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Abstract
In this paper, we propose a Multi-task Learning Ap-
proach for Image Captioning (MLAIC), motivated
by the fact that humans have no difficulty perform-
ing such task because they have the capabilities of
multiple domains. Specifically, MLAIC consists of
three key components: (i) A multi-object classifi-
cation model that learns rich category-aware image
representations using a CNN image encoder; (ii) A
syntax generation model that learns better syntax-
aware LSTM based decoder; (iii) An image cap-
tioning model that generates image descriptions in
text, sharing its CNN encoder and LSTM decoder
with the object classification task and the syntax
generation task, respectively. In particular, the im-
age captioning model can benefit from the addi-
tional object categorization and syntax knowledge.
The experimental results on MS-COCO dataset
demonstrate that our model achieves impressive re-
sults compared to other strong competitors.1

1 Introduction
Humans have the remarkable capability to describe an im-
age verbally because they are naturally multi-task intelligent
agents. Humans have developed those skills since childhood
by not only learning to perform a single task, but rather adapt-
ing to comprehend the complex outer world via multi-channel
perceptions and communications. They are trained in fact by
performing multiple relevant tasks together to develop a com-
prehensive set of skills to understand and describe a scenario.
If one desires to create a machine intelligence imitating such a
comprehensive skill set of human, studying all relevant tasks
that contribute its development is quite a necessary step.

In this paper, we are motivated by the fact that a cognitive
AI is by nature multi-tasking and develop a computerized im-
age captioning agent that can also perform a few other related
tasks. Image captioning, as to generate a sentence describing
the salient aspects of an image, is a fundamental task in com-
puter vision and natural language processing [Bernardi et al.,
∗Min Yang is corresponding author (min.yang@siat.ac.cn)
1Codes are publicly available at https://goo.gl/iZtCBB.

w/o syntax: a man holding a tennis
ball with a tennis ball.

a suitcase filled with
lots of items and.

w/o object: a man holding a tennis
ball.

a suitcase filled with
lots of items.

Our Model: a man hitting a tennis
ball with a tennis racket.

a suitcase filled with
lots of items on a bed.

Table 1: Examples of captions that fail to respect to syntax structure
and missing salient object “bed” and “racket”.

2016]. In recent years, it is often approached with supervised
learning framework by collecting human generated examples
and developing models that base on matching the generated
text to those collected annotations. We suppose such learning
frameworks are theoretically of limited success in two dimen-
sions. First, the model created from the collected data can
only comprehend the complexity of the problem subject to
the degree of complexities of presented examples. Since the
dataset is more or less a finite collection, the presented com-
plexities should be limited. Second, the loss function used
in numerically optimizing the model is often not sensitive to
certain aspects of the structured output that have not been
emphasized in the conventional evaluation metric of image
captioning, such as object categories and syntax of generated
sentences. In fact, we show that exposing the learning frame-
work with more relevant data and objectives can be helpful in
both dimensions.

Multi-task learning is hardly a new idea for machine learn-
ing, but often remains as a non-trivial step for building empir-
ically successful systems. We argue that it is essentially the
case for creating an effective image captioning system. In an
ablation study of our models (see Table 1), a model which is
unaware of the sentence syntax could generate a broken sen-
tence for describing a picture; a model which does not rec-
ognize all presented objects could generate a descriptive sen-
tence missing a salient object in the picture. Yet, an improved
system whose components have been co-trained with mul-
tiple related tasks could generate a more satisfied sentence
for accurately and correctly describing a picture. Based on

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1205



this observation, we believe a multi-task learning framework
helps to improve an image captioning system in dimensions
that have not been quantitatively measured in conventional
evaluation metrics.

