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Abstract
We consider the problem of allocating scarce se-
curity resources among heterogeneous targets to
thwart a possible attack. It is well known that deter-
ministic solutions to this problem being highly pre-
dictable are severely suboptimal. To mitigate this
predictability, the game-theoretic security game
model was proposed which randomizes over pure
(deterministic) strategies, causing confusion in the
adversary. Unfortunately, such mixed strategies
typically randomize over a large number of strate-
gies, requiring security personnel to be familiar
with numerous protocols, making them hard to op-
erationalize. Motivated by these practical consid-
erations, we propose an easy to use approach for
computing strategies that are easy to operationalize
and that bridge the gap between the static solution
and the optimal mixed strategy. These strategies
only randomize over an optimally chosen subset of
pure strategies whose cardinality is selected by the
defender, enabling them to conveniently tune the
trade-off between ease of operationalization and ef-
ficiency using a single design parameter. We show
that the problem of computing such operationaliz-
able strategies is NP-hard, formulate it as a mixed-
integer optimization problem, provide an algorithm
for computing ε-optimal equilibria, and an efficient
heuristic. We evaluate the performance of our ap-
proach on the problem of screening for threats at
airports and show that the Price of Usability, i.e.,
the loss in optimality to obtain a strategy that is eas-
ier to operationalize, is typically not high.

1 Introduction
The problem of protecting vulnerable targets from attack-
ers using limited security resources manifests in many real
world applications. A notable example, which serves as
a key thrust in this paper, is the problem of screening for

threats at (airport or border) checkpoints [AAA, 2014]. De-
terministic solutions to these problems, which maintain the
allocation of security resources constant, are highly pre-
dictable and thus severely suboptimal. The game-theoretic
security game model was proposed as a means to mitigate
this predictability against strategic adversaries [Tambe, 2011;
Korzhyk et al., 2010; Yin et al., 2015; Balcan et al., 2015;
Basilico et al., 2009]. Recently and in collaboration with
the US Transportation Security Administration (TSA), this
work was extended in the form of the threat screening game
(TSG) model to tackle the problem of screening for threats
at checkpoints. As this area of research continues to grow,
security agencies have begun adopting these more sophisti-
cated game-theoretic strategies making ease of practical use
and implementation a key concern. Motivated by our discus-
sions with the TSA, we focus our discussions in this paper on
the problem of screening for threats.

There are two major issues that come in the way of practi-
cal operationalization of these game theoretic solutions to the
problem of screening for threats at checkpoints.The first chal-
lenge relates to the practical difficulty of integrating decisions
made by different levels of authority: a) higher level strategic
decisions related to the design of teams of security resources
and the assignment of personnel to shifts and teams; and b)
lower level tactical decisions related to the online allocation
of screenees to preformed teams of resources. Although these
problems are intimately related, to date, no attempt has been
made to address them in tandem making their solutions diffi-
cult to integrate and apply.

The second challenge relates to the fact that optimal solu-
tions to TSGs typically involve randomizing over large num-
bers of pure strategies, each corresponding to a different se-
curity protocol. Thus, while they are by far preferable to de-
terministic strategies from an efficiency perspective, they are
difficult to operationalize, requiring the security personnel to
be familiar with numerous protocols in order to execute them.
Contributions We address these two shortcomings related
to usability of TSG. First, we build upon the work on Si-
multaneous Optimization of Resource Teams and Tactics
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(SORT) [Mc Carthy et al., 2016] to propose SORT-TSG,
a model for TSG that yields solutions that can be directly
applied in their entirety in practice and where security per-
sonnel schedules are integrated with screening needs. Sec-
ond, we propose an easy to use mixed-integer optimization
model for computing strategies that are easy to operational-
ize and that bridge the gap between the suboptimal determin-
istic solution and the optimal yet impracticable mixed strat-
egy. These strategies only randomize over an optimally cho-
sen subset of pure strategies whose cardinality is selected by
the defender, enabling them to conveniently tune the trade-off
between ease of operationalization and efficiency using a sin-
gle design parameter. The optimization formulation does not
scale to realistic size instances and we propose a novel solu-
tion approach for computing ε-optimal equilibria as well as a
heuristic for computing operationalizable strategies to SORT-
TSG. We perform extensive numerical evaluation that show-
cases the solution quality and scalability of our approach and
illustrate that the Price of Usability is typically not high.

