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Abstract

Person Re-identification (RelD) is a challenging re-
trieval task that requires matching a person’s image
across non-overlapping camera views. The quality
of fulfilling this task is largely determined on the
robustness of the features that are used to describe
the person. In this paper, we show the advantage
of jointly utilizing multi-scale abstract informa-
tion to learn powerful features over full body and
parts. A scale normalization module is proposed
to balance different scales through residual-based
integration. To exploit the information hidden in
non-rigid body parts, we propose an anchor-based
method to capture the local contents by stacking
convolutions of kernels with various aspect ratios,
which focus on different spatial distributions. Fi-
nally, a well-defined framework is constructed for
simultaneously learning the representations of both
full body and parts. Extensive experiments con-
ducted on current challenging large-scale person
RelD datasets, including Market1501, CUHKO03
and DukeMTMC, demonstrate that our proposed
method achieves the state-of-the-art results.

1 Introduction

Person re-identification (ReID) aims to search for the same
person across different cameras with a given query image.
It has attracted much attention in recent years due to its im-
portance in many practical applications, such as security and
protection monitoring in public area and content-based im-
age retrieval [Li ef al., 2017a]. Despite of years of efforts, it
still has many challenges, such as the large variations in per-
son pose, illumination variance, domain gaps among different
camera views, and background clutters.

The overall motivation of RelD is to obtain a location-
invariant and view-free representation or learn a matching
distance metric across domains of two disjoint camera views.
Therefore, most existing studies typically focus on either fea-
ture representation [Kviatkovsky er al., 2013; Liao et al.,
2015; Li et al., 2017a] or matching distance metrics [Chen et
al., 2016; Koestinger er al., 2012; Liao et al., 2015]. For most
RelD tasks, the acquired person images are often indistinct.
Thus how to exploit the local detailed features is still an open
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problem. Most ReID methods use predefined grids to encode
local structural information by different image decomposi-
tion schemes, such as horizontal stripes [Kviatkovsky et al.,
2013], body parts [Farenzena et al., 2010], and patches [Liao
et al., 2015]. For example, some methods [Shi ef al., 2016;
Geng et al., 2016] split the input person image into square
overlapping patches from top to bottom, and learn discrimina-
tive feature representations in local regions. However, these
rigid-based methods often fail to achieve satisfactory perfor-
mances from images with noisy backgrounds or body occlu-
sion. The performances might be further degraded due to the
misaligned person images which are caused by the pose vari-
ations and imperfect pedestrian detectors. In these cases, the
predefined rigid grids may fail to capture correct correspon-
dences between two pedestrian images, leading to low gener-
alization and bad stability.

In contrast to local features, deep neural networks favor
intrinsically in learning global feature representations. Re-
cently, the methods in the family of deep global feature learn-
ing [Qian er al., 2017; Li et al., 2017a; Lin et al., 2017b; Geng
et al., 2016] have shown great potential on large-scale person
RelD datasets. But most popular networks [Xiao et al., 2016;
Zheng et al., 2016; Sun et al., 2017] typically stack single-
scale layers to generate the representation feature. How-
ever, these methods pay less attention to some fine-grained at-
tributes that are very useful to distinguish the pedestrian pairs
with small inter-class variations. Because of the down-sample
operations, small scale visual cues, such as bags, shoes and
hats, might be ignored, leading to the missing of these fine-
grained attributes. Thus in our opinion, these models might
not be the best choice for pedestrian feature learning.

We suggest that either local or global feature learning
alone is suboptimal. This is motivated by the human vi-
sual system that leverages both global (contextual) and local
(saliency) information concurrently [Navon, 1977]. To better
utilize these two types of representations, we propose a Scale-
normalization and Anchor-based Feature Extraction Network
(SafeNet) that learns full body and parts jointly. Given a
pedestrian image, feature maps with various scales will be
extracted from different convolutional layers of the backbone
network. Generally, shallow layers contain much more low-
level information and preserve the details of small objects.
Deeper layers pay more attention to high-level information,
such as gestures and clothing styles. To appropriately utilize



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Backbone Network

Pedestrian
Image

256@H/4xW/4
512@H/8xW/8

1024@H/16xW/16

______________________________

Unit
Down Sfmplinz
Residual Unit
Residual Unit
Down iamnling
Residual Unit
Residual Unit
Residual Unit
“Down Sampling

________________________

<G 1@H/8xW/8
Normalization

Scale
Normalization

Local
~ Embedding
Local

Horizontal

Anchor (H/8xW/8)@1x1

! 1
H |
g 1
I Vertical Anchor > Embedding =, |
: Local N :
| Square Anchor = Embedding —> Local \‘. |
| Horizontal Local . h
' :’r"::or’ - Embedding —>* \Feature ,/,v '
I . Local ) L |
| Vertical Anchor > Ermbedding ™ —D = H
H ]
I \ Square Anchor > Kecal) ‘oe/'(Hlls"Wllsl@l"l I
mbedding

|\ C@H/4xW/4 C@H/8xW/8 1@H/16xW/16 H

’

