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Abstract

With the rapid growth of multimedia data, such
as image and text, it is a highly challenging prob-
lem to effectively correlate and retrieve the data of
different media types. Naturally, when correlat-
ing an image with textual description, people fo-
cus on not only the alignment between discrimina-
tive image regions and key words, but also the rela-
tions lying in the visual and textual context. Rela-
tion understanding is essential for cross-media cor-
relation learning, which is ignored by prior cross-
media retrieval works. To address the above issue,
we propose Cross-media Relation Attention Net-
work (CRAN) with multi-level alignment. First, we
propose visual-language relation attention model
to explore both fine-grained patches and their re-
lations of different media types. We aim to not
only exploit cross-media fine-grained local infor-
mation, but also capture the intrinsic relation in-
formation, which can provide complementary hints
for correlation learning. Second, we propose cross-
media multi-level alignment to explore global, lo-
cal and relation alignments across different media
types, which can mutually boost to learn more pre-
cise cross-media correlation. We conduct experi-
ments on 2 cross-media datasets, and compare with
10 state-of-the-art methods to verify the effective-
ness of proposed approach.

1 Introduction
Nowadays, multimedia data has been emerging rapidly on
the Internet, including image and text. Under these circum-
stances, cross-media retrieval has become an essential tech-
nique for search engine as well as multimedia data manage-
ment. It can provide flexible retrieval experience to search
the data of different media types simultaneously by a query of
any media type. However, “heterogeneity gap” among mul-
timedia data causes inconsistent distributions and representa-
tions of different media types, which makes it quite challeng-
ing to effectively measuring cross-media similarity.
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Figure 1: An example of cross-media multi-level alignment for cor-
relation learning, which not only explores global alignment between
original instances and local alignment between fine-grained patches,
but also captures relation alignment lying in the context.

Cross-media correlation naturally exists among the hetero-
geneous data with latent semantic alignment, and the research
of cognitive science further indicates that in human brain,
cross-media correlation can be fully understood through the
fusion of multiple sensory organs, such as visual and lan-
guage mechanism. Furthermore, when matching an im-
age with textual description, people not only align the key
words with discriminative image regions, but also consider
the alignment of context information, which is represented
by relations between image regions as well as their language
expression. Therefore, there exists multi-level alignment be-
tween image and text, as shown in Figure 1. It is necessary
to fully exploit and understand latent cross-media correlation
from various aspects, and construct metrics on the data of dif-
ferent media types, which has been the key problem of cross-
media retrieval.

For bridging the “heterogeneity gap”, most of existing
methods follow the intuitive idea to model cross-media cor-
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relation by constructing common space. The features of
different media types are projected into common space, so
that cross-media similarity can be directly measured between
common representations. According to their different mod-
els, these methods can mainly be divided into two categories:
The first is traditional methods, which maximize the corre-
lation of variables from different media types. They mainly
learn mapping matrices to construct common space. Canon-
ical correlation analysis based methods [Rasiwasia et al.,
2010; Hardoon et al., 2004; Gong et al., 2014] are the main
stream, while others [Zhai et al., 2014] attempt to integrate
graph regularization in correlation learning. But their per-
formance is limited in traditional framework. Thus it leads to
the second kind of methods. They utilize strong learning abil-
ity of deep neural network to model cross-media correlation.
Such methods like [Feng et al., 2014; Andrew et al., 2013;
Peng et al., 2017] construct multi-pathway network to learn-
ing common representation.

However, the aforementioned methods mainly explore
cross-media correlation from either global original instances
or local fine-grained patches. While they ignore the relations
between different fine-grained patches. There can form mul-
tiple alignments, which indicate the correspondence on the
context of different media types, and provide rich comple-
mentary hints for correlation learning. Thus, it should be ef-
fectively considered. For addressing above problem, we pro-
pose Cross-media Relation Attention Network (CRAN) with
multi-level alignment, which has following contributions.
• Visual-language relation attention model. We utilize

attention mechanism to explore not only the local fine-
grained patches as discriminative image regions and key
words, but also the relations in both visual and textual
context. We aim to fully exploit fine-grained local in-
formation and intrinsic relation information, which can
provide complementary hints for cross-media correla-
tion learning.
• Cross-media multi-level alignment. We not only ex-

ploit global alignment between original instances and
local alignment between fine-grained patches, but also
mine relation alignment between the context of differ-
ent media types, which can mutually boost to learn
more precise cross-media correlation, and further pro-
mote cross-media retrieval.