2 Usability in Security Games
Security games deal with the challenge of allocating scarce
security resources among heterogeneous targets to avert a
possible attack. These problems can be formulated as Stack-
elberg games between the defender (leader) and the attacker
(follower) and admit an optimal (albeit challenging to com-
pute) mixed strategy solution.
Definition 1 (Mixed Strategy in a Security Game). The de-
fender pure strategies are given by a finite set of integral
points Q ⊂ Nn where n denotes the number of targets and
S := |Q| is the number of pure strategies. Intuitively, each
q ∈ Q corresponds to a (static) allocation of security re-
sources. To maximize the chances of thwarting an attacker,
the defender randomizes over pure strategies to build a mixed
strategy, defined as a distribution over pure strategies:

P :=

{
p ∈ Rn : pi ≥ 0, i = 1, ..., S,

S∑
i=1

pi = 1

}
.

The objective of the defender is to select the mixed strategy
that maximizes her expected utility assuming best response
from the adversary. For our focus domain of threat screen-
ing at airports [Brown et al., 2016; Schlenker et al., 2016;
McCarthy et al., 2017], the corresponding TSG model often
has an extremely large pure strategy space. Further, the num-
ber of pure strategies in the support of a mixed strategy is also
large as we show in our experiments.

In practice, each pure strategy can be viewed as a sepa-
rate security protocol. In the context of TSG, these are differ-
ent configurations and number of screening equipment. Thus,
mixed strategies with large support sets can be problematic to
operationalize as they require security agents to be familiar
with a large variety of protocols to execute them all properly.
These types of complex tasks increase the cognitive load in
individuals [Hogg, 2007] increasing the likelihood that mis-
takes are made [Paas, 1992; Cooper and Sweller, 1987] and
making the system vulnerable to exploitation. While such
usability concerns have always been present in deployed se-
curity games, these have often been addressed in an ad-hoc

fashion, and not explicitly discussed in the literature. For ex-
ample, the US Coast Guard limited the number of pure strate-
gies used in the Staten Island Ferry security game to avoid
cognitive overload for boat operators [Fang et al., 2013][Fang
private communication 2018]. To the best of our knowl-
edge, [Paruchuri et al., 2007] is the only paper that explicitly
discussed limiting the number of pure strategies in security
games; although they only handled small games (100s pure
strategies), and they did not consider the impact of such re-
striction on solution quality. In this paper, we explicitly for-
mulate usability in security games and motivate our definition
to limit the cognitive load placed on security personel, and re-
fer to such strategies as being operationalizable.
Operationalizable Security Games Motivated by our dis-
cussions with practitioners in the security domain, we pro-
pose a model for usability in security games which we refer
to as Operationalizable Security Games that admits solutions
whose mixed strategy support cardinality is a design parame-
ter selected by the defender; the choice of cardinality enables
explicit trade-off between ease of implementation and effi-
ciency. Rather than pre-committing to a fixed subset of pure
strategies to be used in the randomization, our model decides
on the best subset of policies to employ. Our hope (which we
confirm with extensive experiments, see Section 5) is that the
price of usability, i.e., the loss in efficiency due the restriction
of the space of feasible mixed strategies, will not be high even
if only a moderate number of strategies is employed.
Definition 2 (k-Operationalizable Mixed Strategy). A mixed
strategy p is k-operationalizable if the cardinality of the sup-
port of p is limited to k, i.e. |{i ∈ {1, . . . , S} : pi > 0}| ≤ k.