Our system exploits the recent successes of the encoder-
decoder framework to generate image captions [Karpathy and
Fei-Fei, 2015; Vinyals et al., 2015]. The common idea of this
framework is to use a convolutional neural network (CNN) as
an encoder to extract features representing the visual under-
standings of an input image and then feed the feature vector
to a recurrent neural network (RNN) based decoder so as to
generate image captions. Sharing this standard framework
with other related approaches, we in this paper propose ad-
ditional regularizations using multi-task learning. Firstly, our
CNN encoder is regularized with the co-training to perform
an additional task of multi-object classification. Secondly,
our RNN decoder is also regularized with the co-training to
perform another task of syntax annotation [Nadejde et al.,
2017]. The purpose of co-training is not to achieve the best
performance on these auxiliary tasks, but rather to compen-
sate for the missing regularization requirement of image cap-
tions in the standard framework.

We summarize our main contributions as follows:

• We propose MLAIC, a multi-task learning system to
jointly train the task of image captioning and two other
related tasks: multi-object classification and syntax gen-
eration. The auxiliary tasks help to enhance the CNN
encoder and the RNN decoder in the image captioning
model. Specifically,

1. Multi-object classification co-trained with image
captioning intends to learn an object-rich image en-
coder and improves the quality of locating contex-
tual information of an image.

2. The variations of style and wording of captions
with respect to different object categories are ex-
plored under controlled experimental settings.

3. The RNN decoder is capable to leverage word-level
syntax to generate high-quality captions from lan-
guage modeling perspective. It alleviates the issues
of incomplete sentences and duplicated words.

• The experimental results show that MLAIC achieves out-
standing performance on the widely used MSCOCO
dataset according to both the offline Karpathy test spilt
and the online server evaluation.

2 Related Work
Generating text descriptions from images is a challenging
problem. Bernardi et al. [2016] provided a detailed review
of most existing approaches, the benchmark datasets, and the
evaluation measures for image captioning.

Recent advances in deep neural networks have substan-
tially improved the performance of image captioning task.
A typical image captioning strategy is to combine CNN and
RNN [Karpathy and Fei-Fei, 2015; Vinyals et al., 2015],
where CNN is used to extract the compact representational
vector of a whole image, and RNN is used to construct the

language model operated on the representation vectors to gen-
erate captions. Visual attention has been proven as an effec-
tive way to improve the basic encoder-decoder framework.
For example, Xu et al. [2015] introduced an attention-based
model that automatically learn where to attend when gener-
ating image descriptions. The attention is modeled as spatial
probabilities that re-weight the feature map of the last con-
volutional layer in the CNN. Chen et al. [2017] dynamically
modulated the sentence generation context in multi-layer fea-
ture maps, encoding where (i.e., attentive spatial locations at
multiple layers) and what (i.e., attentive channels) the visual
attention was.

There have been increasing interests in integrating the
encoder-decoder framework and reinforcement learning
paradigms for image captioning [Liu et al., 2016; Rennie et
al., 2016; Zhao et al., 2017]. For example, Liu et al. [2016]
employed policy gradient (PG) method to directly optimize a
linear combination of SPICE and CIDEr metrics, where the
SPICE score ensured the captions were semantically faithful
to the image, and CIDEr score ensured the captions are syn-
tactically fluent. Rennie et al. [2016] proposed a self-critical
sequence training (SCST) method by employing the popular
REINFORCE algorithm.

Multi-task learning is a useful learning paradigm to im-
prove the supervision and the generalization performance of
a task by jointly training it with related tasks [Caruana, 1998].
Venugopalan et al. [2016] explored linguistic improvements
to the video caption decoder by fusing it with external lan-
guage models. Pasunuru and Bansal [2017] improved video
captioning by sharing knowledge with two related directed-
generation tasks: a temporally-directed unsupervised video
prediction task and a logically-directed language entailment
generation task.

Our model differs from the above approaches. We perform
image captioning by multi-task learning, which shares knowl-
edge with three related tasks: multi-label classification, im-
age captioning, syntax generation, so that we can improve the
performance of both the CNN encoder and LSTM decoder.

