
Unary Integer Linear Programming with Structural Restrictions

Eduard Eiben1, Robert Ganian2, Dušan Knop1, Sebastian Ordyniak3

1 Department of Informatics, University of Bergen, Norway
2 Algorithms and Complexity group, TU Wien, Austria

3 Algorithms group, University of Sheffield, UK
eduard.eiben@uib.no, rganian@gmail.com, dusan.knop@uib.no, sordyniak@gmail.com

Abstract
Recently a number of algorithmic results have ap-
peared which show the tractability of Integer Lin-
ear Programming (ILP) instances under strong re-
strictions on variable domains and/or coefficients
(AAAI 2016, AAAI 2017, IJCAI 2017). In this pa-
per, we target ILPs where neither the variable do-
mains nor the coefficients are restricted by a fixed
constant or parameter; instead, we only require that
our instances can be encoded in unary.
We provide new algorithms and lower bounds for
such ILPs by exploiting the structure of their vari-
able interactions, represented as a graph. Our
first set of results focuses on solving ILP in-
stances through the use of a graph parameter
called clique-width, which can be seen as an ex-
tension of treewidth which also captures well-
structured dense graphs. In particular, we ob-
tain a polynomial-time algorithm for instances of
bounded clique-width whose domain and coeffi-
cients are polynomially bounded by the input size,
and we complement this positive result by a num-
ber of algorithmic lower bounds. Afterwards, we
turn our attention to ILPs with acyclic variable in-
teractions. In this setting, we obtain a complexity
map for the problem with respect to the graph rep-
resentation used and restrictions on the encoding.

1 Introduction
Integer Linear Programming (ILP) is the archetypical NP-
complete optimization problem and is used in a multitude
of applications in diverse areas of artificial intelligence. In
particular, a wide range of problems in artificial intelligence
can be efficiently solved in practice via a translation into an
ILP instance, including problems from areas such as process
scheduling [Floudas and Lin, 2005], planning [Vossen et al.,
1999; van den Briel et al., 2005], vehicle routing [Toth and
Vigo, 2001], packing [Lodi et al., 2002], and network hub
location [Alumur and Kara, 2008].

Recently, a number of papers have explored the complex-
ity of ILP instances where the interactions between vari-
ables have specific forms of structure, captured in terms

of structural parameters such as primal treewidth [Jansen
and Kratsch, 2015], primal treedepth [Ganian and Ordyniak,
2018], torso-width [Ganian et al., 2017], and fracture back-
doors [Dvořák et al., 2017]. All of these parameters give rise
to polynomial (and also fixed-parameter [Downey and Fel-
lows, 2013; Cygan et al., 2015]) algorithms for solving ILP,
under the condition that either the domain of variables (primal
treewidth, torso-width) or the size of the coefficients (fracture
backdoors, primal treedepth) in the ILP are bounded.

In this paper, we turn our attention to the significantly
less explored case of using the structure of variable inter-
actions for solving ILPs where neither the domain nor the
coefficients are bounded by a fixed constant or a parameter
(as per the parameterized complexity setting). On the other
hand, due to the trivial structure of ILP instances which en-
code weakly NP-hard problems such as SUBSET SUM, one
cannot hope to obtain polynomial algorithms even for very
simple ILPs encoded in binary. Hence in this paper we con-
sider variants of ILP where both the domain and the coeffi-
cients are not bounded to only a fixed number of options, but
where either one or both of these components are encoded
in unary. We note that such ILPs arise naturally, e.g., when
encoding combinatorial problems as ILPs (consider for in-
stance VERTEX COVER or vehicle routing problems). To this
end, we distinguish UNARY ILP (coefficients and domains
are encoded in unary and bounded by the input size), UNARY-
COEFFICIENT ILP (coefficients are encoded in unary), and
UNARY-DOMAIN ILP (domains are encoded in unary and
bounded by the input size).

The first series of results focus on solving ILP using
the structural parameter clique-width. Unlike parameters
such as treewidth and treedepth, clique-width can remain
bounded even on well-structured instances that are very
dense, i.e., have a high number of variable-constraint inter-
actions. Clique-width (and in particular its “signed” vari-
ant) has been successfully applied in areas such as Boolean
Satisfiability [Fischer et al., 2008], Answer Set Program-
ming [Bliem et al., 2016], and Graph Algorithms [Courcelle
et al., 2000]. Since clique-width originates from the graph
setting, one needs to specify the graph representation of ILPs
where clique-width will be measured: two graph represen-
tations of ILP instances are used in this context, namely the
primal graph (which captures variable-variable interactions)
and the incidence graph (which captures variable-constraint

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1284

Clique-width Primal Ac. Incidence Ac.
FEAS OPT

UNARY P? P P P
UNARY-C NP-hard NP-hard? P? NP-hard?
UNARY-D NP-hard P P? NP-hard?