For usability’s sake, we propose to restrict solutions of se-
curity games to be k-operationalizable. A large k produces
solutions that randomizes over a large number of pure strate-
gies (maximizes optimal utility but not easy to operationalize)
and low k produces more deterministic strategies (easy to op-
erationalize, but exploitable by an intelligent adversary). We
can balance between usability and efficiency using the single
parameter k. The following theorem postulates that unfortu-
nately usability comes at a computational price.
Theorem 1. Let G be a zero sum game with pure strategy
spaceQ. The problem of finding optimal solutions that are k-
operationalizable is NP-Hard to solve even if G can be solved
in polynomial time. 1

For a player in such a game G, an optimal mixed strat-
egy which is k-operationalizable is one which minimizes that
player’s Price of Usability.
Definition 3 (Price of Usability). Let G be a game with op-
timal mixed strategy solution p and utility U(p). Let pk be
an optimal k-operationalizable mixed strategy solution to G.
We define the price of usability (PoU) as the ratio between the
utilities of p and pk so that PoU := U(p)/U(pk).

3 SORT for Threat Screening Games
Addressing the two usability limitations of TSG [Brown et
al., 2016; Schlenker et al., ] discussed earlier, in this section

1All proofs can be found in the appendix at:
http://teamcore.usc.edu/papers/2018/POU appendix.pdf
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we first present (1) the model of Simultaneous Optimization
(SORT) for TSGs and second (2) the problem of computing
operationalizable strategies for TSGs. We assume a zero-sum
game. Throughout this section we use the example of passen-
ger screening at airports, but emphasize that the TSG applies
to generalized screening problems.

3.1 Problem Description
A TSG is a game between the screener (defender) and adver-
sary over a finite planning horizon W consisting of W time
windows. The defender is operating a checkpoint through
which screenees (passengers) arrive at during each time win-
dow. Each screenee belongs to a category c ∈ C where a cat-
egory c := (ρ, f) consists of components which are control-
lable and uncontrollable. In the airport security domain, the
controllable component f corresponds to a flight type, dic-
tated by the adversary’s choice of flight to attack, while the
uncontrollable element ρ describes the risk level assigned to
each passenger (i.e. if they are TSA pre-check). It is assumed
that the number of passengers of category c arriving during
each time window, Nw

c , is known.
The adversary attempts to pass through screening by dis-

guising themselves as one of the screenees. He has a choice
of flight to attack, and thus can choose his flight type category,
a time window w to arrive in and an attack method m ∈ M.
The adversary cannot control his risk level ρ and we assume
a prior distribution Pρ over the risk level of the adversaries.

At the checkpoint, the defender has a set of r ∈ R re-
sources which are combined into teams indexed in the set
T to which incoming passengers are assigned. If a passen-
ger is assigned to be screened by a team t ∈ T , they must
be screened by all resources R(t) ⊂ R in that team. The
efficiency of a team, Et,m, denotes the probability that an
attacker carrying out an attack of type m be detected when
screened by team t. This efficiency depends on the resources
in that team: Et,m = 1−

∏
r∈R(1− er,m), where er,m is the

efficiency of resource r against attack method m.
Each resource r ∈ R has a fixed capacity Cr for the num-

ber of passenger which it can process in any time window. In
the case that it is not possible to screen all passengers in a sin-
gle time window, we allow these passengers to be screened in
the next time window by their assigned resources, at a cost φr
per passenger overflowing to the next window. Each resource
r maintains an overflow queue owr corresponding to the num-
ber of passengers waiting to be processed by that resource in
the beginning of time window w.

To speed up processing, the defender can increase the num-
ber of resources of each type that are available in a particular
window (by e.g., opening up more lanes). However, the num-
ber of resources of each type r that can be operated at any
given time is limited by the number of resources of that type
that are available in the arsenal of the defender, denoted by
Mr ∈ R, and by the number of operators that are working in
that window. Specifically, to operate each resource of type r,
Ar workers are needed. The workforce of the defender con-
sists of S workers and the defender can decide on the number
of workers available in any window. However, the workers
must follow shifts: they can start in arbitrary time windows
but must work for δ consecutive time windows.

