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Abstract
Kidney Exchange is an approach to donor kidney
transplantation where patients with incompatible
donors swap kidneys to receive a compatible kid-
ney. Since it was first put forward in 1986, in-
creasing amount of people have gotten a life-saving
kidney with the popularity of Kidney Exchange,
as patients have more opportunities to get saved
in this way. This growth is making the problem
of optimally matching patients to donors more
difficult to solve. The central problem, indeed,
is the NP-hard problem to find the largest vertex-
disjoint packing of cycles and chains in a graph that
represents the compatibility between patients and
donors, where due to the human resource limitation
we may have constraints on the maximum length of
cycles and chains. This paper mainly contributes
to algorithms from theory for this problem with
and without length constraints (restricted and free
versions). We give: 1. A single-exponential exact
algorithm based on subset convolution for the two
versions; 2. An FPT algorithm for the free version
with parameter being the number of vertex “types”
in the graph.

1 Introduction
There are two treatment options for kidney disease. One
is dialysis, the other is kidney transplantation. The latter
is more preferred than the former. A patient may be saved
by getting a kidney from a (deceased) donor. Unfortunately,
the demand for kidneys far outstrips supply. In general, the
average waiting time ranges from 2 to 5 years at most centers
and even longer in some geographical regions [Abraham et
al., 2007].

Kidney Paired Donation (KPD), also called Kidney Ex-
change, is put forward to complement the weakness of dead
body organ donation via the deceased donor waiting list.
KPD is an approach to living donor kidney transplantation
where patients with incompatible donors swap kidneys to
receive a compatible kidney. Since it was first introduced
in [Rapaport, 1986], increasing amount of people have got-
ten a life-saving kidney with the popularity of KPD, as
patients have more opportunities to get saved in this way.

Because better blood type and age matching are correlated
with lower lifetime mortality and longer lasting kidney trans-
plants [Segev et al., 2005], many compatible pairs are also
participating in swaps to find better matched kidneys. How
to swap to save more patients or to get more benefits? This
arises the kidney exchange problem.

In kidney exchange, patients and donors participate in
cycles and chains. A patient together with his/her donor is
regarded as a vertex. In a cycle, a patient in a vertex receives
the compatible kidney of the donor in the previous vertex.
The number of vertices in a cycle is the length of the cycle. A
donor, as soon as the partner patient has received a kidney,
can technically exit the program without donating one, as
he/she is not legally bound to do so [Roth et al., 2005b;
Segev et al., 2005; Mak-Hau, 2017]. In order to avoid
this, usually exchanges are carried out simultaneously. This
ensures that no donor backs out after his/her paired patient
has received a kidney but before he/she donated one of his/her
own kidneys [Dickerson et al., 2017]. As each transplant
involves two surgeries, there is a limit as to how many
exchanges can be performed at once, due to human resource
and logistic reasons. Thus, most field kidney exchanges, in-
cluding UNOS, allow only cycles with small size [Gruessner
and Sutherland, 2005].

For chain models, a donor without a paired patient, called
the altruistic donor, enters the pool. An altruistic donor
is regarded as an altruistic vertex. A sequence of kidney
exchanges that begins from an altruistic vertex and terminates
at a normal vertex forms a chain. The altruistic donor donates
his/her kidney to a patient whose paired donor donates his/her
kidney to another patient and so on. The length of a chain
is defined to be the number of non-altruistic vertices in the
chain, that is, the number of participant patients in it. In real
life, chains can be executed non-simultaneously [Anderson et
al., 2015]. To see why, consider the situation where a donor
backs out of a chain after his/her paired patient received a
kidney, but before his/her own donation. Unlike in the case
of a broken cycle, no pair in the remaining tail of the planned
chain is strictly worse off; that is, no donor was “used up”
before his/her paired patient received a kidney. Thus, chains
can be much longer than cycles.