2048@H/32xW/32

(H/8xW/8+H/16xW/16)@1x1

Multi-scale Global Feature Embedding

| Scale C@H/axW/4 \ Annotations
Normalization S,
1 v ( b
i L M.x | 1 GlobalEmbedding |
lormali; ion 1 1
!
: Scale C@H/16xW/16 ! | Global Average !
I Normalization | : Pooling !
|
! scale | d
Normalization | 1 . |
! C@H/32xW/32 ! Local Embedding :
1 l l l ! |
I Global Global Global Global I : m I
1 1
| 1
] c@1x1 é\ & & % i ! |
| Global AN PPid , 1 Anchors with Different
! Feature 4CE1x1 =t | Types d
N J !
| 1
Pedestrian Descriptor ! Gallery 1 I | |
— | — :
Bottleneck | ! Scale Normalization Block |
Fused Classifier | i in_channels |
. 1
I . s | |
i ! BN, ReLU ad ]
. . | -
: L ! 5|
Query ! o 1
| | | hl |
P
u Euclidean | !
Distance l !

Identification Task

Figure 1: Illustration of the network architecture. The proposed SafeNet consists of four components: the residual-based backbone network,
the global representation with the multi-scale global feature embedding part, the local representation with the anchor-based local feature
extraction part and the fusion of full body and body parts for person identification tasks.

multiple scales with uneven channels, we propose a scale nor-
malization module to balance the contributions of each scale.
The global embedding is applied to the normalized features,
resulting in the global representation. To obtain the local one,
we propose various types of convolution kernels with differ-
ent aspect ratios, called anchors, to slide across the feature
maps. In this way, objects with different spatial distributions
can be learned. By applying local embedding, we can obtain
the local representation. Last, the global and local features
are fused to form the pedestrian descriptor. During test, the
Euclidean metric is adopted to compute the distance between
the L2 normalized person representations for RelD.

The contributions of this paper are summarized as follows:
1)We propose a Scale-normalization and Anchor-based Fea-
ture Extraction Network (SafeNet) to effectively utilize multi-
scale information and enhance the visual context for better
feature representation of pedestrians; 2)Instead of using rigid
grid-based methods to obtain local features, we propose to
use anchors with different aspect ratios to localize area-of-
interest adaptively; 3)We integrate the representation learning
processes of global (full body) and local (body parts) into a
unified framework. Moreover, our method can be expediently
extended through replacing of the backbone network. Exper-
imental results show that the fused pedestrian representations
greatly improve the performance of person RelD.

2 Related Work

Typical person ReID methods focus on two key points: de-
veloping a powerful feature representation or learning an ef-
fective metric to make the same person be close and different
ones far away. Here we mainly review the related methods.
There are many research efforts for developing better fea-
tures that are partially invariant to lighting, pose, and view-
point variations. Various features have been applied to person
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RelD, including color histograms [Farenzena er al., 2010] and
their variants local binary patterns (LBP) [Koestinger et al.,
2012], Gabor features [Li and Wang, 2013], and other visual
appearance or contextual cues. But hand-crafted features can
be easily affected by illumination variance and suffer from
low generalization and bad stability.

Deep learning approaches for person RelD tend to learn
person representation and similarity (distance) metric jointly.
Given a pair of person images, some work learns image
representations through pair-wise contrastive loss [Zheng
et al., 2013] or triplet ranking loss [Cheng er al., 2016;
Hermans et al., 2017; Wang er al., 2014], and use Euclidean
metric for comparison. Due to current large-scale person
RelD datasets, the ID-discriminative embedding feature have
shown great potentials. [Xiao et al., 2016] proposed the do-
main guided dropout to learn features over multiple datasets
simultaneously with identity classification loss. [Zheng et al.,
2016] learned the identity discriminative embedding feature
for video-based person RelD. However, most existing meth-
ods only consider layer-by-layer single-scale information and
ignore abundant multi-scale information.

To obtain part-based representation for person ReID, Some
deep learning methods [Cheng et al., 2016; Shi et al., 2016]
used predefined rigid grids as body parts, where each part is
fed into an individual branch. Different from them, our CNN
model improves the classical models in two ways. First, com-
pared with the models which only consider the single-scale
feature representation, we jointly utilize multi-scale informa-
tion through balance combination. Second, we propose to
capture the local context knowledge by stacking convolutions
of kernels with various aspect ratios. The treatment yields a
mechanism that is able to explore and exploit the information
hidden in the non-rigid body parts. A well-defined learning
framework is constructed for simultaneously learning the rep-
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resentations of the both body and those of the body parts.