3.2 SORT-TSG Problem Formulation
We now formulate the SORT problem for TSG as a mixed-
integer linear optimization problem. For convenience, we
first introduce the pure strategy spaces related to the strate-
gic and tactical decisions of the defender, respectively, and
then go on to formulate the optimization problem which ran-
domizes over these strategies.

The core strategic decisions of the SORT-TSG problem
correspond to the number of resources of each type r ∈ R
to operate in each window, which we denote by ywr ∈ N+.
They also include the number of workers bw ∈ N+ to start
their shift in window w and the number of workers sw avail-
able in window w. The space of pure strategic strategies can
then be expressed as:

Y :=


y : ∃(b, s) :

sw =

min(w,W−δ+1)∑
w′=max(1,w−δ+1)

bw
′

∀ w

W−δ+1∑
w=1

bw ≤ S∑
r∈R

ywr Ar ≤ sw ∀ r

ywr ≤Mr ∀ w, r
ywr , b

w, sw ∈ N+ ∀ w, r


.

The first constraint above counts the total number of work-
ers with shifts currently in progress at time window w. The
second constraint stipulates that the total number of workers
assigned to each shift cannot exceed the size of the work-
force. The third and fourth constraints enforces that in each
time window there must be enough workers to operate each
resource, and that the number of operating resources cannot
exceed the maximum number available for each type.

The core tactical decision variables of the SORT-TSG
problem correspond to the number of passengers of each type
c to screen with team t in window w, denoted by nwt,c. For
any choice y of strategic decisions, the space of pure tactical
strategies is expressible as:

Xy :=

(n, o) :

∑
t∈T

nwc,t = Nw
c ∀ c, w∑

t:r∈R(t)

∑
c

nwc,t ≤ ywr Cr − ow−1
r + owr ∀ w, r

nwt,c, o
w
r ∈ N+ ∀ t, c, w, r

 ,

where the two constraints above stipulate that all arriving
passengers must be assigned to be screened by a team and en-
force the capacity constraints on each of the resource types.
Note that the capacity is determined by the number of oper-
ating resources of each type. The full defender pure strategy
space can be expressed compactly as:
Q := {(y, n, o) : y ∈ Y, (n, o) ∈ Xy}.

Next, given the probability distribution as the defender’s
mixed strategy, we denote by Ep[ ] the expectation operator
with respect to p (the mixed strategy). Thus, the expected
number nwt,c of passengers in category c screened by team t
in time window w and the expected number owr of passengers
waiting to be screened by a resource of type r in time window
w are given by:

Ep[n
w
t,c] :=

S∑
i=1

pin
w,i
t,c and Ep[o

w
r ] :=

S∑
i=1

pio
w,i
r . (1)
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The utility of the defender is linear in the pure strategies, so
the defender’s optimization problem can be expressed as:

max
p

∑
ρ Pρθρ −

∑
w

∑
r φrEp[o

w
r ]

s.t. θρ ≤ zwc,mU+
c + (1− zwc,m)U−c ∀ c,m,w

zwc,m =
∑
tEt,m

Ep[n
w
c,t]

Nw
c

∀ c,m,w
p ∈ P,

(P)

where zwc,m is the adversary’s detection probability for an ad-
versary of type c, using attack m during w and θρ is the ex-
pected utility when the passenger’s risk level is ρ. We denote
this formulation of the SORT-TSG as problem P .
Theorem 2. Problem P is NP-Hard to solve.

Reduces to [Brown et al., 2016] when there is no overflow
and when strategic decisions are fixed.

3.3 Operationalizable Strategies for SORT-TSG
The SORT-TSG problem admits additional usability con-
cerns; not only can the mixed strategy have a very large
support, but the number of types of resource configurations
(teams) used by any pure strategy may also be very large
(as the number of team types grows combinatorially with the
number of resources). This can also pose the same opera-
tionalization issues, and so we also propose to limit the num-
ber of possible resource configurations that may be used in
any pure strategy. Formally, we say that a mixed strategy so-
lution to a SORT problem is operationalizable if the following
property holds.
Definition 4 ((k, τ )-Operationalizable Mixed Strategy). A
mixed strategy p is said to be (k, τ)-operationalizable if the
support size of p is less than k, and each pure strategy uses
no more than τ unique teams, i.e., if lt is a binary variable in-
dicating the formation of a team of type t then

∑T
t=1 lt ≤ τ .