We can form kidney exchange problems as graph optimiza-
tion problems. A pair of patient and donor is regarded as a
vertex, an altruistic donor is also regarded as a vertex, and
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there is a directed arc from a vertex i to a vertex j if the donor
in vertex i is compatible to the patient in vertex j. Thus, we
get a directed graph called the compatibility graph. Chains
in compatibility graph are paths beginning at an altruistic
vertex. We want to save patients as more as possible. So it
becomes the optimization problem of finding a vertex-disjoint
packing of cycles and chains in the compatibility graph to
cover maximum number of vertices. This problem is also
known as the clearing problem. Note that in compatibility
graph, self-loops are allowed, i.e., an arc may begin and end
at the same vertex, since some compatible pairs of patient
and donor may also want to participate in swaps to find better
matched kidneys.

With different constraints, we can get different versions of
the problem. Most constraints are about the length of cycles
and chains in kidney exchanges. In many previous problem
models, the number of participants in a cycle is usually
bounded by 3 due to the limitation on human resources in
real life [Roth et al., 2005b; Abraham et al., 2007; Biro et al.,
2009; Mak-Hau, 2017]. In recent years, with the progress of
technology, more and more patients are allowed to participate
in cycles and chains. Manlove and O’Malley [2012] demon-
strated the benefit of allowing 4-cycle exchanges, when
compared with just 2/3-cycle exchanges. A 9-cycle kidney
exchange was performed successfully in 2015 at two San
Francisco hospitals [Mak-Hau, 2017]. The bounds on the
length of cycles and chains may be further increased in the
future. We study a general problem with general bounds Lc
and Lp on the length of cycles and chains.

(Lc, Lp)-Kidney Exchange ((Lc, Lp)-KEP)
Input: A directed graphG = (V,A) with possible self-loops,
an altruistic vertex set B ⊆ V , and two nonnegative integers
Lc and Lp.
Output: A set of vertex-disjoint directed cycles and paths
covering maximum number of non-altruistic vertices in the
graph, where each cycle has length at most Lc and each path
begins with an altruistic vertex and has length at most Lp.

In (Lc, Lp)-KEP, we can let Lc and Lp to be 0 to in-
dicate no cycles/chains allowed in the exchange. We also
independently consider the version without constraints on the
lengths of cycles and chains. In this problem, we want to
find out how many patients can be saved “theoretically”. We
say “theoretically” because we allow the length of cycles and
chains at any large.

Free Version of Kidney Exchange (F-KEP)
Input: A directed graph G = (V,A) with possible self-loops
and an altruistic vertex set B ⊆ V .
Output: A set of vertex-disjoint directed cycles and paths
covering maximum number of non-altruistic vertices in the
graph, where each path begins with an altruistic vertex.

1.1 Related Work
Since the first introduction of the kidney exchange prob-
lem [Rapaport, 1986], many properties and variants have
been developed in the following research [Roth et al., 2005b;

2005a; Segev et al., 2005]. Some versions only consider
cycles when finding the packing [Constantino et al., 2013;
Klimentova et al., 2014; Sönmez and Ünver, 2014], while
others consider cycles and chains together [Manlove and
O’Malley, 2012; Glorie et al., 2014]. Different restrictions
on the length of cycles and chains have also been studied. For
example, the problem in [Manlove and O’Malley, 2012] has
the same size limitation for cycles and chains. Some may
consider looser restrictions on chains [Glorie et al., 2014;
Anderson et al., 2015]. Different versions can be regarded
as different packing problems in graphs. Some relations
between barter exchange and set packing are discussed in [Jia
et al., 2017].

Piratical (heuristic) algorithms for real-life data are hot
tops and have also been extensively studied. Most of the fast
algorithms are based on integer programming [Manlove and
O’Malley, 2014; Dickerson et al., 2016; Glorie et al., 2014;
Li et al., 2014]. Some other methods can also be found
in the literature [Biro et al., 2009; Klimentova et al., 2014;
Dickerson et al., 2017]. Some approximation algorithms
for different versions are developed by showing the rela-
tions to the set packing problem [Krivelevich et al., 2007;
Jia et al., 2017]. On the other hand, the NP-hardness of
many variants of the kidney exchange problem has been
established [Krivelevich et al., 2007].