3 Our Model
Given an image x, for the object classification, we have yo =
{yo1, yo2, ..., yoC} denoting the object vector of each image,
where yoi = 1 if object i is annotated in this image; otherwise
yoi = 0, C is the number of object categories. For image cap-
tioning, we have yw = {yw1 , yw2 , ..., ywT } denoting the image
description given image x, where T is the length of sequence.
For syntax generation, we have ys = {ys1, ys2, ..., ysT } denot-
ing the Combinatory Category Gramma (CCG) supertag se-
quence with respect to the corresponding caption of image
x. We use Ww, Ws and Wo to denote the vocabularies of
captions, annotated CCG supertags and object categories, re-
spectively.

Our model MLAIC, whose framework is illustrated in Fig-
ure 1, jointly trains the image captioning task with two related
tasks: the object classification and the syntax generation. The
object classifier shares its CNN encoder with the encoder of
image captioning task. All object labels are encoded into low-
dimensional distributed embeddings and treated as extra input
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Figure 1: (a) shows the Architecture of multi-task learning on three related tasks. The font size in the ball represents the probability of object
category. (b) shows the details of Top-Down LSTM attention and shared language LSTM.

to LSTM decoder, helping the LSTM decoder focus on dif-
ferent aspects of the images with respect to the object labels.
The syntax generation task shares its LSTM decoder with the
decoder of image captioning, which predicts words and syn-
tax by training the shared LSTM decoder in a similar fashion
as is done in [Nadejde et al., 2017]. Next, we elaborate the
three tasks in details.

3.1 Shared CNN Encoder
We use the ResNet-101 [He et al., 2016] pre-trained on Im-
ageNet [Russakovsky et al., 2015] as our CNN encoder to
encode the input image x into L vectors, each of which is a
D-dimensional vector corresponding to the features extracted
at different locations of the image. These vectors are referred
to as annotation vectors.

z = CNN(x) = {z1, z2, ..., zL} (1)

We also introduce zfc to represent object probability of image
x calculated by fully connected layer: zfc = FC(z). Follow-
ing the work of [Xu et al., 2015], we extract feature vectors
on the lower convolutional layer rather than use the fully con-
nected layer. In this way, the decoder can selectively attend
to certain parts of an image by weighting a subset of the fea-
ture vectors. In our experiments, we use the 14 × 14 × 2048
feature map in ResNet-101. That said, our LSTM decoder
operates on the flattened 196× 2048 (i.e. L×D) representa-
tions. The shared CNN encoder is then fine-tuned with both
image captioning and multi-object classification tasks.

3.2 Shared LSTM Decoder
The image captioning task shares its LSTM decoder with the
decoder of syntax generation task. Following [Anderson et
al., 2017], the decoder consists of two stacked LSTM net-
works. The first LSTM layer (denoted as LSTM(1)) is char-
acterized as a top-down visual attention model, while the sec-
ond LSTM layer (denoted as LSTM(2)) is a language model.
The attention model takes input as the concatenation of the
previous output of the language LSTM (i.e., h(2)t−1), the mean-
pooled image feature z̄ = 1

L

∑
i zi, the word embedding of

the previously generated word (i.e., ewt−1), and its syntax em-
bedding (i.e., est−1):

x
(1)
t =

[
h
(2)
t−1, z̄, e

w
t−1, e

s
t−1

]
(2)

where x(1)t is the input of LSTM(1) at time step t. The hidden
state of attention LSTM at time step t is then computed by:

h
(1)
t = LSTM(1)

(
h
(1)
t−1, x

(1)
t

)
(3)

Given the output of the attention LSTM h(1) ={
h
(1)
1 , h

(1)
2 , . . . , h

(1)
T

}
, where T is the length of the sequence,

we compute the attended image feature ẑ, which is then used
as the input to the language LSTM. The attended image fea-
ture ẑ makes sure that every time step of the decoder can get
full information of the context. We calculate ẑt when we de-
code the t-th word by

ẑt =

L∑
i=1

αt,izi (4)

Here, the attention weight αt,i for the i-th annotation of CNN
encoder is computed by

αt,i =
exp(ct,i)∑L
k=1 exp(ct,k)

; ct,i = σ(h
(1)
t−1, zi) (5)

where σ is a feed-forward neural network, which maps a vec-
tor to a real-valued score. This attention weights αt,i models
the alignment between the image content at location i and the
output word at position t.