We can compute operationalizable strategies for the TSG
problem by constructing a new set of allowed pure strategies
Qτ by adding the following additional constraints to the setQ
which enforce that each pure strategy may use no more than
than τ resource configurations:

T∑
t=1

lt ≤ τ ;
nw
c,t

Nw
c
≤ lt, ∀ t, w, c; lt ∈ {0, 1}, ∀ t. (2)

Where the second constraint enforces that lt = 1 if a strategy
uses team t at any point, i.e., if ∃ w, c, t : nwc,t > 0 We then
enforce that the support of the mixed strategy has maximum
cardinality k by replacing equations (1) with:

Ep[n
w
t,c] =

k∑
i=1

pin
w,i
t,c Ep[o

w
r ] =

k∑
i=1

pio
w,i
r ∀ w, t, c,

(3)
such that p ∈ Pk = {pi ≥ 0, i = 1, ..., k,

∑k
i=1 pi = 1}.

Lastly, for the TSG problem it is undesirable to have many
different schedules for staff members and have employees
work different shifts throughout the week. For this reason
we specifically enforce that the scheduling decisions s should
be the same across all k pure strategies i.e.

si = sj ∀i, j ∈ {0 . . . k}. (4)
These additions (2,3,4) to P , define the operationalizable
SORT-TSG problem, we refer to the problem as Pk .

4 Solving the Operationalizable SORT-TSG
The SORT-TSG problem is expressible as a mixed integer lin-
ear program (MILP). However the resulting operationalizable
problem Pk is non-linear, with bilinear terms introduced in
(3). Since the domains of n and o are finite we can express
each integer variable n and o as a sum of binary variables,
and the bilinear terms can be easily linearized using standard
optimization techniques. However, the resulting program has
a number of binary variables which grows with the number
of passengers, making the full MILP formulation intractable
to solve. Other standard approaches for dealing with these
types of problems, such as column generation, also do not
work well as we show in Section 5. In the following, we pro-
vide our new solution approach for efficiently solving Pk .

For convenience we define the following notation. Let
P be an optimization problem with integer variables xi ∈
N ∀i. We denote the LP relaxation of P , i.e., the problem
obtained by letting xi ∈ R ∀i, as P LP . Additionally let the
LP relaxation of a problem P with respect to a single variable
xj , i.e., the problem obtained by letting xj ∈ R, be denoted
byP LPxj . Let the marginal value of xj (i.e., the expectation
Ep[xj ]) be denoted x̃j . Lastly we denote the problem with a
fixed variable xj as P |xj .

Our novel solution approach Pk is based on the two fol-
lowing ideas: (1) we allow the k pure strategies to form a
multiset (so that a single strategy may appear multiple times)
and (2) we restrict the mixed strategy to be a uniform distri-
bution over the multiset of k pure strategies. The intuition
behind this approach is that the multiset allows us to approx-
imate any optimal mixed strategy P using multiples of the
fractions 1

k . If pi ≥ 1
k (probability of playing strategy i), then

strategy i will appear multiple times in the multiset, and thus
will be played with probability a

k where a is the number of
times it appears. If pi < 1

k then as k grows large enough, the
loss in utility from not playing strategy i becomes negligible.

This intuition is formalized in Theorem 3 which stipulates
that we can compute approximate equilibria (with approxi-
mation error ε) for any choice of k by fixing a uniform distri-
bution over the multiset of k pure strategies.