To make the problems tractable, Dickerson et al. [2017]
introduced a way to represent the kidney exchange graph in
a compression way by identifying vertices having the same
neighborhood properties. In the compatibility graph, vertices
are in the same “type” if they have the same in- and out-
neighborhood. The number of different vertex types may not
be very large since they are determined by the blood type,
age and some other properties of the patients and donors.
Sometimes, we can view it as a constant. Dickerson et
al. [2017] show that the kidney exchange problem can be
solved in polynomial time when both the length of cycles and
chains and the number of different types are bounded by some
constants. The concept of “vertex type” is interesting and we
can also consider it in this paper.

1.2 Main Contributions
In this paper, we mainly consider exact algorithms for the two
fundamental computational problems in kidney exchange:
(Lc, Lp)-KEP and F-KEP. In parameterized complexity, we
study parameterized problems. An instance of a param-
eterized problem consists of an instance I of the original
(NP-hard) problem and a parameter k. A parameterized
problem with parameter k is fixed-parameter tractable (FPT)
if and only if it allows an algorithm with running time
f(k)poly(|I|), where f(k) is a computable function on k
only, and poly(|I|) is a polynomial function on the input size.
These kinds of algorithms are called FPT algorithms. Under
some reasonable assumptions, some parameterized problems
do not allow FPT algorithms, which are W[1]-hard [Downey
and Fellows, 2013]. We will consider the kidney exchange
problems with the parameter being the number of vertex
types. The main contribution of this paper contains two
algorithmic results:

1. We show that both of (Lc, Lp)-KEP and F-KEP can

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

556



be solved in O(2nn3) time. Our algorithms use the
techniques of dynamic programming and subset convo-
lution. Note that the trivial search algorithm uses at least
nnnO(1) time and most known IP algorithms for kidney
exchange problems in the literature have much worse
running time bound. Our algorithms use only single
exponential running time.

2. We show that F-KEP is FPT by taking the number of
vertex types as the parameter, which also implies that
F-KEP is polynomially solvable when the numbers of
different types of patients and donors are bounded by
a constant. The algorithm is based on a decomposition
technique and an IP model.

To solve the kidney exchange problem, we mainly work
on the compatibility graph solving a cycle/chain packing
problem. The compatibility graph G = (V,A) is a directed
graph with possible self-loops. We will use n = |V | and
m = |A| to denote the numbers of vertices and arcs in
the compatibility graph. A set of vertices in G is called an
independent set if there is no arc from any vertex to another
in the set. A directed complete graph is defined as a graph
where each pair of vertices have two arcs from each to other
and each vertex also has a self-loop. A single vertex without
a self-loop is an independent set and a single vertex with a
self-loop is a directed complete graph.

2 Exact Algorithms Based on Subset
Convolution

In this section, we design exact algorithms for both (Lc, Lp)-
KEP and F-KEP based on dynamic programming and subset
convolution. Most previous exact algorithms for variants of
the kidney exchange problem are based on IP and the running
time of them are not analyzed or take a trivial bound of
nnnO(1) at least. We show that (Lc, Lp)-KEP and F-KEP
can be solved in 2nnO(1) time by a clever using of subset
convolution. In fact, the framework of our algorithms for
(Lc, Lp)-KEP and F-KEP are the same, which can even be
directly used to design algorithms for more variants of the
kidney exchange problem with the same running time bound.
Definition 1. (Packing Unit) Given a graph G = (V,A)
with an altruistic vertex set B ⊆ V ,

1. A directed cycle or a directed path starting from an
altruistic vertex in G is called a packing unit of F-KEP.

2. A directed cycle of length at most Lc or a directed path
starting from an altruistic vertex of length at most Lp is
called a packing unit of (Lc, Lp)-KEP.

Sometimes we may simply use the vertex set of a packing
unit to denote it. Packing unit is a basic notation used in our
algorithms. The definitions of packing units are different for
the two problems (Lc, Lp)-KEP and F-KEP. This will be the
only difference in our algorithms for the two problems. So we
may simply say “packing unit” without specifying for which
problems when it is suitable for both cases.

For a packing unit of a cycle, we call it a cycle-packing
unit. For a packing unit of a path, we call it a path-packing
unit. Note that if a packing unit S is a cycle-packing unit

then S contains no altruistic vertex, and if a packing unit S
is a path-packing unit then S contains exactly one altruistic
vertex. So a vertex subset S can not be both a cycle-packing
unit and a path-packing unit.