To verify the effectiveness of our proposed CRAN approach,
we conduct cross-media retrieval experiments on 2 widely-
used datasets compared with 10 state-of-the-art methods.

2 Related Works
We briefly review representative methods of cross-media re-
trieval, which mostly perform cross-media correlation learn-
ing to construct common space. Thus, the similarity of het-
erogeneous data can be calculated on common representa-
tions. They can be divided into two categories, namely tradi-
tional methods and deep learning based methods.

2.1 Traditional Methods
Traditional methods mainly attempt to maximize the corre-
lation between pairwise data of different media types. They

learn mapping matrices to project multimedia data into com-
mon space, and generate common representations. Some
representative methods utilize canonical correlation analysis
(CCA) [Hotelling, 1936] to optimize the statistical values.
They construct a lower-dimensional common space, and there
are many extensions based on them. For example, Rasiwasia
et al. integrate semantic category labels with CCA to perform
semantic matching [Rasiwasia et al., 2010]. Gong et al. pro-
pose Multi-view CCA to construct a third view of high-level
semantics [Gong et al., 2014]. While Multi-label CCA [Ran-
jan et al., 2015] considers semantic information with multiple
label annotations. Similar to CCA, Li et al. propose cross-
modal factor analysis (CFA) [Li et al., 2003], which learns
projections by minimizing the Frobenius norm between pair-
wise data. Besides, some other traditional methods attempt
to utilize graph regularization. They construct graphs for data
of different media types, and preform cross-media correlation
learning. Zhai et al. propose joint representation learning
(JRL) to construct several separate graphs [Zhai et al., 2014],
and they also integrate semi-supervised information to learn
common space. Peng et al. further construct a unified hy-
pergraph to exploit fine-grained information simultaneously
[Peng et al., 2016b].

2.2 Deep Learning based Methods
With the recent advances of deep learning in multimedia ap-
plications, such as image classification [Krizhevsky A, 2012]
and object detection [Ren et al., 2015], researchers adopt
deep neural network to learn common space for cross-media
retrieval, which aims to fully utilize its considerable ability of
modeling highly nonlinear correlation. Most of deep learning
based methods construct multi-pathway network, where each
pathway is for the data of one media type. Multiple pathways
are linked at the joint layer to model cross-media correlation.
Ngiam et al. propose bimodal autoencoders (Bimodal AE) to
extend restricted Boltzmann machine (RBM) [Ngiam et al.,
2011]. They model the correlation by mutual reconstruction
between different media types. Multimodal deep belief net-
work [Srivastava and Salakhutdinov, 2012] adopts two kinds
of DBNs to model the distribution over data of different me-
dia types, and it constructs a joint RBM to learn cross-media
correlation. Andrew et al. propose deep canonical correlation
analysis (DCCA) to combine traditional CCA with deep net-
work [Andrew et al., 2013], which maximizes correlation on
the top of two subnetworks. Feng et al. jointly model cross-
media correlation and reconstruction information to perform
correspondence autoencoder (Corr-AE) [Feng et al., 2014].
Furthermore, Peng et al. propose cross-media multiple deep
networks (CMDN) [Peng et al., 2016a]. They construct hi-
erarchical network structure with stacked learning strategy,
which aims to fully exploit both inter-media and intra-media
correlation. Cross-modal correlation learning (CCL) [Peng
et al., 2017] utilizes fine-grained information, and adopts
multi-task learning strategy for better performance. Zheng et
al. propose dual-path convolutional network to learn image-
text embedding [Zheng et al., 2017]. They conduct efficient
and effective end-to-end learning to directly learn from the
data with utilization of supervisions. Besides, Plummer et
al. provide the first large-scale dataset of region-to-phrase
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Figure 2: An overview of our proposed CRAN approach. Multi-level alignment is fully exploited with relation attention network between the
global original instances, local fine-grained patches as well as their relations, which aims to learn more precise cross-media correlation.

correspondences for image description based on Flickr-30K
dataset [Plummer et al., 2015], where image regions depict
the corresponding entities for richer image-to-sentence mod-
eling.

However, above methods mainly focus on pairwise cor-
relation, which exists in global alignment between origi-
nal instances of different media types. Although some of
them attempt to explore local alignment between fine-grained
patches, they all ignore important relation information lying
in the context of these fine-grained patches, which can pro-
vide rich complementary hints for cross-media correlation
learning. Thus, we propose to fully exploit multi-level cross-
media alignment, which can learn more precise correlation
between different media types.