We use the LSTM language model to produce a caption
(or a CCG supertag sequence) by generating one word (or
CCG supertag) at every time step, which takes as input the
concatenation of the output of the attention LSTM (h(1)t ) and
the attended image feature (ẑt), given by:

x
(2)
t =

[
ẑt, h

(1)
t

]
(6)

where x(2)t is the input of LSTM(2).
The hidden state of the language model LSTM at time t is

then computed by
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h
(2)
t = LSTM(2)

(
x
(2)
t , h

(2)
t−1

)
(7)

Finally, the generation probabilities of the t-th word and
the t-th CCG supertag are given by

pwt = p (ywt | yw1:t−1, y
s
1:t−1;x) = softmax

(
Uwh

(2)
t + bw

)
(8)

pst = p (yst | yw1:t−1, y
s
1:t−1;x) = softmax

(
Ush

(2)
t + bs

)
(9)

where Uw, Us, bw and bs are the parameters to be learned.

Incorporating Object Label Embeddings To explore the
variations of caption styles for images of different objects,
we integrate the object label embeddings in the LSTM de-
coder. A forgetting gate is introduced to determine when the
object label information contributes, which is computed by
ft = sigmoid

(
h
(2)
t−1, z

fc
)

. Then the biased word generation
probability is given as:

pwt ∝ exp
(
Uwh

(2)
t + bw

)
+ exp

(
ft �Wzfc

)
� IWo(w) (10)

where W is transformation matrix to project object label into
word embedding space. IWo

(·) is the indicator vector de-
noting whether candidate word w is in the vocabularyWo of
object categories.

3.3 Multi-task Learning
Our MLAIC model consists of three subtasks, each has its
own training objective. For the object classification subtask,
the model minimizes the multi-label margin loss function fol-
lowing the work of [Li et al., 2017]:

Jobj(θ) =
∑
j /∈C

∑
k∈C

wj max
(

0, b+ zfc
k − zfc

j

)
(11)

where θ is the set of parameters, zfc
j denotes the probability

that image x contains object j, wj is the weight indicating
the frequency of occurrence of object j in the image, b is a
hyper-parameter that determines the margin, commonly set
to 1.0.

For the syntax generation and image captioning subtasks,
we employ the minimum negative log-likelihood estimation:

Jword
ml (θ) = −

∑
t

log pwt , J syn
ml (θ) = −

∑
t

log pst (12)

For the purpose of improving shared CNN encoder and
LSTM decoder, we train these three related tasks simultane-
ously. The joint multi-task objective function is minimized
by:

Jml(θ) = λ1J
obj(θ) + λ2J

word
ml (θ) + λ3J

syn
ml (θ). (13)

For comparison with recent work [Rennie et al., 2016], we
also optimize directly for CIDEr [Vedantam et al., 2015] us-
ing policy gradient algorithm, and minimize the negative ex-
pected rewards:

Jword
rl (θ) = −Ey1:t∼pwθ [r (yw1:t)] (14)

where r(.) is CIDEr score function. According to the policy
gradient theorem [Williams, 1992], we compute the gradient
of the expected reward with respect to parameters as:

OθJ
word
rl (θ) ≈ − (r (yw1:t)− r (ŷw1:t))Oθ log pθ (yw1:t) (15)

After pre-training the proposed model by minimizing the
negative log-likelihood with multi-task using Eq.13, we
switch the model to further minimize a mixed training objec-
tive, integrating the reinforcement learning objective Jrl with
the original multi-task loss.

Jmixed(θ) = βJml(θ) + (1− β)Jword
rl (θ) (16)

where β is a hyper-parameter, and we set β = 0.005.