Our algorithm contains two main steps. In the first step,
we use a dynamic programming technique to check each of
the 2n vertex subsets whether it is a packing unit or not.
The information will be stored in a table D(·) of size 2n.
These can be done in O(2nn3) time. The algorithm follows
the classic dynamic programming algorithm for checking if a
graph being a Hamilton graph or not. However, our algorithm
needs to check all induced subgraphs of the input graph not
only the whole input graph. In the second step, based on
D(·), we find out all vertex subsets that can be partitioned
into packing units and the one containing maximum number
of non-altruistic vertices will be an optimal solution to our
problem. We will show that the second step can also be
done in O(2nn3) time by using subset convolution. Thus,
our problems can be solved in O(2nn3) time in total.

Step one. The purpose of this step is to find out which
vertex subsets are packing units. The information will be
store in a table D(·) of size 2n.

For each vertex subset S and two vertices v1, v2 ∈ S, we
consider if there is a path in G[S] which starts in v1, visits
all vertices in S \ {v1, v2}, and ends in v2. We use a table
H(·) to store the information. If it is a yes-case for the triple
(S, v1, v2), then H(S, v1, v2) = 1; otherwise H(S, v1, v2) =
0. The size of H is bounded by O(2nn2). We use a dynamic
programming method to compute the value of H(S, v1, v2)
for each S ⊆ V and each vertex pair v1, v2 ∈ S.

For vertex subsets S with size |S| ≤ 2, it is trivial to
compute the value H(S, v1, v2). Next, we assume that S is a
set containing at least three vertices. For a triple (S, v1, v2),
let S∗ be the set of vertices u ∈ S \ {v1, v2} such that there
is an arc from u to v2. There is a path P in G[S] which starts
in v1, visits all vertices in S \ {v1, v2}, and ends in v2 if and
only if there are a vertex u ∈ S∗ and a path P ′ in G[S] which
starts in v1, visits all vertices in S \ {v1, v2, u}, and ends in
u. So we get the following relation

H(S, v1, v2) =
∨
u∈S∗

H(S \ {v2}, v1, u). (1)

We compute H(S, v1, v2) in order of increasing cardinality
of S by using (1). For each triple (S, v1, v2), the value
H(S, v1, v2) can be computed by using at most |S| − 2 basic
computations based on the values H(S′, v′1, v

′
2) for S′ with

cardinality |S′| = |S| − 1. The computation for each element
in H(·) takes O(n) basic steps. The size of the table H(·) is
bounded by O(2nn2). Thus, we can compute all the values
in H(·) in O(2nn3) time.

Next, we are ready to check if a vertex set S is a packing
unit or not based on H(·). We first consider packing units
for F-KEP. For (Lc, Lp)-KEP, we only need to add one more
constraint on the length of cycles or paths.

We maintain another table D(·) of size 2n. For each vertex
subset S ⊆ V , if S is a packing unit then D(S) = 1;
otherwise D(S) = 0. The special case S = ∅ will also be
used and we let D(∅) = 1. We can compute the values of
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D(S) for all S ⊆ V in O(2nn) time based on table H(·). It
is not hard to see follows.

When S contains no altruistic vertex in B, S can only be a
cycle-packing unit if it is a packing unit. So, if S ∩ B = ∅,
we compute D(S) by the following way: arbitrarily pick a
vertex v ∈ S, let S′ be set of vertices u ∈ S having an arc
from u to v, and let

D(S) =
∨
u∈S′

H(S, v, u). (2)

When S contains exactly one altruistic vertex v, S can only
be a path-packing unit if it is a packing unit. So, If |S ∩B| =
1, we compute D(S) by the following relation

D(S) =
∨

u∈S\{v}

H(S, v, u). (3)

If |S ∩B| ≥ 2, we simply let D(S) = 0 since it can not be
a packing unit.

For (Lc, Lp)-KEP, we only have one more operation to
check the size of S. Before executing (2) (resp., (3)), we
check weather it holds |S| ≤ Lc (resp., |S| ≤ Lp) or not. If
not, we directly let D(S) = 0 without executing (2) or (3).