Table 1: The complexity map for UNARY, UNARY-COEFFICIENT,
UNARY-DOMAIN ILP (in the three rows). The first column con-
tains results for bounded signed incidence clique-width (Theorem 1,
Lemma 2). The second column contains results for instances whose
primal graph is acyclic (Theorem 5). The third (Theorem 7) and
fourth (Lemmas 8 and 9) column both present results for instances
with an acyclic incidence graph: here we distinguish between ILP
feasibility (i.e., whether there exists a feasible assignment) and ILP
optimization (i.e., finding an optimal feasible assignment). Entirely
new results covered in this work are marked with ?.

interactions) [Ganian et al., 2017; Samer and Szeider, 2010].
Our main result involving clique-width is a polynomial-

time algorithm for UNARY ILP on instances of bounded
signed clique-width of the incidence graph representation.
The algorithm is based on dynamic programming, but re-
quires careful introduction of data records tailored to ILP
which are fundamentally different from those used, e.g., for
Boolean Satisfiability [Fischer et al., 2008]. We comple-
ment the algorithm with lower bounds which show that the
result is essentially tight. In particular, we show that UNARY
ILP remains NP-hard when the clique-width of the primal
graph is used (Lemma 4), UNARY ILP remains NP-hard
when the unsigned clique-width1 of the incidence graph is
used (Lemma 4), and finally both UNARY-COEFFICIENT ILP
and UNARY-DOMAIN ILP are NP-hard when the signed in-
cidence clique-width is bounded (Lemma 2).

In the second part of the paper, we turn our attention to
acyclic ILP instances, i.e., ILP instances whose primal and/or
incidence graph is a forest. In this context, we obtain new al-
gorithms and hardness results in order to complete the com-
plexity landscape for UNARY ILP, UNARY-COEFFICIENT
ILP and UNARY-DOMAIN ILP on acyclic instances. We
present a summary of our results in Table 1.

We note that the NP-hardness proof for UNARY-
COEFFICIENT ILP presented in Theorem 5 is of particular
interest—surprisingly, it shows that already deciding feasi-
bility on instances whose primal graph is a star is NP-hard.
The proof uses a nontrivial reduction from 3-SAT which uses
unary-encoded coefficients to force very high domain values
in a way which encodes variable assignments of the SAT in-
stance. Another interesting observation is that in some cases,
having an acyclic primal graph allows for a polynomial-time
algorithm even though an acyclic incidence graph does not,
while in other cases the situation is reversed. Finally, we
note that Lemma 7 shows an even stronger result: deciding
whether an ILP is feasible is polynomial-time solvable when-
ever the incidence graph is acyclic, even if the instance is
encoded in binary.

Related Work and Technical Remarks. Two of the
structural parameters studied in previous works give rise

1Unlike signed clique-width, unsigned clique-width does not
capture information about how variables interact with constraints.

to polynomial-time algorithms even when the original re-
strictions to bounded domain and/or coefficients are relaxed
to weaker restrictions in terms of the encoding. In par-
ticular, UNARY-DOMAIN ILP instances of bounded pri-
mal treewidth can be solved in polynomial-time [Jansen
and Kratsch, 2015] and UNARY ILP is polynomial-time
tractable on instances of bounded incidence treewidth [Ga-
nian et al., 2017]. On the other hand, UNARY-COEFFICIENT
ILP remains NP-hard even on instances of bounded pri-
mal/incidence treewidth [Ganian et al., 2017; Ganian and Or-
dyniak, 2018] and UNARY-DOMAIN ILP is NP-hard on in-
stances of bounded incidence treewidth [Ganian et al., 2017].