3 Our Method

3.1 Problem Definition

We assume a set of n training images ® = {I,}? , with
the corresponding identity labels as ¥ = {y;}"_,. These
training images capture the visual appearance of n;q (where
yi € [1,---,n;q]) different people under non-overlapping
camera views. The focus of this approach is to learn pow-
erful feature representations about a pedestrian in order to
optimize person RelD under significant viewing condition
changes across locations. The overall framework of the pro-
posed method is shown in Figure 1. It is built upon three
kinds of complementary designs detailed in the following: 1)
Multi-scale global feature representations based on scale nor-
malization; 2) Anchor-based local feature extraction; 3) Joint
training of global and local representation.

3.2 Multi-scale Global Feature Embedding

For person RelD, the most important cues are visual attribute
knowledge, such as colors and types of clothes. However,
they have large variations in scale, shape and position, such
as the hat/sunglasses at small local scale and the cloth color at
larger scale. Directly using bottom-to-up single-scale convo-
lution and pooling may not be effective to handle these com-
plex variations. Especially, with the increasing number of
layers, the small visual regions, such as hats, will be easily
missed in top layers. To better learn these diverse visual cues,
we propose to use multi-scale information.

As shown in Figure 1, given an input pedestrian image I;,
the ResNet [He et al., 2016] is adopted to generate feature
maps with different scales. For each residual block which
consists of stacked residual units, there are many layers pro-
ducing output maps with the same size and we say these lay-
ers are in the same network stage. Following general oper-
ations [Qian et al., 2017], only the last layer of each stage
is chosen as the feature maps in particular stage. Specif-
ically, we denote the output of these last residual units as
{g1,82,83,84}, and denote that they have the strides of
{4, 8,16, 32} pixels with respect to the input image. These
feature maps have obvious difference in the amount of chan-
nels of {256, 512,1024, 2048} respectively. We suggest that
the straightforward concatenation of these features is inap-
propriate due to the uneven contributions for the person at-
tributes. Experimental results in Section 4.3 also prove that.

To solve this problem, features maps should be normalized
into the same channels with proper integration. However, sin-
gle convolutional layer may not learn the transformation pro-
cess adequately. Meanwhile, naive stacking layers will de-
grade the value of gradients in deep layers. Accordingly, we
propose a scale normalization module that consists of trunk
branch and shortcut. Similar to the idea in residual learning, if
the trunk branch can be constructed as channel mapping, the
performances should be no worse than the shortcut without it.
Thus we modify the output of scale normalization module as:

g = Flg, {Wi}) + W.g, (1)

where F is the non-linear mapping function, W; are the pa-
rameters of truck branch, W, are the parameters of shortcut
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Figure 2: Details of the local feature extraction. Anchors with var-
ious aspect ratios are adopted, corresponding to different receptive
fields.

matrix that performs a linear projection, g€ is the normal-
ized feature maps with the number of channels of C. The
detailed structure of the scale normalization module is shown
in the annotations of Figure 1. The truck branch tries to learn
powerful representations after the number changes of chan-
nels. It consists of 3 convolutional layers with kernel sizes
of {1x1, 3x3, 1x1}, following by BatchNormalization and
ReLU. The shortcut is a convolutional layer with 1x1 kernel.
It performs the maintenance of details. And its outputs are
added to the outputs of the trunk branch.

By using the scale normalization module to each scale,
the normalized feature maps can be obtained and noted as
{g¢, g5, ¥, g{}, resulting in the balance of scales. Then
global average pooling is adopted to the normalized feature
maps as the global embedding, resulting in feature vectors.
Finally, features from different scales are concatenated to
form the global representation with the length of 4C.

3.3 Anchor-based Local Feature Extraction

It has been shown in many methods [Cheng et al., 2016;
Shi et al., 2016; Liao ef al., 2015] that part-based representa-
tion is useful for person RelD. But most part-based methods
roughly decompose the extracted pedestrian into predefined
rigid body parts which approximately correspond to head,
shoulder, upper-body, upper-leg and lower-leg, respectively.
However, due to the unsatisfying pedestrian detection algo-
rithms and large pose variations, the methods of using rigid
body parts for local feature extraction is not the optimal so-
Iution. This motivates us to learn the local representation ac-
cording to the spatial distributions of objects.

We assume that objects with particular spatial distributions
will be activated in varying degrees under different receptive
fields [Theunissen et al., 2001]. Based on this assumption,
we design a anchor-based local feature extraction structure.
As shown in Figure 2, for a given feature map, convolutional
features are computed with different kernels, corresponding
to different receptive fields. We define various types of con-
volutional kernels, called anchors, with aspect ratios of {1:2,
2:1, 1:1}. These aspect ratios represents objects with spatial
distributions of horizontal, vertical and square, respectively.
Besides, it is not necessary to have multi-scale anchors be-
cause anchors will slide over more than one scale.