For each element in D(·), we use at most |S| < n basic
computations to calculate it. To compute all the values in
D(·), we will use O(2nn) time.

Step two. Equipped with D(·), we will use subset convo-
lution to find out which vertex subsets can be partitioned into
disjoint packing units.

Definition 2. (Subset Convolution) Let f be an integer
function on subsets of a set V . The subset convolution, or
for short the convolution of f , denoted by f ∗ f , is a function
assigning to any S ⊆ V an integer as follows

(f ∗ f)(S) =
∑
T⊆S

f(T ) · f(S \ T ). (4)

Theorem 1. [Björklund et al., 2007] Let V be a set of size
n and f : 2V → {0, 1} be a function on the subsets of V . If
the values of f(S), for all S ⊆ V are given, then the subset
convolution f ∗ f can be computed in O(2nn2) time.

Subset convolution is a natural tool to solve our problems.
An indicator function of a function f , denoted by f̂ , is defined
as: f̂(S) = 0 if f(S) = 0 and f̂(S) = 1 if f(S) ≥ 1. We list
the main steps of our algorithm as follows.

1. f(S)← D(S) for all S ⊆ V ;

2. For i from 1 to dlog ne, do
g(S)← (f ∗ f)(S) for all S ⊆ V , and
f(S)← f(S) ∨ ĝ(S) for all S ⊆ V .

3. The subset S∗ ⊆ V with f(S∗) = 1 containing
the maximum number of non-altruistic vertices is the
solution.

Lemma 1. For any nonempty vertex subset S ⊆ V , if S can
be partitioned into at most k disjoint nonempty packing units,
then f(S) = 1 after dlog ke iterations of Step 2 in the above
algorithm.

Proof. We prove the lemma by induction on the number
dlog ke of iterations of Step 2. Initially f(S′) = M(S′) for
all S′ ⊆ V . Thus, the lemma holds for the first iteration.
Assume that the lemma holds after dlog ke− 1 iterations. We
prove that the lemma also holds after dlog ke iterations.

Since S can be partitioned into at most k disjoint nonempty
packing units, we know that there are two disjoint sets S1 and
S2 such that S = S1∪S2 and S1 (resp., S2) can be partitioned
into at most bk2 c (resp., dk2 e) disjoint nonempty packing units.
By the assumption, we know that f(S1) = 1 and f(S2) = 1
after dlog(dk2 e)e ≤ dlog ke−1 iterations. In the next iteration
of Step 2, we know that g(S) = (f ∗ f)(S) > 0 by (4). Thus,
ĝ(S) = 1 and then f(S) = 1. It holds for f(S) = 1 after
dlog ke iterations of Step 2.

Lemma 1 guarantees the correctness of our algorithm.
Note that any vertex subset can be partitioned into at most
n disjoint nonempty packing units. By Lemma 1, we know
that after dlog ne iterations of Step 2, the subset S∗ ⊆ V
with f(S∗) = 1 containing the maximum number of non-
altruistic vertices is our solution. For the running time, we
mainly compute dlog ne times of subset convolutions. The
running time is O(2nn2dlog ne).

3 Algorithms for Quotient Models
Dickerson et. al. [2017] introduced a way to class the vertices
in a compatibility graph into different types according to
some actual meaning and then get a contracted representation
of the compatibility graph. Two vertices belong to the same
type if and only if they have exactly the same in- and out-
neighbourhood. In graph theory, a similar notation is known
as module. A vertex subset M ⊆ V forms a module of a
directed graph if the vertices inM cannot be distinguished by
any vertex out ofM , i.e., for any vertex x ∈ V \M , if there is
an arc from x to a vertex in M (resp., an arc from a vertex in
M to x), then there is an arc from x to each vertex inM (resp.,
an arc from each vertex in M to x). However, the concepts of
“type” and “module” are not exactly the same. The concept
of “type” has more requirements: any two vertices in the
same type M ′ cannot be distinguished by any other vertex,
not only vertices out of M ′. Therefore, for a type M ′, the
induced subgraph M ′ can only be a complete directed graph
or an independent set. However, for a moduleM , the induced
subgraph M can be of any form. Even the whole vertex set
of a graph can be a (trivial) module. For the sake of the
presentation, we will call types pure modules.