Clique-width and the associated k-expressions used for dy-
namic programming are NP-hard to compute [Fellows et al.,
2009], which might be considered as an obstacle towards
practical applications. Furthermore, while it is possible to
check in polynomial time whether the clique-width of a graph
is bounded by a fixed k, these algorithms are infeasible in
practice and involve an approximation error that is exponen-
tial in k [Oum and Seymour, 2006]. Recently, SAT solvers
have been used to compute the clique-width of graphs [Heule
and Szeider, 2015]. In some cases, a suitable k-expression
witnessing a bound on the clique-width might already be part
of the input (this is the case, e.g., for certain applications in
the area of verification [Fischer et al., 2008, Section1.4]). In
line with previous work on clique-width [Fischer et al., 2008;
Bliem et al., 2016; Courcelle et al., 2000], we will generally
assume in our theorems that a suitable k-expression is pro-
vided as part of the input.

We note that the paper considers ILP instances in inequal-
ity form, i.e., each instance consists of a set of inequalities
(see Subsection 2.1). Other definitions of the ILP problem ex-
ist, and the transformations necessary to convert an instance
from one definition to another can affect the structural prop-
erties of the instance; this is particularly true for determining
whether an ILP instance is acyclic. For example, an instance
of ILP in equality form (i.e., all constraints are equalities)
containing a single equality has an acyclic incidence graph
representation, but would no longer be acyclic if we convert
it to an inequality form. On the other hand, the property of
having bounded (signed) clique-width is preserved regardless
of the used formulation.

2 Preliminaries
We will use standard graph terminology, see for instance the
handbook by Diestel [Diestel, 2012]. An undirected graph G
is a tuple (V,E), where V or V (G) is the vertex set and E or
E(G) is the edge set. All our graphs are simple and loopless.
For natural numbers i < j, we set [i, j] = {i, . . . , j}, [i] =
[1, i] and ±[i] = [−i, i].

2.1 Integer Linear Programming
It will be useful to view an ILP instance as a set of linear
inequalities (constraints) rather than using the constraint ma-
trix. Formally, let an ILP instance I be a tuple (X, dom,F , ε)
where X is a set of variables, dom : X → [Z ∪ {−∞},Z ∪
{∞}] is a function which maps each variable to an interval,F
is a set of linear inequalities over X = x1, . . . , xn and ε is a

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1285

linear function overX of the form ε(X) = s1x1+· · ·+snxn.
Each inequality A ∈ F is assumed to be of the form
cA,1xA,1 + · · · + cA,jxA,j ≤ bA where the coefficients cA,i
are non-zero; the set of variables which occur in A is denoted
var(A), and we let var(I) = X . We call dom(x) the domain
of x, elements of F are the constraints, and the numbers si,
cA,i and bA are called the coefficients.

A (partial) assignment α : X → Z is a (partial) map-
ping such that α(x) ∈ dom(x) for all x to which α as-
signs a value. For a (partial) assignment α and an inequal-
ity A, we denote by A(α) the left-side value of A obtained
by applying α (specifically, the part of α which intersects
with A); for instance, if α is a partial assignment which
only maps a single variable x to the value 3 and A is the
inequality 2x − y − z ≤ 7, then A(α) = 6. Formally,
A(α) = cA,1α(xA,1) + · · ·+ cA,nα(xA,n), where undefined
values of α are treated as 0; this means that if var(A) has an
empty intersection with the domain of α, then A(α) = 0.
Similarly, we set ε(α) to be the value of ε obtained by apply-
ing α, i.e., ε(α) = s1α(x1) + · · ·+ snα(xn).

An assignment α is called a feasible assignment or a solu-
tion if it satisfies every A ∈ F , i.e., if A(α) ≤ bA for each
A ∈ F . Furthermore, α is called an optimal solution if the
value of ε(α) is maximized over all solutions. Given an in-
stance I , the task in the ILP problem is to compute an optimal
solution for I if one exists, and otherwise to decide whether
there exists a feasible assignment.

In this paper, we focus on ILP instances which are either
completely or partially encoded in unary. We distinguish:

• UNARY ILP, where both the domain and the coefficients
are bounded by the input size and encoded in unary.

• UNARY-COEFFICIENT ILP, where the coefficients are
encoded in unary; the domain is encoded in binary and
can be unbounded.

• UNARY-DOMAIN ILP, where the domain is bounded by
the input size and encoded in unary; coefficients are en-
coded in binary.