The unified structure is shown in Figure 1. First, the scale
normalization modules are adopted to obtain local informa-
tion. Distinctively, the normalized feature maps are denoted
by 1. Second, the anchors are applied to each scale, resulting
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Horizontal Vertical Square Horizontal Vertical Square

Figure 3: Heat maps of the learned local features. Red regions are
highly activated. Blue regions attract less attentions. Diverse an-
chors have different area-of-interests. Generally, backgrounds at-
tract less attentions than pedestrians.

in different local activations. It can be denoted by:
1 “ " hor} 2
= anl ® anchory, 2)
k € {horizontal, vertical, square},

where n is the number of channel and the corresponding an-
chor, k stands for the type of anchors and ® denotes the con-
volution operation. Local information can be obtained by the
summation of the learned feature maps 1 = 1, + 1,, + 1. Fi-
nally, 1 is flattened to a vector as the local feature for each
scale. For multiple scales, features of different scales are
concatenated to form the local representation. Since shallow
layers have small strides with respect to the input image, we
consider that local details will be kept most in these layers.

We demonstrate some visualization results of {15,1,,15}
in Figure 3. These prove our assumption and show the acti-
vated regions under different receptive fields. As can be seen,
the horizontal anchors focus on horizontally distributed ob-
jects, such as walking legs, bags and skirts. Regions with
legs, arms and hairs will be activated with the vertical an-
chors. As for the square ones, body trucks, knapsacks and
heads will be noticed. Notably, this is not unalterable since
there exist various types of poses and clothes. What’s more,
most backgrounds can be eliminated, resulting in more robust
local feature learning. These anchors have different concerns
and come together to form the local representations.

3.4 Joint Training of Local and Global Features

The global and local branches have complementary strengths
for learning discriminative pedestrian descriptors. To lever-
age these complementaries, we jointly train the whole net-
work to predict person identity for both part-based and global
feature learning. The joint training is built upon a multi-class
person identification task. Structurally, a two-layer fully con-
nected block is used, where features are named as fused, bot-
tleneck and classifier. The bottleneck is used to ease the in-
fluence of straightforward concatenation as well as enhance
the ability of representation. The Softmax loss is used:

1 N exp(Wy, fi + by,)
;C = N Zi:l 10

g (3)
Yooy exp(WT f; + b))
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Anchors kernel stride padding
horizontal 4, 8) 2,2) (1,3)
vertical 8.4 (2,2) 3,1
square (6, 6) (2,2) (2,2)

Table 1: Details of Three Types of Anchors

where f; is the classifier feature of the i-th sample, y; is the
identity, N is the number of samples, W; and b, is the weight
and bias of the classifier for the j-th identity, respectively .

4 Experiments

4.1 Implementation Details

The proposed model is built on PyTorch framework. The
backbone network is the ResNet-50/101 model pre-tained on
ImageNet. We follow common dataset augmentation strate-
gies with different scales and aspect ratios to train our model.
We randomly crop each resized image with scale in the in-
terval [0.64, 1.0] and aspect ratio in [2,3]. Then the cropped
patch is resized to 256 x 128. To prevent overfitting, randomly
horizontal flip with a probability of 0.5 is also applied. Dur-
ing testing phase, images are simply resized to 256 128. Be-
fore feeding the input image to the network, we subtract the
mean value and divide the standard deviation. The SGD op-
timizer is used to minimize the loss function £ given in Eq 3.
The initial learning rate for the backbone network is 0.01 and
the rest parts are 0.001. The total number of training epochs
for all conducted experiments are set to 80. The mini-batch
size is set to 128 for all experiments.

As for the local anchors, we give the details in Table 1.
Experiments in Section 4.3 prove the effectiveness of the de-
signed sizes. Visualization results also indicate these anchors
can capture most person parts adaptively.

4.2 Datasets and Evaluation Results

Datasets and Evaluation Protocol

We use three widely used person RelD benchmark datasets,
CUHKO3 [Li et al., 20141, Market-1501 [Zheng et al., 2015]
and DukeMTMC-ReID [Ristani ef al., 2016], for perfor-
mance evaluations. All the datasets contain a set of persons,
each of whom has several images captured by different cam-
eras. The following is brief descriptions of these datasets:

CUHKO3: It contains 1, 360 identities and 12, 164 person
images which are captured by six surveillance cameras in
campus. Each identity is captured by two disjoint cameras. It
offers a 20-split dividing, resulting in a training set with 1260
ids and a testing set with 100 ids. The average of 20-split is
adopted as final results.

Market-1501: It contains 1,501 identities which are cap-
tured by six manually set cameras. There are 32, 368 pedes-
trian images in total. As official setting, 751 ids are used for
training and the rest 750 ids are used for testing. The query
contains 3368 images.