According to “if and only if” in the definition of type (or
pure module), we know that any pure module is maximal (no
proper subset is still a pure module) and no two pure modules
are intersected. Therefore, the vertex set of a graph can be
partitioned into several disjoint pure modules, which is called
the pure modular decomposition of a graph. It is known
that the pure modular decomposition of a directed graph is
unique and it can be found in linear time [McConnell and de
Montgolfier, 2005].

Definition 3. (Quotient Graphs) The quotient graph Q =
(VQ, AQ, w) of a directed graph G based on a pure modular
decomposition is a directed graph with vertex weight w :
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V → Z, where each vertex v ∈ VQ represents a pure module
in G with the weight w(v) being the number of vertices in the
pure module and there is an arc from vertex a to vertex b in
AQ if and only if there is an arc from a vertex in the pure
module corresponding to a to a vertex in the pure module
corresponding to b in G.

Note that the quotient graph may also have self-loops
and a pure module of a complete directed clique will have
self-loops. Dickerson et. al. [2017] introduced an idea
of using quotient graphs to represent big kidney exchange
graphs. Furthermore, they showed that (L,L)-KEP can be
solved in polynomial time when both L and the number of
different pure modules are bounded by a constant by giving
an O((n+ 1)L·θ

L

)-time algorithm, where θ is the number of
different pure modules in the pure modular decomposition of
the compatibility graph. However, this algorithm is not FPT
with parameter θ since the exponential part of the running
time is still related to the input size n. Next, we will give an
FPT algorithm for F-KEP with parameter θ.

Our algorithm mainly works on quotient graphs. We first
apply the linear-time algorithm [McConnell and de Mont-
golfier, 2005] to compute the quotient graph Q = (VQ =
VI ∪ VC ∪ VB , AQ, w) of the compatibility graph G, where
we distinguish three kinds of vertices in VQ: VI is the set
of vertices corresponding to the pure modules being indepen-
dent sets, VC is the set of vertices corresponding to the pure
modules being complete directed cliques, and VB is the set of
vertices corresponding to altruistic vertices in G.

Given the quotient graph, we first build an integer pro-
gramming (IP) model to find how many vertices in different
pure modules can be included into the solution (the cycle/path
packing). Then based on the IP solution, we construct a
solution by using a decomposition technique.

3.1 Properties and IP Model
Before giving our IP, we introduce an important property used
in the IP. We denote the vertices in VI as {i}p1, the vertices in
VC as {i′}q1 and the vertices in VB as {i∗}b1, where p + q +
b = n. Vertex weights w(i), w(i′) and w(i∗) may be simply
written as wi, wi′ and wi∗ , respectively.
Definition 4. (Configuration) A configuration of a quo-
tient graph Q = (VQ = VI ∪ VC ∪ VB , AQ, w) of a
compatibility graph G is an assignment of nonnegative in-
tegers to each vertices and arcs in Q, denoted by A =
({xi}, {xi′}, {xi∗}, {est}). A configuration is feasible if
there is a cycle/path packing in G that contains exactly xi
(resp., xi′ and xi∗ ) vertices in the pure module i (resp., i′ and
i∗), and exactly est arcs from vertices in module s to vertices
in module t (include self-loops).

A cycle/path packing can uniquely determines a configu-
ration: the value of each element in the configuration is the
number of vertices or edges of this type in the packing. We
say that this configuration is corresponding to this cycle/path
packing. Note that some configuration may not be corre-
sponding to any cycle/path packing.
Lemma 2. A configuration A = ({xi}, {xi′}, {xi∗}, {est})
is feasible, if and only if it satisfies the following Constraints
C1-C6:

C1: wi ≥ xi ≥ 0, for each i;
wi′ ≥ xi′ ≥ 0, for each i′;
wi∗ ≥ xi∗ ≥ 0, for each i∗;

C2: xj =
∑
i eij +

∑
i′ ei′ j +

∑
i∗ ei∗j for each j;

C3: xj ≥
∑
i eji +

∑
i′ eji′ for each j;

C4: xj′ =
∑
i eij′ +

∑
i′ ei′ j′ +

∑
i∗ ei∗j′ for each j

′
;

C5: xj′ ≥
∑
i ej′ i +

∑
i′ ej′ i′ for each j

′
;

C6: xi∗ =
∑
j ei∗j +

∑
j′ ei∗j′ for each i∗.