For example, consider an instance I of UNARY ILP and
let the unary encoding size |A| of an inequality A of the
form cA,1xA,1 + · · · + cA,qxA,q ≤ bA be defined as |A| =
|bA| +

∑
i∈[q](|cA,i| + 1). Then the input size of I is |I| =

(
∑
i∈|var(I)| |si|+ (maxd∈dom(i) |d|) + 1) + (

∑
A∈F |A|). For

each of the above problems, the FEASIBILITY variant is the
restriction of the chosen problem to inputs where ε is empty.

There are several ways of naturally representing (the vari-
able interactions in) ILP instances as graphs. Given an
ILP instance I = (X, dom,F , ε), the (simplified) primal
graph [Ganian et al., 2017] of I is the graph whose vertex set
is the set var(I), and two vertices a, b are adjacent iff there
exists some A ∈ F containing both a and b. The incidence
graph [Ganian et al., 2017] of I is the graph whose vertex set
is var(I)∪F and two vertices a, b are adjacent iff a ∈ var(I),
b ∈ F and a ∈ var(b). Finally, the signed incidence graph
of I is the incidence graph of I where an edge between con-
straint A and variable xA,j carries the sign cA,j ; observe that
each edge e in the signed incidence graph carries precisely
one sign. We call graphs where all edges carry a sign signed

+2 -1

+3

-1

Figure 1: An example of a graph with clique-width 2 and signed
clique-width 4.

graphs. Given an ILP instance I , let GI , HI denote the pri-
mal graph and the signed incidence graph of I , respectively.

2.2 Clique-width
Let k be a positive integer. A k-graph is a graph whose ver-
tices are labeled by [k]; formally, the graph is equipped with
a labeling function γ : V (G) → [k], and we also use γ−1(i)
to denote the set of vertices labeled i for i ∈ [k]. We con-
sider an arbitrary graph as a k-graph with all vertices labeled
by 1. We call the k-graph consisting of exactly one vertex
v (say, labeled by i) an initial k-graph and denote it by i(v).
The clique-width of a graph G is the smallest integer k such
that G can be constructed from initial k-graphs by means of
repeated application of the following three operations:

1. Disjoint union (denoted by ⊕);

2. Relabeling: changing all labels i to j (denoted by pi→j);

3. Edge insertion: adding an edge between each vertex la-
beled by i and each vertex labeled by j, where i 6= j
(denoted by ηi,j or ηj,i).

A construction of a k-graph G using the above operations
can be represented by an algebraic term composed of ⊕,
pi→j and ηi,j (where i 6= j and i, j ∈ [k]). Such a term is
called a k-expression defining G, and the clique-width of G
is the smallest integer k such that G can be defined by a k-
expression. Many graph classes are known to have bounded
clique-width; examples include all graph classes of bounded
treewidth [Courcelle and Olariu, 2000] and co-graphs [Cour-
celle and Olariu, 2000].

A k-expression tree (also called parse trees in the litera-
ture [Courcelle et al., 2000]) is a rooted tree representation of
a k-expression; specifically, the k-expression tree can be built
from a k-expression in a leaves-to-root fashion by using a leaf
to represent each i(v), each ⊕ operator is represented by an
⊕ node with two children, and each pi→j and ηj,i operator is
represented by a corresponding node with a single child.

If the edges ofG have signs, then one can define two differ-
ent variants of clique-width forG. The unsigned clique-width
of G is simply the clique-width of the graph G′ obtained by
removing all signs on the edges of G. On the other hand, the
signed clique-width of G is the minimum k such that G can
be defined by a signed k-expression, which is analogous to a
k-expression with the sole distinction that the operation ηi,j
is replaced by η`i,j which adds an edge with sign ` between
all vertices labeled i and j.

We list some known facts about clique-width below:

• The difference between the signed clique-width (scw)
and unsigned clique-width (cw) of a signed graph G can
be arbitrarily large [Bliem et al., 2016].

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1286

• A signed k-expression of a bipartite signed graphGwith
bi-partition V1, V2 can be converted to a signed (k + 1)-
expression ofG such that the labels used for V1 are com-
pletely disjoint from those used for V2 (this is because
any label that was originally used for V1 and V2 cannot
be used to create new edges).

As per the above observation, from now on we will assume
that, at each node of a signed k-expression tree, a label is
either a variable-label (i.e., used exclusively by variables) or
a constraint-label (i.e., used exclusively by constraints).