Theorem 3. Given a game G with Stackelberg equilib-
rium x∗, z∗ and game value (x∗)>Rz∗ there exists a so-
lution x′, z′ such that x′ is k-operationalizable and is uni-
formly distributed over its support where for k > 4 log(1+n)

ε2

(where n is the size of the adversary’s action space) we have
that x′, z′ is an ε-Stackelberg equilibrium with game value
(x∗)>Rz∗ − (x′)>Rz′ ≤ ε.

We derive these bounds following the proof of [Lipton et
al., 2003], which for our problem are a factor 3 tighter. By
fixing p = 1

k , Pk can be solved directly as an MILP without
the creation of extra binary variables. Algorithm 1 outlines
this process. To speed up computation we first solve the full
relaxation Pk LP to get marginal values ỹ and ñ (line 2).
We then round these to get integral values yr and nr (line 3)
which we then use as a warm start to solve the MILP (line 5).

For any choice of k, we can then compute an ε-equilibrium
and show that in practice this approach performs well. Addi-
tionally, it provides a general framework from which we can
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Algorithm 1 k-Uniform Strategies
1: procedure k-UNIFORM
2: ỹ, ñ, õ←Pk LP

3: yr, nr, or ← Round(ỹ, ñ, õ)
4: p← pi =

1
k , i = 1, ..., k

5: y, n, o←WarmStart(Pk |qk, yr, nr, or)
6: return y, n, o

build more sophisticated and scalable algorithms which we
demonstrate in the next section.

4.1 Heuristic Approach
While the approach described in Section 4 provides guaran-
tees for any choice of k, in practice the problem can still be
slow to solve, as it requires solving an MILP. Thus we provide
a heuristic approach which can be solved more efficiently and
still yields high solution quality in practice.

The novelty in our approach comes from exploiting the hi-
erarchical structure of the SORT variables, as well as an op-
timized rounding procedure to decompose marginal solutions
into an operationalizable set of k integral strategies.

The tactical variables (n, o) are dependent on the strategic
variables y and so, starting from marginal solution to the LP
relaxation, we first impose the operationalizable constraints
on the strategic variables, keeping the tactical variables un-
constrained. This gives us a set of k strategies with integral y,
from which we can compute the corresponding integral tacti-
cal variables n for each of the k strategies. Both of these steps
use an optimized rounding procedure. Because our objective
is a function of the expected value of n and o, it becomes
important to optimize over how we do our rounding. Ideally
we would like to be able to exactly reconstruct the marginal
values obtained from the LP relaxation in order to maximize
our objective. Arbitrarily rounding the marginal variables to
generate k integral strategies does not take into account the
value of the resulting marginal and may result in very subop-
timal solutions. Instead we compute an optimal rounding to
compute feasible solutions, which take into account the value
of the resulting marginal with respect to our objective.

Algorithm 2 outlines the steps of this solution method. We
start by solving the full relaxation Pk LP (line 2) to obtain
a marginal solution for the strategic variables ỹ. We then de-
compose this marginal solution into a set of k integral pure
strategies (line 3) using an optimized rounding procedure
(which we formalize in the later section) which computes the
best k roundings of the marginal ỹ (keeping a marginal ñi for
each strategy i, i = 1, ..., k). We then compute the best in-
tegral assignment ni and corresponding overflow oi for each
resource configuration yi (line 4) using the same optimized
rounding procedure on the marginals ñi, i = 1, ..., k.
Strategic Variables: Resource Configurations At this stage
(line 3) we determine what the k optimal integral variables yi
are assuming no integrality constraints on the ni variables, i.e.
we solve the problem Pk LPn equivalent to letting Ep[nwt,c] =∑k
i=1 piñ

w,i
t,c and Ep[owr ] =

∑k
i=1 piõ

w,i
r , where ñw,it,c , õ

w,i
r are

in the integer relaxation of Xyi . Unfortunately the following
theorem shows that Pk LPn is still intractable to solve.

Algorithm 2 Multiple Hierarchical Relaxations
1: procedure MHR
2: ỹ, ñ, õ←Pk LP

3: yi, ñi, õi i = 1, ..., k ← Strategic(Pk LPn |q, ỹ)
4: yi, ni, oi i = 1, ..., k ← Tactic(Pk |y, ñ)
5: return y, n, o

Theorem 4. Problem Pk LPn is NP-hard to solve.