Constraint C1 says that the value for each vertex can not
excess the weight of the vertex; Constraints C2 and C3 (resp.,
Constraints C4 and C5) say that for each vertex in VI (resp.,
VC), its value is equal to the sum of the values of all its in-
arcs, and its value is an upper bound of the sum of the values
of all its out-arcs; Constraint C6 says that for each vertex in
VB , its value is equal to the sum of the values of all its out-
arcs. There are some different between Constraints C2-C3
and Constraints C4-C5, because vertices in pure modules of
complete directed cliques have self-loops and can even form
cycle containing only one vertex.

For the correctness of Lemma 2, we can easily observe that
for any cycle/path packing, the configuration corresponding
to it satisfies Constraints C1-C6. For the ‘only if’ part,
we give an algorithm later to construct a cycle/path packing
based on a configuration satisfying C1-C6.

Lemma 3. Let A1 = ({xi}, {xi′}, {xi∗}, {est}) be
a feasible configuration. The configuration A2 =
({xi}, {wi′}, {xi∗}, {e′st}) is a still feasible configuration,
where e′st = est if s 6= t and e′st = wi′ − xi′ if s = t = i′.

Proof. Let P1 be the cycle/path packing corresponding toA1.
For each i′, we can add wi′ −xi′ self-loops for vertices in the
pure module i′ into P1 to form another cycle/path packing P2.
Then P2 is a packing corresponding to A2.

Lemma 4. Let A1 = ({xi}, {xi′}, {xi∗}, {est}) be a feasi-
ble configuration such that for any other feasible configura-
tion ({yi}, {yi′}, {yi∗}, {e′st}), it holds∑

i

xi ≥
∑
i

yi.

The configuration A2 = ({xi}, {wi′}, {xi∗}, {e′st}) is a
feasible configuration corresponding to a cycle/path packing
containing the maximum number of non-altruistic vertices in
V \ B, where e′st = est if s 6= t and e′st = wi′ − xi′ if
s = t = i′.

Proof. First, A2 is a feasible configuration by
Lemma 3. Second, for any feasible configuration
({yi}, {yi′}, {yi∗}, {e′′st}), it holds that

∑
i xi ≥

∑
i yi

by the definition of A1 and
∑
i wi′ ≥

∑
i yi′ by

Lemma 2 and Constraint C1. Therefore, it holds that∑
i xi +

∑
i wi′ ≥

∑
i yi +

∑
i yi′ and the cycle/path

packing corresponding to A2 contains the maximum number
of non-altruistic vertices.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

559



Lemma 4 provides a way to find a feasible configuration
corresponding to a cycle/path packing containing the max-
imum number of non-altruistic vertices. We only need to
maximize

∑
i xi satisfying Constraints C1-C6. Then, we

can build an integer programming below, which contains
|VQ|+ |AQ| integer variables: {xi}, {xi′}, {xi∗} and {est}.

max
∑
i

xi (IP)

s.t. C1-C6.

Assume that {{zi}, {zi′}, {zi∗}, {est}} is an optimal so-
lution to the above IP. By Lemma 4, we know that
({zi}, {wi′}, {zi∗}, {e′st}) is a feasible configuration corre-
sponding to an optimal solution to F-KEP.

3.2 The Cycle/Path Decomposition
Next, we show that given an arbitrary feasible configuration,
how to construct a cycle/path packing corresponding to it.

Assume that the given feasible configuration is A =
({zi}, {zi′}, {zi∗}, {est}). For each vertex v ∈ V in G,
we define In(v) and Out(v) as the sum of the values of all
the corresponding pure module’s in-arcs and out-arcs in the
quotient graph Q. Each of the following two cases is called a
packing element in the compatibility graph G under A:
Case 1. a directed cycle C in G (including a self-loop)
such that for any vertex or arc in C, the value in A for the
corresponding pure module or arc type is positive;
Case 2. a directed path P in G started at an altruistic vertex
and ended at a vertex v with In(v) > Out(v) such that for
any vertex or arc in P , the value in A for the corresponding
pure module or arc type is positive.