3 ILP on Graphs of Bounded Signed
Clique-width

In this section, we obtain our polynomial-time algorithm for
solving UNARY ILP using signed incidence clique-width.
We then turn our attention to providing lower bounds which
complement the algorithmic result.
Theorem 1. There exists an algorithm which takes as input
an instance I of UNARY ILP and a signed k-expression tree
T of HI , runs in timeO(|I|4k · |T |), and solves UNARY ILP.

At its core, the algorithm performs dynamic programming
along T . Let t be a node of T , and recall that t could be one of
the following four types of nodes: i(v), ⊕, ηi,j or pi→j . Let
Tt be the subtree of T rooted at t, and letG(t) be signed graph
defined by the signed k-expression tree Tt; furthermore, let
Xt and Ft denote the variable set and set of constraints of
G(t), respectively, and let ω(Xt) and ω(Ft) denote the set of
variable-labels and the set of constraint-labels. For instance,
if r is the root of T then G(r) = HI , and for each leaf t in
T it holds that G(t) is a graph with a single labeled vertex
(which may be either a variable or a constraint).

3.1 Towards a Proof of Theorem 1
The high-level idea of the algorithm is to compute certain in-
formation (a data table) about our graphG(t) in a leaf-to-root
fashion, and once we reach the root this information allows us
to output an optimal solution to the ILP instance. Let us first
provide an informal description of the data table before giv-
ing the formal definition. Consider a graph G(t) defined by
the k-expression tree Tt. Our data table will remember a set
of signatures, where each signature will contain all the in-
formation we need to store about one possible set of partial
assignments of Xt.

Let % = |I|. We can now formally define the notion of
signature: a signature φ is a tuple (P,Q) where P : ω(Xt)→
±[%] maps each variable-label to an integer, andQ : ω(Ft)→[
−∞,±[%2]

]
maps each constraint-label to an interval whose

left endpoint is−∞ and right endpoint is an integer. Observe
that since the number of labels is upper-bounded by k and
each label is either a variable-label or constraint-label, the
total number of possible signatures is upper-bounded by %2k.
Let Φt be the set of all possible signatures at node t.

Our next step is to link signatures with partial assignments;
this will also define the semantics behind the definition of a
signature. Informally, an assignment α of Xt matches the
signature φ = (P,Q) (α |= φ) if P captures the sum of all
variables for each individual variable-label and Q specifies

5 2x+ y + z ≤ 11

1 y2 x 0 z

[−∞, 6]

3 0

Figure 2: A small ILP instance with variables x, y, z, with labels on
the vertices of the incidence graph represented by orange, blue and
black. The signature (P,Q) assigns P (orange) = 3, P (blue) = 0,
and Q(black) = [−∞, 6]. An assignment α that is compatible with
(P,Q) is represented by the numbers in the variable vertices.

the “offset” under which each constraint of a given constraint-
label is satisfied. Formally, an assignment α of Xt matches
the signature φ = (P,Q) if the following holds:

1. ∀i ∈ ω(Xt) : P (i) =
∑
x∈γ−1(i) α(x),

2. ∀j ∈ ω(Ft) ∀A ∈ γ−1(j) ∀h ∈ Q(j) : A(α) + h ≤ bA,
and

3. ∀j ∈ ω(Ft) ∃A ∈ γ−1(j) ∀h 6∈ Q(j) : A(α) + h > bA.

The first condition ensures that P (i) captures the sum of the
variables with variable-label i, the second condition ensures
thatQ(j) captures how much each constraint with constraint-
label j can change while being satisfied, and the third con-
dition ensures that Q(j) is the maximum interval with the
desired property. If a variable-label i is empty then we let
P (i) = 0, and if a constraint-label j is empty then we let
Q(j) = [−∞, %2]. Note that the restriction to [−∞, %2] is
justified by the fact that |A(α)| is upper-bounded by %2.

It follows from the definition that an assignment ofXt can-
not have more than one signature. However, it is not difficult
to show that each assignment of Xt has precisely one signa-
ture, i.e., that the bounds on P and Q can never be exceeded.
Observation 1. Let α be an assignment of Xt. Then there
exists a signature φ such that α |= φ.

Having established the notion of a signature, we can now
define the data table used in the dynamic programming al-
gorithm. For a node t of T , we let DTt be a mapping from
each signature φ in Φt to a partial assignment which matches
φ and maximizes ε; formally, DTt(φ ∈ Φt) = α : (α |=
φ) ∧ (∀α′ |= φ : ε(α′) ≤ ε(α)). If there is no partial assign-
ment α which matches φ, then we set DTt(φ) = ∅.