4 Experimental Setup
4.1 Dataset
In our experiment, we use the widely used MSCOCO 2014
image captions [Karpathy and Fei-Fei, 2015] as our dataset,
which consists of totally 82,783 training, 40,504 validation,
and 40,775 testing images, each of which has 5 ground truth
captions. For the off-line testing, we adopt the commonly
used Karpathy split [Karpathy and Fei-Fei, 2015], which uses
113,287 images for training, and 5,000 images for valida-
tion and testing, respectively. For the on-line server evalu-
ation, our model is trained on 118,287 images and validated
on 5,000 images.

For multi-label object classification, we use the MSCOCO
detection dataset [Lin et al., 2014], which consists of 500,000
object instances from 80 different object categories. It con-
tains the same images and shares the same data split with
MSCOCO 2014 image captions dataset [Karpathy and Fei-
Fei, 2015].

For syntax generation, following the work of [Nadejde et
al., 2017], the captions of training data is annotated with CCG
supertags by using EasySRL2, where each word has a corre-
sponding dependency label of supertags.

4.2 Baseline Methods
In the experiments, we compare our model with state-
of-the-art methods, and several recent strong competitors
are included below: Adaptive [Lu et al., 2016], SCST:
Att2in/Att2all [Rennie et al., 2016], TopDown: ResNet/Up-
Down [Anderson et al., 2017], StackCap [Gu et al., 2017a].
In the experiments, we use the same parameter settings as in
the original papers.

4.3 Implementation Details
We first pre-train our model on the training data with cross-
entropy cost, and use Adam optimizer with an initial learning
rate 5× 10−4 and a momentum parameter of 0.9 to optimize
the parameters. After that, we run the proposed RL-based ap-
proach on the just trained model, which is directly optimized
for the CIDEr metric. During this stage, we use Adam op-
timizer with learning rate 5×10−5. We set λ1=0.2, λ2=0.7,
λ3=0.1. We set the number of hidden units in TopDown atten-
tion LSTM (LSTM(1)) to 1,000, the number of hidden units
in language model LSTM (LSTM(2)) to 512, the size of the
input word embedding to 512, and the size of the CCG su-
pertag embedding to 100. During the decoding stage, we use
a beam size of 5 to generate captions.

2https://github.com/uwnlp/EasySRL

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1208



BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

Soft-Attention [Xu et al., 2015] 70.7 49.2 34.4 24.3 23.9 - -
Hard-Attention [Xu et al., 2015] 71.8 50.4 35.7 25.0 23.0 - -
VAE [Pu et al., 2016] 72.0 52.0 37.0 28.0 24.0 - 90.0
Google NICv2 [Vinyals et al., 2017] - - - 32.1 25.7 - 99.8
Attributes-CNN+RNN [Wu et al., 2016] 74.0 56.0 42.0 31.0 26.0 - 94.0
CNNL+RNN [Gu et al., 2017b] 72.3 55.3 41.3 30.6 26.0 - 94.0
PG-SPIDEr-TAG [Liu et al., 2016] 75.4 59.1 44.5 33.2 25.7 55.0 101.3
Adaptive [Lu et al., 2016] 74.2 58.0 43.9 33.2 26.6 54.9 108.5
SCST:Att2in [Rennie et al., 2016] 76.9 60.2 45.1 33.3 26.3 55.3 111.4
SCST:Att2all [Rennie et al., 2016] 77.4 60.9 46.0 34.1 26.7 55.7 114.0
TopDown:ResNet [Anderson et al., 2017] 76.6 59.9 45.4 34.0 26.5 54.9 111.1
TopDown:Up-Down [Anderson et al., 2017] 79.8 63.4 48.4 36.3 27.7 56.9 120.1
StackCap [Gu et al., 2017a] 78.4 62.5 47.9 36.1 27.4 56.9 120.4
MLAIC (ours) 80.7 63.9 49.0 36.9 27.7 57.5 119.1