DukeMTMC-RelD: Constructed from the multi-camera
tracking dataset DukeMTMC, it contains 1,812 identities.
702 identities are used as the training set and the remaining
1,110 identities as the testing set. It contains 36411 images
in total. 2228 images are used as queries.
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Methods Labeled Detected

Rl R5 RIO RI RS RIO
XQDA [Liao et al., 2015] 522 822 92.1 463 789 88.6
MLAPG [Liao and Li, 2015] 579 87.1 947 512 83.6 92.1
DNS [Zhang et al., 2016al 62.5 90.1 94.8 54.7 84.7 94.8
SS-SVM [Zhang et al., 2016b] 57.0 85.7 943 51.2 80.8 89.6
EDM [Shi et al., 2016] 61.3 889 96.4 52.1 829 91.8
OL-MANS [Zhou et al.,2017a]l ~ 61.7 88.4 952 62.7 87.6 93.8
MSCAN [Li et al., 2017a] 742 943 975 68.0 91.0 954
MuDeep [Qian ez al., 2017] 769 96.1 984 756 944 975
JLML [Li et al., 2017b] 83.2 98.0 994 80.6 96.9 98.7
Single scale 76.0 943 97.8 71.2 91.3 953
Multiple scales (Global only) 843 93.6 96.1 823 92.0 95.8
SafeNet (ResNet-50) 86.3 97.8 99.1 84.0 96.3 982
SafeNet (ResNet-101) 87.2 98.1 99.3 84.1 97.2 984

Table 2: Evaluation on CUHKO3 using labeled pedestrian bounding
boxes and automatic detections by DPM.

Methods Single Query  Multi Query
R1 mAP Rl mAP
LDNS [Zhang e al., 2016al 554  29.8 71.6  46.0
Gated S-CNN [Varior et al., 2016] 659 39.6 76.0 485
P2S [Zhou et al., 2017b] 70.7 443 85.8 557
CRAFT [Chen et al., 2018] 71.8 455 79.7 543
CADL [Lin et al., 2017a] 73.8 47.1 80.8 55.6
MSCAN [Li et al., 2017al 80.3 575 86.8 66.7
LSRO [Zheng et al., 2017b] 83.9 66.1 88.4 76.1
DeepTransfer[Geng er al., 2016] 83.7 65.5 89.6 73.8
TriNet [Hermans et al., 20171 849 69.1 90.5 76.4
JLML [Li et al., 2017b] 85.1 655 89.7 74.5
Single scale 81.7 59.8 87.6 674
Multiple scales (Global only) 86.4 683 91.5 78.0
SafeNet (ResNet-50) 90.2 727 93.1 81.6
SafeNet (ResNet-101) 91.5 754 94.7 84.2

Table 3: Comparison with state-of-the-art results on Market-1501.
Both single and multi query results are reported.

We follow the standard evaluation protocol. The cumula-
tive matching characteristics (CMC) at rank-1 and mean aver-
age precision (mAP) are adopted for performance evaluation
on Market-1501 and DukeMTMC-RelD. The precisions of
rank-1, rank-5, and rank-10 are reported for CUHKO03. Fol-
lowing most related works, the evaluation on CHUKO3 and
DukeMTMC-RelD is performed under single query. Both
single and multiple query settings are used for Market-1501.
Re-ranking is not adopted in our method.

Evaluation on CUHKO03

Table 2 shows the comparisons against 9 existing methods on
CUHKO3. It is evident that our method outperforms exist-
ing methods in all categories on both labelled and detected
bounding boxes, surpassing the 2nd best performers MuDeep
and JLML on corresponding labelled images in R1 by 9.4%
and 3.1%. Compared with MSCAN that also utilize multi-
scale, the performance of our is better, improving R1 by
12.1% and 13.7% for labeled and detected. Both labeled
and detected ones indicate the robustness and competitiveness
of our approach in mining local and global discriminative
features. Higher results can be obtained through replacing
the backbone network with deeper one. We demonstrate the
query matching results in Figure 4. Remarkably, our meth-
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Query

Green box denotes the correct matching result.

Methods R1  mAP
LOMO+XQDA [Liao et al., 2015] 30.8 17.1
LSRO [Zheng et al., 2017b] 67.7 47.1
AttIDNet [Lin et al., 2017b] 70.7 51.2
PAN [Zheng et al., 2017al 71.6 515
ACRN [Schumann and Stiefelhagen, 2017] 72.6 52.0
SVDNet [Sun ez al., 2017] 76.7 56.8
DPFL [Chen et al., 2018] 79.2  60.6
Single scale 739 519
Multiple scales (Global only) 80.8 525
SafeNet (ResNet-50) 82.7 57.0
SafeNet (ResNet-101) 83.6 58.4

Table 4: Quantitative comparison with state-of-the-art methods on
DukeMTMC-RelD.

ods can handle the situations that suffer from occlusion or the
badly-lighted environment.