Proof of Theorem 1. We compute the data table DTt in a leaf-
to-root fashion along the signed k-expression tree T of HI .
Once we reach the root r of T , then we can output an optimal
solution to I as follows. Let a signature φ = (P,Q) be good
if for all constraint-labels i, 0 ∈ Q(i). If DTr(φ) = ∅ for
every good signature φ, then there exists no feasible assign-
ment for I . Otherwise, we loop over all good signatures φ,
compute the value of ε(DTr(φ)), and output an assignment
αopt = DTr(φopt) with maximum ε(DTr(φopt)).

For completeness, we remark that such an assignment can
be obtained from DTr in time %2k and that correctness follows
from Observation 1. Indeed, we are outputting an assignment
which maximizes ε over all assignments which match a signa-
ture in Φt, and Observation 1 establishes that each assignment
has a signature in Φt. So, all that remains is to show how to
compute DTt for each node t in T . We note that computing

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1287

DTt for i(v) nodes and pi→j nodes is straightforward, and so
here we only focus on the remaining two cases.

If t is a ⊕ node: Let u and w be the two children of t.
For each pair of signatures φu = (Pu, Qu) ∈ Φu and φw =
(Pw, Qw) ∈ Φw we construct a signature φuw = (P,Q) ∈
Φt as follows:
• for each variable-label i, P (i) = Pu(i) + Pw(i), and
• for each constraint-label j, Q(j) = Qu(j) ∩Qw(j).
Intuitively, the signature φuw is the signature of assign-

ments of Xt which can be obtained by taking the disjoint
union of partial assignments matching φu and φw. To avoid
confusion, we remark that a signature φ ∈ Φt can be con-
structed in the above manner from more than a single tuple of
signature φu and φw; in other words, there may exist u′ 6= u
and/or w′ 6= w such that φ = φuw = φu′w′ . In this case,
we will proceed by keeping the assignment compatible with
φ which optimizes ε, regardless of how φ was constructed.

We start with an empty data table DTt. Then, for each φuw
constructed as above, we compare the assignment that is cur-
rently stored in DTt(φuw) with the one obtained by merging
φu and φw and store the better one in DTt. More precisely, if
ε(DTt(φuw)) ≥ ε(DTu(φu)) + ε(DTw(φw)) then DTt(φuw)
remains unchanged, and otherwise (or if DTt(φuw) = ∅) we
set DTt(φuw) = DTu(φu) ∪ DTw(φw).

If t is a η`i,j node: Let u be the child of t, and assume
w.l.o.g. that i is a variable-label and j is a constraint-label.
For each φ′ = (P ′, Q′) ∈ Φu, we construct a signature φ =
(P ′, Q) by retaining all entries except for Q′(j); to obtain
the value of Q(j), we alter the interval Q′(j) by subtracting
the value ` · P ′(i) (from the right side of the interval), i.e.,
Q(j) = (Q′(j) − ` · P ′(i)). To populate the data table DTt,
we proceed similarly as in the case of⊕ nodes. We begin with
an empty DTt, and for each φ′ ∈ Φu we compute φ as above
and compare ε(DTu(φ′)) with ε(DTt(φ)): if ε(DTu(φ′)) ≥
ε(DTt(φ)) or if DTt(φ) is undefined then we set DTt(φ) =
DTu(φ′), and otherwise we leave DTt(φ) unchanged.

Running time: Each of the operations carried out at the
nodes of T can be completed in time %2k with the exception
of the operations for ⊕ nodes, which take time at most %4k.
The running time of the algorithm follows.

3.2 Lower Bounds
We begin by noting that the algorithm cannot be extended
to work on either UNARY-COEFFICIENT ILP or UNARY-
DOMAIN ILP—in other words, signed incidence clique-
width does not give rise to a polynomial-time algorithm if
either the domain or the constraints are encoded in binary.
Lemma 2. UNARY-DOMAIN ILP FEASIBILITY and
UNARY-COEFFICIENT ILP FEASIBILITY are both NP-hard
when restricted to instances of signed incidence clique-width
at most 5, even if a signed 5-expression is given in the input.