Table 2: Comparisons of our image captioning approach and existing methods on MSCOCO Karpathy test split.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Google NIC 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6
Hard-Attention 70.5 88.1 52.8 77.9 38.3 65.8 27.7 53.7 24.1 32.2 51.6 65.4 86.5 89.3
PG-SPIDEr-TAG 75.1 91.6 59.1 84.2 44.5 73.8 33.1 62.4 25.5 33.9 55.1 69.4 104.2 107.1
Adaptive (Ens.5) 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9
Stack-Cap (Single) 77.8 93.2 61.6 86.1 46.8 76.0 34.9 64.6 27.0 35.6 56.2 70.6 114.8 118.3
SCST:Att2in (Ens.4) 78.1 93.1 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
TopDown:Up-Down (Ens.4) 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
MLAIC (Single) 80.3 94.4 63.4 87.3 48.3 77.4 36.0 66.1 27.4 36.1 57.0 71.8 113.9 116.4

Table 3: Leaderboard of the published image captioning models (as of 12/7/2017) on the online MSCOCO test server. Our single model
trained with the multi-task learning yields comparable performance with the state-of-the-art approaches (include the ensemble models) on all
reported metrics.

Cross-entropy CIDEr-optimization

B-1 B-2 B-3 B-4 METEOR ROUGE CIDEr B-1 B-2 B-3 B-4 METEOR ROUGE CIDEr

MLAIC 76.2 59.7 46.1 35.7 27.0 55.6 109.8 80.7 63.9 49.0 36.9 27.7 57.5 119.1
w/o multi-label 74.6 58.3 44.8 34.5 26.8 55.3 107.7 77.2 61.1 46.1 34.5 26.9 56.5 115.7
w/o syntax 75.8 59.2 45.7 35.5 26.9 55.5 109.2 80.1 63.5 48.7 36.4 27.4 57.1 118.5

Table 4: Ablation study on MSCOCO Karpathy test split under the cross-entropy optimization and CIDEr-optimization. Here, B-n is short
for BLEU-n.

4.4 Evaluation Metrics
To quantitatively evaluate our image captioning method, we
follow previous work to use BLEU-N (N=1,2,3,4), ME-
TEOR, ROUGE, CIDEr scores for comparison. All these
metrics measure the consistency between n-gram occurrences
in generated captions and ground-truth captions, where this
consistency is weighted by n-gram saliency and rarity.

5 Experimental Result
In this section, we compare our model with the competitors
quantitatively and qualitatively.

5.1 Quantitative Evaluation
Offline Evaluation The experimental results on MSCOCO
with Karpathy test split are summarized in Table 2. We
observe that MLAIC substantially and consistently outper-
forms the existing methods by a noticeable margin on most of
the evaluation metrics. In particular, our model successfully
yields better scores of all evaluation metrics compared to the

TopDown model which utilizes the same basic CNN-LSTM
backbone as ours. Our model benefits from the fact that both
the CNN encoder and the LSTM decoder are improved by
jointly learning the image captioning with the object classifi-
cation and the syntax generation tasks.

Online Evaluation Table 3 reports the performance of our
single model on the official MSCOCO evaluation server3.
The previous top performers on the leaderboard (as of De-
cember 7, 2017) are also demonstrated. Our model achieves
better or competitive performance compared to the state-of-
the-art competitors (both single and ensemble models).

Ablation Study For the purpose of analyzing the effective-
ness of different components of our model for image caption-
ing, in this section, we report the ablation test of our model by
discarding the multi-label object classification task (w/o ob-
ject) or the syntax generation task (w/o syntax), respectively.

3https://competitions.codalab.org/competitions/3221
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w/o syntax a man holding a tennis ball
with a tennis ball.

a kitchen with a stove and cab-
inets in the.

a bathroom with a toilet sink
and a sink.

a busy city street with cars and
buses on the.

w/o object a man holding a tennis ball. a kitchen with a stove and cab-
inets on the wall.

a bathroom with a toilet and a
sink.

a group of cars and buses on a
city street.

MLAIC a man hitting a tennis ball with
a tennis racket.

a kitchen with a stove and cab-
inets on the counter.

a bathroom with a toilet and a
sink in it.

a bunch of cars and buses on a
highway.