Evaluation on Market-1501

As depicted in Table 3, the proposed method achieves the
SOTA results on Market-1501. Compared with existing
multi-scale methods, such as MSCAN and TriNet, the per-
formance of our model is substantially better, e.g. improv-
ing R1 by 9.9% and 5.3% for single query. Compared with
full body-based network Gated S-CNN, the proposed network
structure can better capture pedestrian features. Concretely,
our method improves R1 by 5.1% to JLML in single query
and 2.4% in multiple query. By using deeper backbone net-
work ResNet101, we can achieve much higher R1 by 91.5%,
and mAP by 75.4% in single query and R1 by 94.7% in mul-
tiple query. These results show consistent superiority and ro-
bustness of the proposed model over the existing methods.

Evaluation on DukeMTMC-ReID

The comparison with state-of-the-art methods is depicted in
Table 4, our method also outperforms all approaches. Com-
pared with the AttIDNet which utilizes additional attributes
information, our method outperforms in Rank-1 by 12.0%.
Compared to DPFL which learns multi-scale feature using
image pyramid inputs, our method achieve an improvement
of 3.5% by Rank-1 under much less computations. By us-
ing ResNet-101, the higher results can be obtained 83.6% by
Rank-1. This also demonstrates the robustness and expand-
ability of our method when replacing the backbone network.
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scales R1 RS R10 mAP
g4 81.7 923 950 59.8
4,83 84.0 94.1 963 63.8
4,83, 82 864 946 96.6 63.0
g4,83,82,81 86.4 944 96.5 683
gl 5,85, gf (C=128) 879 952 97.0 70.0
ggg , g ,gb (C=256) 88.1 952 96.8 7I.1
g5 ,85,85,87 (C=512) 88.7 955 971 716
multi-global (C=256) + 1; 89.8 96.1 975 729
multi-global (C=256) + 11, 15 90.2 96.2 975 727
multi-global (C=256) + 11, 12,13 88.8 953 973 708

multi-global (C=256) + 11, 12,13, 14 88.1 954 971 679

Table 5: Ablation Analysis of Different Components.

4.3 Ablation Analysis and Discussion

We further evaluate several variants of our network to verify
the effectiveness of each individual component. Without loss
of generality, the ablation study is performed on Market-1501
under single query, using the same settings in Sec. 4.1.

Effectiveness of Multi-scale Information

The proposed method relies on multi-scale contents. To eval-
uate the contributions of different components, we test differ-
ent combinations and parameters C'. As shown in Table 5,
compared with single scale, the four-scale representation can
improve the result by 4.7% on R1 and 7.5% on mAP. But g4
will domain the pedestrian feature by straightforward fusion
because of the 2048-dimension. By adopting scale normal-
ization, different scales are balanced during fusion, resulting
in boosting of R1 to 88.7%. Larger C leads to better perfor-
mance but consumes higher computation complexity. Experi-
ments show the advantages of multi-scale features over single
scale counterparts in ReID. Moreover, direct multi-scale con-
catenation may result in suboptimal optimization. Scale nor-
malization is an effective approach to handle this problem.

Effectiveness of Local Part-based Context

To evaluate the local parts, we test under different scales. In
Table 5 (below), better results can be obtained in comparison
with global branch by 2.1% on R1 and 1.6% on mAP. Results
in Table 2 and Table 4 also suggest our improvements. The
main reason is that the pedestrians detected by DPM consist
much more background and the part-based representation can
better reduce the influences of background clutters. The best
results are gotten when only the first two scales are used. It
can be explained that shallow layers have small strides with
respect to the input image and keep more details about lo-
cal information. Besides, anchors with different sizes are
tested, including large ones {(6,12), (12,6), (9,9)}, middle
ones {(4,8), (8,4), (6,6)} and small ones {(2,4), (4,2), (3,3)}.
Results in Figure 5(a) show the middle ones are more effec-
tive. We also make additional experiments to verify the im-
portance of each anchor. The ablation of horizontal one leads
to R1 by 89.5% and mAP by 72.0%. The absence of vertical
one achieves R1 by 88.9% and mAP by 71.5%. The lack of
square one leads to R1 by 88.2% and mAP by 71.0%. These
prove each anchor is indispensable and complementary.

Choice of Final Pedestrian Descriptor
In our method, there exist four candidates to be the pedes-
trian descriptor: 1) the global feature, 2) the fused feature,

(a) Effectiveness of Anchor Size (b) Effectiveness of the Choice of Descriptor
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Figure 5: CMC and time consumption curves.