To approximate this problem, as in Algorithm 1, we as-
sume a uniform distribution for the mixed strategy. Note that
by Theorem 3 for any choice of k that Pk LPn |p is an ε
approximation to Pk LPn . Given Pk LPn |p, we compute
a multiset of k integral solutions yi, i = 1, ..., k, from the
marginal ỹ using the following optimized rounding proce-
dure. We make the change of variables yi = bỹc+δi such that
δi ∈ N+, i = 1, ..., k. Solving Pk LPn |p with this change
of variables computes the best k roundings of the marginal
ỹ which we use as our k pure strategies. This subroutine is
outlined in Algorithm 3.

Algorithm 3 Determine resource allocations ys
1: procedure STRATEGIC(Pk LPn |p, ỹ)
2: p← pi =

1
k , i = 1, ..., k

3: y ← yi = bỹc+ δi, δi ∈ N+, i = 1, ..., k
4: return argmax

y,ñ,õ
Pk LPn |p

Tactic Variables: Passenger Allocations (line 4) We now
have for each pure strategy i, a marginal ñi, i = 1, ..., k. In
this step we again apply the same optimized rounding pro-
cedure to these variables to obtain integral values ni. Ad-
ditionally, here we relax the constraint pi = 1

k and allow the
program to optimize over the distribution over pure strategies.

Reintroducing the mixed strategy p as a variable reintro-
duces the bilinear terms (3) in Pk . However, with our round-
ing procedure, we can efficiently linearize these terms with-
out creating a very large number of binary variables (as with
the full MILP). We let ni = bñic + γi and are left with the
bilinear terms pi(γi). To linearize these we make a change of
variable zi = pi(γi) and can express constraints (3) as:

E[nwt,c] =

k∑
i=1

(
pi
⌊
ñw,it,c

⌋
+ zw,it,c

)
,

0 ≤ zw,it,c ≤ pi, ∀ i = 1, ..., k.

zw,it,c ≥ pi − (1− γw,it,c ), ∀ i = 1, ..., k.

This subroutine is outlined in Algorithm 4. First, we make
the change of variable for the rounding procedure, and lin-
earize the bilinear terms. We then solve the resulting opti-
mization problem for the fixed y and b solved in the previous
stage of the algorithm and finally return n and p which gives
us a complete (k, τ)-operationalizable solution.
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Algorithm 4 Determing Passenger type allocation ns
1: procedure TACTIC(Pk |(y, b), ñ)
2: n← ni = bñic+ δni

, δni
∈ N+, i = 1, ...k

3: LinearizeTerms(Pk |(y, b))
4: return argmax

n,p
Pk |(y, b)

5 Evaluation
We evaluate our algorithms on several different sized in-
stances of SORT-TSG. We use instances of three types: small,
moderate and large instance with time windows, passen-
ger types and resources (W=1, C=2, R=2), (W=5, C=10, R=5),
(W=10, C=20, R=5) respectively. The large instances corre-
spond to a 10 hour planning window for a single terminal at a
large airport. 2 Each experiment is averaged over 50 random-
ized instances of the remaining parameters.
The Price of Usability In this paper, we proposed to
mitigate the price of usability (PoU) by computing (k, τ)-
operationalizable strategies. We have defined the price of us-
ability similarly to the price of anarchy, as the ratio between
the optimal solution with no usability constraints and the op-
erationalizable equilibrium, (i.e. P /Pk ) so that when the
operationalizable game Pk has the same optimal objective as
P the PoU = 1. In order to compare the operationalizable
utility to that of P , we use column generation to compute the
optimal solution to the security game without usability con-
straints. We do this for moderately sized games, as the col-
umn generation method does not scale up to large instances.
In Figure 1, we show that the PoU shrinks to almost 1 with
increasing number of pure strategies k and team types τ . We
note that the bump in runtime with increasing τ is due to a
phenomenon in security games known as the deployment to
saturation ratio [Jain et al., 2012].
Solution quality We evaluate the solution quality of our
algorithms by comparing to (1) two variations of a column
generation heuristic, one which cuts off after I iterations and
one which selects and re-optimizes over the top k strategies,