Table 5: Example captions generated by different models. The red, blue and green text indicate the in-corrected, in-appropriate and sophisti-
cated phrases respectively.

Captions: a giraffe is standing in the dirt of a fence
CCG: NP/N N (S[dcl]\NP)/(S[ng]\NP) (S[ng]\NP)/PP PP/NP NP/N N/PP PP/NP NP/N N

Captions: a suitcase filled with lots of items on a bed
CCG: NP/N N (S[pss]\NP)/PP PP/NP N/PP PP/NP N (S\NP)\(S\NP)/NP NP/N N

Table 6: Examples of captions and corresponding CCG supertags generated by our model.

In order to investigate the performance of the policy gradient
update, we also report the results of our multi-task learning
model with policy gradient update (i.e., CIDEr-optimization)
or with cross-entropy optimization, respectively.

The results are demonstrated in Table 4. Generally, both
tasks contribute, and the multi-label object classification task
contributes most. This is within our expectation since the
object classification task helps the CNN encoder learn bet-
ter image representations. In addition, the proposed model
utilizes the classification results (label embeddings) to pro-
duce captions of different styles and wording with respect to
different object categories. While the improvement of inte-
grating syntax generation is relatively limited. This may be
because that the issue of the incomplete sentence has little ef-
fect on the evaluation metrics of image captions. As shown
in Table 5, the sentences generated by w/o syntax model are
incomplete but achieve high scores in terms of the evaluation
metrics. It is no surprise that combining both tasks achieves
the best performance for all evaluation metrics. The main ad-
vantage comes from its capability of sharing knowledge of
image captioning with two related tasks and learning better
encoder and decoder representations simultaneously. We can
also observe that the model with policy gradient update sub-
stantially outperforms the model with cross-entropy by a no-
ticeable margin on all the evaluation metrics. The is because
that the policy gradient update is able to bypass the expo-
sure bias and non-differentiable evaluation metrics issue, and
maximize long-term reward in caption generation.

5.2 Qualitative Evaluation
To evaluate the proposed model qualitatively, we show some
generated image descriptions in Table 5. It is easy to see that
MLAIC can generate reasonably relevant and plausible sen-
tences. For example, the sentences “a man hitting a tennis
ball with a tennis racket” and “a bunch of cars and buses on
a highway” created by MLAIC are more precise in describing
the content of the images. By comparing the results of w/o

syntax and MLAIC, we reveal that the syntax generation task
is able to help the LSTM decoder to alleviate the issues of
generating duplicate words and incomplete sentences. On the
other hand, the object classification task makes the CNN en-
coder be able to recognize the existence of objects, and help
the LSTM decoder produce captions of different styles and
generate novel words with respect to different object cate-
gories.

The performance of the syntax generation task is also im-
proved by the multi-task learning mechanism. We provide
some qualitative examples of image captions and the corre-
sponding CCG supertags in Table 6 to evaluate the syntax
generation model. From Table 6 we observe that the gener-
ated CCG supertag sequences are reasonable and consistent
with the corresponding images captions. For example, the
supertag (S[dcl]\NP)/(S[ng]\NP) for the verb “is” in the first
caption implicates that a present participle is expected if the
next word is verb. While the supertag (S\NP)\(S\NP)/NP for
“on” implies that a noun phrase will be generated in the next.
Our model can predict the high-quality CCG supertags, and
help the image captioning alleviate the problem of generating
duplicate words and incomplete sentence.

6 Conclusion
We proposed a novel multi-task learning method to improve
image captioning by jointly training the image captioning
with two related auxiliary tasks: object classification and syn-
tax generation. The object classification helped learn bet-
ter image representations and improved the performance of
visual attention, and the syntax generation helped alleviate
the problem of generating incomplete sentences and dupli-
cate words. To verify the effectiveness of our approach,
we conducted extensive experiments on widely used MS-
COCO dataset. The experimental results demonstrated that
our model achieved impressive results compared to other
strong competitors.
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