3) the bottleneck and 4) the classifier. As shown in Figure
5(b), the fused feature outperforms the global one because
of additional local information. The bottleneck can ease the
influence caused by fusion, resulting in more discriminative
representations and an improvement by 1.9% on R1. How-
ever, when the classifier is used, it suffers a 1.6% mAP drop.
One possible reason is that the identification loss makes the
features near the classification layer focus more on the differ-
ence of training identities. Such feature might be discrimina-
tive for identities in training, but is not useful for the unseen
identities during test. These comparison motivate us to use
the bottleneck feature as the final pedestrian descriptor.

Effectiveness of Bottleneck

As shown in Figure 5(c), the dimension of the bottleneck
affects the performance slightly. Relatively, the dimensions
of {512,1024} achieve better performance. Time consump-
tion of computing the pairwise distance matrix between query
and gallery are also reported in Figure 5(d). It indicates that
fewer dimensions lead to insufficient expression and larger
ones suffer from huge time-consumption during the pedes-
trian retrieval. On balance, the dimension of 1024 is selected.

5 Conclusion

In this paper, we have proposed the SafeNet for person RelD
which demonstrates the advantage of jointly utilizing multi-
scale abstract information to learn powerful features over full
body and parts. The proposed scale normalization module
is an effective way to balance different scales with residual-
based integration. By designing anchors with different aspect
ratios, the local context knowledge hidden in non-rigid body
parts can be obtained as the complement to the global fea-
ture. The well-defined framework can simultaneously learn
the representations of the both body and those of the body
parts. Extensive comparative evaluations on current challeng-
ing large-scale person RelD datasets demonstrate that the pro-
posed method achieves the state-of-the-art results.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under Grants 91646207 and 61573352.

1126



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

References

[Chen er al., 2016] Dapeng Chen, Zejian Yuan, Badong Chen, and
Nanning Zheng. Similarity learning with spatial constraints for
person re-identification. In CVPR, pages 1268-1277, 2016.

[Chen er al., 2018] Ying-Cong Chen, Xiatian Zhu, Wei-Shi Zheng,
and Jian-Huang Lai. Person re-identification by camera correla-
tion aware feature augmentation. TPAMI, 40(2):392-408, 2018.

[Cheng er al., 2016] De Cheng, Yihong Gong, Sanping Zhou, Jin-
jun Wang, and Nanning Zheng. Person re-identification by multi-
channel parts-based cnn with improved triplet loss function. In
CVPR, pages 1335-1344, 2016.

[Farenzena et al., 2010] Michela Farenzena, Loris Bazzani,
Alessandro Perina, Vittorio Murino, and Marco Cristani. Person
re-identification by symmetry-driven accumulation of local
features. In CVPR, pages 2360-2367, 2010.

[Geng et al., 2016] Mengyue Geng, Yaowei Wang, Tao Xiang,
and Yonghong Tian. Deep transfer learning for person re-
identification. arXiv preprint:1611.05244, 2016.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recognition. In CVPR,
pages 770-778, 2016.

[Hermans er al., 2017] Alexander Hermans, Lucas Beyer, and Bas-
tian Leibe. In defense of the triplet loss for person re-
identification. arXiv preprint:1703.07737,2017.

[Koestinger et al., 2012] Martin Koestinger, Martin Hirzer, Paul
Wohlhart, Peter M Roth, and Horst Bischof. Large scale met-
ric learning from equivalence constraints. In CVPR, 2012.

[Kviatkovsky et al., 2013] Igor Kviatkovsky, Amit Adam, and
Ehud Rivlin. Color invariants for person reidentification. TPAMI,
35(7):1622-1634, 2013.

[Li and Wang, 2013] Wei Li and Xiaogang Wang. Locally aligned
feature transforms across views. In CVPR, 2013.

[Li et al., 2014] Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang.
Deepreid: Deep filter pairing neural network for person re-
identification. In CVPR, pages 152-159, 2014.

[Li er al., 2017a] Dangwei Li, Xiaotang Chen, Zhang Zhang, and
Kaiqi Huang. Learning deep context-aware features over body
and latent parts for person re-identification. In CVPR, 2017.

[Li er al., 2017b] Wei Li, Xiatian Zhu, and Shaogang Gong. Person
re-identification by deep joint learning of multi-loss classifica-
tion. IJCAI, pages 770-778, 2017.

[Liao and Li, 2015] Shengcai Liao and Stan Z Li. Efficient psd con-
strained asymmetric metric learning for person re-identification.
In ICCV, pages 3685-3693, 2015.

[Liao et al., 2015] Shengcai Liao, Yang Hu, Xiangyu Zhu, and
Stan Z Li. Person re-identification by local maximal occurrence
representation and metric learning. In CVPR, 2015.