3 Our CRAN Approach
As shown in Figure 2, we construct cross-media relation at-
tention network to explore multi-level alignment, which con-
tains three subnetworks for global, local and relation align-
ments respectively. Specifically, we utilize attention mecha-
nism to exploit not only the local fine-grained patches, but
also the relations between them. Multi-level alignment is
proposed for mutually boosting, which can learn comple-
mentary hints for cross-media correlation modeling. Then,
we introduce the formal definition of cross-media dataset as
D = {I, T}, where I = {ip}Np=1 and text T = {tq}Nq=1 have
totally N instances in each media type. ip and tq are the p-
th and q-th instance of image and text respectively. Finally,
given a query of any media type, the goal of cross-media re-
trieval is to measure cross-media similarity sim(ip, tq), and
retrieve relevant instances of another media type.

3.1 Visual-language Relation Attention Model
We extract global, local and relation representations from the
proposed visual-language relation attention model, which can
provide abundant hints for cross-media correlation learning.

For global representation, each input image ip is resized
to 256 × 256, and fed into a convolutional neural network to
exploit high-level global semantic information. Specifically,
the convolutional neural network has the same configuration
with 19-layer VGGNet [Simonyan and Zisserman, 2014],
which is pre-trained on the large-scale ImageNet dataset. We
extract 4,096 dimensional feature vector from fc7 layer as im-
age global representation, denoted as gi. Then, each input
text tq is composed as a character sequence, where each char-
acter is represented by one-hot encoding. Following [Zhang
et al., 2015], we construct a fast convolutional network for
text (Char-CNN) to generate a sequence of representation
from the last activation layer, and feed them into recurrent
neural network. Specifically, we utilize long short-term mem-
ory (LSTM) network to learn global representation. The
LSTM is updated recursively with the following equations:{

it
ft
ot

}
= σ

({
Wi

Wf

Wo

}
xt +

{
Ui

Uf

Uo

}
ht−1 +

{
bi
bf
bo

})
(1)

ct = ct−1�ft + tanh(Wuxt + Uuht−1 + bu)� it (2)
ht = ot � tanh(ct) (3)

where the activation vectors of input, forget, memory cell
and output are denoted as i, f, c and o respectively. x is
the input text sequences. Outputs from hidden units are
Hg = {hg1, ..., hgm}. � denotes element-wise multiplica-
tion. σ is sigmoid nonlinearity to activate the gate. Thus, the
global representation for text can be obtained from LSTM as
gt = 1/m

∑m
k=1 h

g
k.

For local representation, we first utilize Faster RCNN
[Ren et al., 2015] to generate candidate image regions, which
have larger probabilities to contain visual objects, such as
“person” or “car”. Specifically, each image ip is fed into
Faster RCNN implemented with VGG-16 network, which is
pre-trained on MS-COCO detection dataset [Lin et al., 2014].
We can obtain several bounding boxes, then we extract vi-
sual feature for each image region from the fc7 layer. They
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form the image local representations {li1, ..., lin} for n differ-
ent regions within one image. Then, for learning text local
representation, we also construct Char-CNN following with
LSTM, and we can obtain a sequence of outputs from the
hidden units of LSTM, denoted as Hl = {hl1, ..., hlm} for
m different text fragments. Furthermore, we aim to make
model focus on necessary fine-grained patches, so we apply
attention mechanism to capture useful textual fragments. The
attention weights are calculated by a feed-forward network
with softmax function as follows:

M l = tanh(W l
aHl) (4)

al = softmax(w>laM
l) (5)

where al denotes the generated attention weights for text frag-
ments. The fragment with larger attention weight is more
likely to contain some key words, which describe the corre-
sponding visual objects. Therefore, we can obtain text local
representation as lt = 1/m

∑m
k=1 a

l
kh

l
k. It contains rich fine-

grained local information, which can emphasize all key words
along the text sequence.