2LAX (Los Angeles airport) has an average of 20 unique flight
types per terminal (185 destination locations spread over 9 termi-
nals).
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Figure 1: Here we show the empirical PoU, as well as the runtimes
of both methods with increasing k and τ for both methods (left:
τ = 10, right: k = 2).

a) b)50 100 150 200
−500
−450
−400
−350
−300

I

U
til

ity

MHR k-uniform CG

20 40
0

20

40

60

C

Su
pp

or
tS

iz
e

Figure 2: a) Comparison of our algorithms with CG which is cut off
after I iterations (k = 5, τ = 10). b) Support size of CG solutions
for increasing problem size.

and (2) the full MIP which optimally solves operationalizable
security game Pk . Figure 2(a) shows the comparison of
our methods with the first column generation (CG) baseline.
When run to convergence, (CG) optimally solves P , without
operationalizable constraints (CG). We approximate Pk by
cutting off (CG) after I iterations. We see that for small I ,
CG achieves very poor utilities compared to our algorithm,
and that it takes up to 150 generated strategies (iterations) to
match the solution quality of our methods. Additionally we
investigate the support size of the mixed strategies computed
by (CG) without operationalizable constraints. Figure 2(b)
shows that number of strategies used grows as we increase the
problem size (here, the number of flight types). We also com-
pared to a second variation of the column generation method
where we pick the top k pure strategies, and compute the op-
timal mixed strategy over these k strategies. This was done
cutting column generation off after 10, 20, 50, 100 columns as
well as after full convergence. The results are shown in Fig-
ure 3. We see on average a 30% loss in PoU when using this
baseline compared to our methods, and in the worst case up
to 100% loss with PoU ∼ 2 for the baseline when compared
to our methods. This demonstrates that we can significantly
reduce the support size and still obtain a PoU ∼ 1

In Table 1, we compare utility of our algorithms with the
utility obtained from solving the full MILP (which optimally
solves Pk ). The full MILP can only be solved for small in-
stances (maximum of k = 3). For these instances, we see that
both our methods produce near-optimal solutions and can be
executed significantly faster. For moderate and large sized in-
stances, we see the k-uniform algorithm outperform MHR in
terms of utility, but that MHR can solve large instances faster.

Scalability To evaluate the scalability of our algorithms, we
compare the running time for different time windows W and
number of passenger categories C. Figure 4 shows the run-
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Figure 3: Average case price of usability and b) worst case price of
usability, for our two methods (k-uniform and MHR) compared to
a cutoff column generation baseline. Column generation (CG) was
cutoff after 10, 20 and 50 columns and after convergence.
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Small Moderate Large
u* rt(s) u* rt(s) u* rt(s)

k-uniform -85.3 0.2 -543 48 -1258.8 219.4
MHR -87.0 0.1 -661 20.1 -1315.8 91.2
MILP -85.2 1154.3 - - - -

Table 1: Runtime and utility u∗ of the k-uniform and MHR algo-
rithm compared with the solution of the full MIP (small: k = 3,
moderate,large: k = 4).
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Figure 4: Runtime for different values of W and C (k = 2, τ = 5,
left: C = 10, right: W = 5).

ning time for different values of W and C where the rest of
the parameters are fixed. This figure shows that the running
time is only slightly increasing in W and that our algorithms
can be scaled up to a very large number of passenger types.

6 Conclusion
We introduce the new problem of operationalizable strategies
in security games and provide a single framework which rea-
sons about the three levels of planning: strategic, tactical and
operational level decision problems. Motivated by the im-
portant problem of screening for threat we provide algorith-
mic solutions to overcome the computational challenges that
arise when these planning problems are addressed for TSGs
and which mitigate the Price of Usability.
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