[Lin er al., 2017a] Ji Lin, Liangliang Ren, Jiwen Lu, Jianjiang
Feng, and Jie Zhou. Consistent-aware deep learning for person
re-identification in a camera network. In CVPR, volume 6, 2017.

[Lin et al., 2017b] Yutian Lin, Liang Zheng, Zhedong Zheng,
Yu Wu, and Yi Yang. Improving person re-identification by at-
tribute and identity learning. arXiv preprint:1703.07220, 2017.

[Navon, 1977] David Navon. Forest before trees: The precedence
of global features in visual perception. CP, 9(3):353-383, 1977.

[Qian eral., 2017] Xuelin Qian, Yanwei Fu, Yu-Gang Jiang, Tao
Xiang, and Xiangyang Xue. Multi-scale deep learning architec-
tures for person re-identification. /CCV, 2017.

1127

[Ristani ef al., 2016] Ergys Ristani, Francesco Solera, Roger Zou,
Rita Cucchiara, and Carlo Tomasi. Performance measures and a
data set for multi-target, multi-camera tracking. In ECCV, pages
17-35, 2016.

[Schumann and Stiefelhagen, 2017] Arne Schumann and Rainer
Stiefelhagen. Person re-identification by deep learning attribute-
complementary information. In CVPR Workshop, 2017.

[Shi et al., 2016] Hailin Shi, Yang Yang, Xiangyu Zhu, Shengcai
Liao, Zhen Lei, Weishi Zheng, and Stan Z Li. Embedding deep
metric for person re-identification: A study against large varia-
tions. In ECCV, pages 732-748, 2016.

[Sun et al.,2017] Yifan Sun, Liang Zheng, Weijian Deng, and
Shengjin Wang. Svdnet for pedestrian retrieval. In ICCV, pages
3820-3828, 2017.

[Theunissen et al., 2001] F. E. Theunissen, S. V. David, N. C.
Singh, A Hsu, W. E. Vinje, and J. L. Gallant. Estimating spatio-
temporal receptive fields of auditory and visual neurons from
their responses to natural stimuli. NCNS, 12(3):289-316, 2001.

[Varior et al., 2016] Rahul Rama Varior, Mrinal Haloi, and Gang
Wang. Gated siamese convolutional neural network architecture
for human re-identification. In ECCV, pages 791-808, 2016.

[Wang er al., 2014] Jiang Wang, Yang Song, Thomas Leung,
Chuck Rosenberg, Jingbin Wang, James Philbin, Bo Chen, and
Ying Wu. Learning fine-grained image similarity with deep rank-
ing. In ICCV, pages 1386-1393, 2014.

[Xiao et al., 2016] Tong Xiao, Hongsheng Li, Wanli Ouyang, and
Xiaogang Wang. Learning deep feature representations with do-
main guided dropout for person re-identification. In /ICCV, pages
1249-1258, 2016.

[Zhang et al., 2016a] Li Zhang, Tao Xiang, and Shaogang Gong.
Learning a discriminative null space for person re-identification.
In CVPR, pages 1239-1248, 2016.

[Zhang et al., 2016b] Ying Zhang, Baohua Li, Huchuan Lu, At-
shushi Irie, and Xiang Ruan. Sample-specific svm learning for
person re-identification. In CVPR, pages 1278-1287, 2016.

[Zheng et al., 2013] Wei-Shi Zheng, Shaogang Gong, and Tao Xi-
ang. Reidentification by relative distance comparison. TPAMI,
35(3):653-668, 2013.

[Zheng et al., 2015] Liang Zheng, Liyue Shen, Lu Tian, Shengjin
Wang, Jingdong Wang, and Qi Tian. Scalable person re-
identification: A benchmark. In ICCV, pages 1116-1124, 2015.

[Zheng et al., 2016] Liang Zheng, Zhi Bie, Yifan Sun, Jingdong
Wang, Chi Su, Shengjin Wang, and Qi Tian. Mars: A video
benchmark for large-scale person re-identification. In ECCV,
pages 868-884, 2016.

[Zheng et al., 2017a]l Zhedong Zheng, Liang Zheng, and Yi Yang.
Pedestrian alignment network for large-scale person re-
identification. arXiv preprint:1707.00408, 2017.

[Zheng et al., 2017b] Zhedong Zheng, Liang Zheng, and Yi Yang.
Unlabeled samples generated by gan improve the person re-
identification baseline in vitro. In ICCV, 2017.

[Zhou et al., 2017a] Jiahuan Zhou, Pei Yu, Wei Tang, and Ying Wu.
Efficient online local metric adaptation via negative samples for
person re-identification. In CVPR, 2017.

[Zhou er al., 2017b] Sanping Zhou, Jinjun Wang, Jiayun Wang, Yi-
hong Gong, and Nanning Zheng. Point to set similarity based
deep feature learning for person re-identification. In CVPR, vol-
ume 6, 2017.



