period, and is thus omitted. The
prices offered by the Biased-UCB mechanism firmly follow

the lower bound of buyers’ discounted valuations, and thus
Biased-UCB achieves good performance in terms of revenue.

5 Related Works
In [Lavi and Nisan, 2000], the problem of online auction was
first introduced to the literature of computer science. Later,
Goldberg et al. [2001] began the study of (offline) auctions
for digital goods. Bar-Yossef et al. [2002] studied online auc-
tions for digital goods, and employed randomization to en-
sure truthfulness. Online learning was first applied to online
auctions in an early version of [Blum et al., 2004]. Kleinberg
and Leighton [2003] demonstrated how to apply bandit algo-
rithms to online auctions. Hajiaghayi el al. [2005] studied
the problem of online scheduling for reusable goods. How-
ever, these mechanisms did not take time discounting valua-
tion into consideration.

In management science literature, the stochastic demand
model is categorized into dynamic pricing problems. Gal-
lego and Van Ryzin [1994] investigated the problem of sell-
ing a given stock of items by a deadline. Problems of
similar setting were also considered in [Levin et al., 2010;
Gershkov et al., 2017]. Nevertheless, these works are only
concerned with finite inventories, assuming the demand curve
is known to the seller, and are essentially different from our
problem. Mechanisms with discounting values are also con-
sidered in computer science literature. Secretary problems
with weights and discounts were discussed in [Babaioff et
al., 2009]. Wu et al. [2014] presented a strategy-proof on-
line auction with discounting valuations, but they assume the
discounting functions are known to the seller, and their objec-
tive is to maximize social welfare instead of revenue. A re-
cent work [Xu et al., 2017] considered dynamic pricing with
time-variant rewards, but the variant part in their setting is
the utility function instead of the valuations, and their weight
function is basically linear.

In the seminal work of [Auer et al., 2002], the UCB
framework was proposed to solve multi-armed bandit prob-
lems. For bandits with non-stationary rewards, Besbes et
al. [2014] suggested dividing the time horizon into batches,
and restarting a traditional bandit algorithm at the beginning
of each batch. Bandits with abruptly changing rewards were
discussed in [Hartland et al., 2006; Garivier and Moulines,
2011]. Similar works include bandit problem with Markovian
rewards [Tekin and Liu, 2010] and reward functions follow-
ing Brownian motion [Slivkins and Upfal, 2008]. Nonethe-
less, bandit algorithms need to be carefully modified before
being applied to pricing problems.

6 Conclusion
In this paper, we have studied the problem of revenue max-
imization in posted-price auctions with unknown time dis-
counting valuations. We have modeled the revenue maxi-
mization problem as a non-stationary MAB optimization, and
proposed the Biased-UCB mechanism based on unique fea-
tures of the discounting valuations. We have theoretically an-
alyzed the lower bound of the competitive ratio. Our numer-
ical results have shown that our design achieves good perfor-
mance in terms of revenue.
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