For the relation representation, we aim to fully model
the relations between image regions as well as their lan-
guage expressions. For the image relation, we utilize the
image regions that are extracted from Faster RCNN as men-
tioned above, and we construct pairwise combinations be-
tween the regions in one image to consider their relations.
Thus, the image relation representation is denoted as ri =
{lij ; lik} for j, k = 1, ..., n, where {·; ·} means the concatena-
tion of j-th and k-th local image representations for the cor-
responding regions. Then, for text relation, we apply relation
attention model to allow the network focus on the relation
expressions in textual description. Specifically, we also con-
struct Char-CNN with LSTM to generate a sequence of text
fragment as Hr = {hr1, ..., hrm}. Then, the relation attention
model is adopted on the top of output sequence from LSTM,
which consists of a feed-forward network with softmax func-
tion with similar equations (4) and (5). We can calculate
the attention weights ar for different text fragments, where
the text fragments with larger relation attention weights have
higher probabilities to contain the relation expressions, such
as “above” or “next to”, which represent the relation between
key words. Thus, we can finally generate the text relation rep-
resentation as rt = 1

m

∑m
k=1 a

r
kh

r
k, where the output vectors

from LSTM are multiplied by the learned relation weights,
aiming to enhance the textual relation information in text de-
scription.

3.2 Cross-media Multi-level Alignment
Since we have obtained three kinds of representations for
both image and text, namely global, local and relation rep-
resentations, we learn multi-level alignment to fully exploit
cross-media correlation.

For global-level alignment, we aim to learn pairwise
cross-media correlation between global original instances of
different media types, as gi for image and gt for text. We de-
sign cross-media joint embedding loss for global alignment.
It takes consideration that difference between the similarity
of matched image/text pair and the similarity of mismatched

pair should be as large as possible. Thus, the objective func-
tion is defined as follows:

Lglobal =
1

N

N∑
n=1

lg1(i
+
n , t

+
n , t
−
n ) + lg2(t

+
n , i

+
n , i
−
n ) (6)

The two items in this formula are defined as:

lg1(i
+
n ,t

+
n , t
−
n ) =

max(0, α− d(gi+n , gt+n ) + d(gi+n , gt−n )) (7)

lg2(t
+
n ,i

+
n , i
−
n ) =

max(0, α− d(gi+n , gt+n ) + d(gi−n , gt+n )) (8)

where d(.) denotes dot product between image/text pair. It
indicates their similarity (larger is better here). (gi+n , gt+n )
denotes the matched image/text pair, while (gi+n , gt−n ) and
(gi−n , gt+n ) are the mismatched pairs. α denotes the margin
parameter. N is the number of triplet tuples sampled from
training set. Therefore, cross-media global alignment can
be fully exploited from both matched and mismatched im-
age/text pairs.

For local-level alignment, we aim to find the best match-
ing between text local representation lt and multiple image
local representations {li1, ..., lin} within a pair of image and
text. Specifically, for each text local representation, we se-
lect K nearest neighbors (KNN) from multiple image local
representations, and give the following objective function:

Llocal =

max(0, α− 1

K

K∑
k=1

d(lt+, li+k ) +
1

K

K∑
k=1

d(lt+, li−k )) (9)

where d(.) is dot product indicating their similarity (also
larger is better here). While we consider that average simi-
larity of K nearest local pairs in the matched image and text
should be larger, compared with that in the mismatched im-
age/text pair, which can fully exploit the cross-media local
alignment.

For the relation-level alignment, we attempt to explore the
alignment between text relation representation rt and multi-
ple image relation representations in ri within a pair of im-
age and text. Similar to local alignment, we also adopt KNN
measurement to select K nearest image relation representa-
tions for each text relation representation, which aims to fully
model the matched relation pairs between image and text, and
ignore those misalignments. Thus, the objective function is
defined as follows:

Lrelation =

max(0, α− 1

K

K∑
k=1

d(rt+, ri+k ) +
1

K

K∑
k=1

d(rt+, ri−k )) (10)

where d(.) is the dot product to indicate the relation similar-
ity between different media types, which the relation simi-
larity is maximized between the K nearest relation pairs in
the matched image and text to fully explore the cross-media
relation alignment.
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Method Image annotation Image retrieval
R@1 R@5 R@10 R@1 R@5 R@10

Our CRAN Approach 0.381 0.708 0.828 0.381 0.711 0.826
CCL 0.377 0.694 0.811 0.373 0.684 0.800

DCCA 0.279 0.569 0.682 0.268 0.529 0.669
Corr-AE 0.303 0.615 0.740 0.238 0.575 0.707

Multimodal DBN 0.064 0.194 0.296 0.047 0.151 0.232
Bimodal AE 0.127 0.324 0.452 0.110 0.328 0.450

GMM+HGLMM 0.350 0.620 0.738 0.250 0.527 0.660
MACC 0.139 0.341 0.463 0.353 0.660 0.782
KCCA 0.108 0.281 0.399 0.158 0.400 0.543
CFA 0.192 0.449 0.574 0.242 0.566 0.683
CCA 0.076 0.205 0.302 0.091 0.268 0.390

Table 1: The performance of cross-media retrieval, which shows the recall scores of two retrieval tasks on Flickr-30K dataset.