Our decomposition algorithm is simple, which iteratively
does the follows until all the values in the configuration
A become zero: find a packing element and update the
configuration A by decreasing the value by 1 for each vertex
and arc corresponding to a vertex and arc in the packing
element. All the packing elements found by the procedure
will form a cycle/path packing.

Lemma 5. Given a feasible configuration and any packing
element in the graph. The configuration is still feasible
after by decreasing the value by 1 for each vertex and arc
corresponding to a vertex and arc in the packing element.

The correctness of this lemma is based on the following
observation: for any vertex v in the packing element except
the beginning and ending vertices of a path, the update
decreases both In(v) andOut(v) by 1, which will not violate
any of C1-C6. For a beginning vertex v of a path, it holds
that Out(v) > 0 before the update and then it holds that
Out(v) ≥ 0 after the update. For an ending vertex v of
a path, it holds that In(v) > Out(v) before the update
and then it holds that In(v) ≥ Out(v) after the update.
Lemma 5 guarantees that after each iteration of the update,
the configuration is still feasible. Next, we still need to
consider two questions: why proper packing elements always
exist during the procedure and how much time needed to find
a packing element if it exists. We have the following lemmas.

Lemma 6. When the configuration is feasible, packing ele-
ments always exist and one can be found in linear time.

We use a depth-first search (DFS) technique to find a
packing element when the configuration satisfies C1-C6. The
main procedure is as follows:
If there is a vertex i∗ ∈ VB such that the value xi∗ of it is
greater than 0, we start from i∗, search by DFS a directed
path with all vertices and arcs on it having positive values,
until meeting a vertex v with In(v) > Out(v) or a vertex
t having been visited. Then we will get a directed path or a
directed cycle (started and ended both at t) in Q, which will
be corresponding to a packing element of Case 1 or 2 in G;
If the value of any vertex in VB is 0, we start from any
vertex with value > 0, search by DFS a directed path with all
vertices and arcs on it having positive values, until meeting a
vertex having been visited. Then we will get a directed cycle
in Q (corresponding to a packing element of Case 1 in G).

Note that when the configuration satisfies C1-C6, only ver-
tices v in VB may hold that In(v) < Out(v) and for any ver-
tex u ∈ VB it holds that In(v) = 0 since there is no arc from
a vertex to an altruistic vertex in the graph. When the value
of any vertex in VB is 0, it will hold In(v) = Out(v) for
any vertex in the graph, because In(v) ≥ Out(v) holds for
any vertex v and in global

∑
v∈VQ

In(v) =
∑
v∈VQ

Out(v).
Therefore, during the above DFS, once the directed path
enters a vertex, the vertex should be a vertex with value > 0
and there always has an arc from it to another vertex with
positive value. So for the latter case, the DFS can always find
a proper cycle.

3.3 Running Time Analysis
The most time-consuming part is the IP. It is known that an
IP with x variables can be solved in 2O(x)xx time [Dadush,
2012]. In our IP, the number of variables is the number of
vertices and arcs in the quotient graph Q, which is bounded
by θ2 (θ = |VQ|). To construct a cycle/apth packing based on
a feasible configuration can be done in O(n(n + m)) time,
since there are at most n packing elements. In total, the
algorithm takes O(2O(θ2)θ2θ

2

+ n(n + m)) time. It is FPT
by taking θ as the parameter.

4 Conclusion
This paper contributes to complexity and algorithms with
theoretically proved running-time bounds for the kidney ex-
change problem. We design a uniform single-exponential
exact algorithm for the kidney exchange problem with any
constraints on the maximum length of the cycles and chains
and an FPT algorithm for the kidney exchange problem
without length constraints on the cycles and chains. Both
results significantly improve previous theoretical bounds. It
will be interesting to further study the effectiveness of the two
algorithms on realistic instances.
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