Method Image annotation Image retrieval
R@1 R@5 R@10 R@1 R@5 R@10

Our CRAN Approach 0.230 0.520 0.660 0.211 0.489 0.645
CCL 0.186 0.474 0.625 0.196 0.469 0.623

DCCA 0.069 0.211 0.318 0.066 0.209 0.322
Corr-AE 0.154 0.397 0.532 0.138 0.353 0.478

Multimodal DBN 0.054 0.194 0.292 0.046 0.155 0.240
Bimodal AE 0.063 0.220 0.347 0.054 0.178 0.283

GMM+HGLMM 0.173 0.390 0.502 0.108 0.283 0.401
MACC 0.056 0.167 0.244 0.155 0.370 0.490
KCCA 0.072 0.202 0.305 0.020 0.074 0.122
CFA 0.086 0.258 0.371 0.150 0.381 0.514
CCA 0.041 0.142 0.226 0.041 0.155 0.251

Table 2: The performance of cross-media retrieval, which shows the recall scores of two retrieval tasks on MS-COCO dataset.

Finally, we design the cross-media similarity between im-
age ip and text tq that combines multi-level alignment.

sim(ip,tq) =

d(gi, gt) +
1

K

K∑
k=1

d(lik, l
t) +

1

K

K∑
k=1

d(rik, r
t) (11)

Thus, it can fully exploit the complementarity across multiple
alignments to capture global, local and relation information,
which can boost the performance of cross-media retrieval.

3.3 Implementation Details
Our proposed CRAN approach is implemented by Torch. For
generating image regions, all candidate image regions are de-
tected from Faster RCNN, and ordered by their scores. The
top 5 patches are picked up. The relation representation
within each image are generated by concatenating the fea-
tures of every two image regions in order. As a result, each
image has 20 candidate relation representations. For text,
each sentence is treated as a character sequence, where char-
acters are converted into one-hot vectors. The length of se-
quence is set as 201. The sentences larger than length of 201
are truncated, while those beneath the limit are padded by ze-
ros. There are three convolutional layers in Char-CNN, and
the parameter combinations are (384, 4), (512, 4) and (2048,
4). The first parameter means the number of kernels, and the
second refers to kernel width. The outputs of Char-CNN are
processed by an LSTM network. Their output dimension is
2048. We use fully-connected network in each subnetwork

to generate global, local and relation representations, which
have 1,024 dimensions. Besides, all the margins α in loss
functions are set to 1. We set K = 3 for local and relation
alignment in cross-media similarity measurement. The learn-
ing rate of our proposed approach is decreased by a half each
50 epochs, while it is initialized as 0.0004.

4 Experiment
4.1 Datasets
Here we briefly introduce 2 widely-used cross-media datasets
adopted in the experiment as follows.
• Flickr-30K dataset [Young et al., 2014] consists of

31,784 images from Flickr.com. Each image is anno-
tated by 5 sentences. Following [Peng et al., 2017;
Tran et al., 2016], there are 1,000 pairs in testing set and
1,000 pairs for validation, while the rest are for training.
• MS-COCO dataset [Lin et al., 2014] contains 123,287

images and each has 5 independent annotated sentences.
Following [Peng et al., 2017; Klein et al., 2015], there
are both 5,000 pairs split randomly as testing set and
validation set, while the rest are training set.

4.2 Compared Methods and Evaluation Metric
We conduct two kinds of cross-modal retrieval tasks on
Flickr-30K and MS-COCO datasets, following [Peng et al.,
2017; Klein et al., 2015].
• Image annotation. Retrieving groundtruth sentences

given a query image (image→text).
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Dataset Method Image annotation Image retrieval
R@1 R@5 R@10 R@1 R@5 R@10

Flickr-30K

Our CRAN Approach 0.381 0.708 0.828 0.381 0.711 0.826
CRAN-relation 0.330 0.642 0.771 0.353 0.659 0.788

CRAN-local 0.332 0.645 0.776 0.331 0.675 0.786
CRAN-baseline 0.289 0.601 0.722 0.281 0.620 0.752

MS-COCO

Our CRAN Approach 0.230 0.520 0.660 0.211 0.489 0.645
CRAN-relation 0.171 0.435 0.577 0.190 0.446 0.600

CRAN-local 0.207 0.494 0.632 0.209 0.484 0.633
CRAN-baseline 0.157 0.410 0.548 0.155 0.411 0.562

Table 3: Baseline comparisons for each component in our proposed CRAN approach on 2 cross-media datasets.

• Image retrieval. Retrieving groundtruth images given a
query text (text→image).

We report the score of Recall@K following [Peng et al.,
2017; Klein et al., 2015] as evaluation metric, which includes
recall rates at top 1 result (R@1), top 5 results (R@5) and top
10 results (R@10). We compare our CRAN approach with 10
state-of-the-art methods to verify its effectiveness, including
5 traditional methods CCA [Rasiwasia et al., 2010], CFA [Li
et al., 2003], KCCA [Hardoon et al., 2004], MACC [Tran et
al., 2016], GMM+HGLMM [Klein et al., 2015], as well as 5
deep learning based methods namely Bimodal AE [Ngiam et
al., 2011], Multimodal DBN [Srivastava and Salakhutdinov,
2012], Corr-AE [Feng et al., 2014], DCCA [Yan and Mikola-
jczyk, 2015] and CCL [Peng et al., 2017]. Note that for fair
and objective comparison purpose, feature extraction of all
compared methods is exactly following [Peng et al., 2017],
and data of different media types can be converted to com-
mon representations with the same number of dimensions in
testing stage. Thus, cross-media similarity can be directly
computed between query and any data.

4.3 Comparisons with State-of-the-art Methods
In this part, we compare the accuracy of cross-media retrieval
to evaluate the performance of cross-media correlation learn-
ing. Experimental results are shown in Tables 1 and 2, which
include recall scores of two retrieval tasks on 2 datasets. Ob-
viously, our proposed CRAN approach achieves the best re-
trieval accuracies. Among all compared methods, we can
draw the following observations: First, deep learning based
methods fail to lead ahead with traditional methods, which
remain large promotion space. Second, traditional methods
benefit from CNN image feature to get better performance,
and even outperform some of deep learning based methods,
such as CFA and GMM+HGLMM.

Then we present in-depth experimental analysis on cross-
media retrieval results. Compared with these traditional
methods, our proposed CRAN approach shows clear advan-
tage, for the fact that traditional methods mostly learn pro-
jection matrices, and they are limited to their traditional
framework. They cannot fully exploit the complex cross-
media correlation. Among deep learning based methods, our
proposed CRAN approach achieves promising improvement
with following 2 reasons: (1) Visual-language relation atten-
tion model explores both fine-grained patches and their rela-
tions of different media types, which can exploit cross-media
fine-grained local information, as well as intrinsic relation in-

formation with complementary clues for correlation learning.
(2) Cross-media multi-level alignment explores global, local
and relation alignments across different media types, which
can mutually boost for more precise cross-media correlation.

4.4 Baseline Comparisons
We conduct baseline experiment to verify the effectiveness of
each component in our proposed CRAN approach. Results
are shown in Table 3, where we apply only global alignment
as the baseline method denoted as “CRAN-baseline”. Be-
sides, “CRAN-local” means to add local alignment over the
baseline method, and “CRAN-relation” means to add relation
alignment over the baseline.

From the above results, we have the following observa-
tions: (1) Compared with “CRAN-baseline” that only with
global alignment, both “CRAN-local” and “CRAN-relation”
achieve better retrieval accuracies. It indicates that modeling
the local alignment as well as the relation alignment can fur-
ther boost the cross-modal learning. (2) Our proposed CRAN
approach outperforms all of them, for the fact that fusion of
multi-level alignment can fully exploit their complementary
information, and learn more precise cross-media correlation.

5 Conclusion
In this paper, we have proposed Cross-media Relation Atten-
tion Network to explore multi-level alignment between dif-
ferent media types. First, visual-language relation attention
model is proposed to exploit both fine-grained patches and
their relations, which can capture complementary hints in
cross-media correlation learning. Second, cross-media multi-
level alignment is proposed to model global, local and re-
lation alignments, which can mutually boost to learn more
precise cross-media correlation. We conduct experiments on
cross-modal retrieval to verify the effectiveness of our ap-
proach. In the future work, we will exploit unlabeled data
to perform unsupervised learning for practical applications.
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