Proof Sketch. For the first claim, we give a simple polyno-
mial reduction from the SUBSET SUM problem, which is well
known to be weakly NP-complete. The resulting instance I
of UNARY-DOMAIN ILP FEASIBILITY has two constraints
which model the desired equality, and it is easy to verify that
HI has signed clique-width at most 4. In order to establish

the second claim, it suffices to observe that the instances pro-
duced by the NP-hardness proof presented in the recent work
by Ganian and Ordyniak (2018, Theorem 13) have signed
clique-width at most 5.

Next, we rule out the existence of algorithms with a uni-
formly polynomial running time for UNARY ILP on instances
of bounded signed clique-width; in the language of pa-
rameterized complexity theory [Downey and Fellows, 2013;
Cygan et al., 2015], we show that the problem is W[1]-hard.
Lemma 3. UNARY ILP FEASIBILITY is W[1]-hard param-
eterized by signed incidence clique-width, even if an optimal
signed k-expression is given as part of the input.

Proof Sketch. One can observe that the ILP instances ob-
tained in the W[1]-hardness proof by Ganian and Ordy-
niak (2016) have bounded signed incidence clique-width.

Our final result rules out the use of unsigned clique-width.
Lemma 4. UNARY ILP is NP-hard when restricted to in-
stances of unsigned incidence clique-width at most 2, even
if a 2-expression is given as part of the input. Furthermore,
UNARY ILP is NP-hard when restricted to instances of pri-
mal clique-width at most 2, even if a 2-expression is given as
part of the input.

Proof. We reduce from the well-known VERTEX COVER
problem. Given an m-vertex graph G and an upper bound
` on the size of the vertex cover, we construct an ILP instance
I as follows. For each vertex vi we create a variable xi where
dom(xi) = [0, 1]. For each edge vivj , we create the con-
straint m · xi +m · xj +

∑
xp∈var(I)\{xi,xj} xp ≥ m. Finally,

we set ε =
∑
xp∈X −xp. Since each constraint can only be

satisfied if at least one of xi, xj is set to 1, it follows that
(G, `) is a YES-instance if and only if there exists a solution
α for I such that ε(α) ≥ −`. To conclude the proof, observe
thatHI is a complete bipartite graph,GI is a complete graph,
and the size of the unary encoding of I is upper-bounded by
a polynomial of |V (G)|+ `.

4 Results for Acyclic ILPs
This section is dedicated to obtaining a complexity classifica-
tion for ILPs with an acyclic graph representation.

4.1 ILPs with an Acyclic Primal Graph
First, observe that UNARY-DOMAIN ILP (and hence also
UNARY ILP) can be solved in polynomial time if the primal
graph is a tree by applying the dynamic programming algo-
rithm of Jansen and Kratsch (2015). We now proceed to our
main lower-bound result for this section, Theorem 5.
Theorem 5. UNARY-COEFFICIENT ILP FEASIBILITY is
NP-complete even on instances whose primal graph is a star.

Proof Sketch. Clearly, UNARY-COEFFICIENT ILP FEASI-
BILITY is in NP, since ILP FEASIBILITY is in NP. To prove
NP-hardness, we will give a polynomial time reduction from
the well-known NP-complete problem 3-SAT.

Let F be an instance of 3-SAT with n variables u1, . . . , un
and m clauses C1, . . . , Cm. We will define an instance I of

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1288

UNARY ILP with 1 +n+m variables and 2(n+m) inequal-
ities, whose primal graph is the star Sn+m such that there
exists a feasible assignment for I if and only if F is a satisfi-
able instance of 3-SAT. Note that we can assume that none of
the clauses Ci contains a variable along with its negation.

The reduced instance I = (X, dom,F , ∅) is defined as fol-
lows. We set X = {y} ∪ {x1, . . . , xn} ∪ {z1, . . . , zm} and
dom(x) = [−∞,∞] for every variable x ∈ X . In what fol-
lows let pi be the i-th prime number. Then, F contains the
following inequalities (variables marked in bold):

• ∀i ∈ [n], F contains y − pixi ≤ 1 and pixi − y ≤ 0.

Note that since these are the only inequalities containing xi,
there exists a feasible assignment for xi if and only if y is
assigned a number that has a remainder of 0 or 1 modulo pi.

• ∀i ∈ [m], F contains y − prpsptzi ≤ di + prpspt − 1
and prpsptzi − y ≤ −di − 1, where

– r, s, t are such thatCm is a clause over the variables
ur, us, ut, and

– let ur 7→ br, us 7→ bs, ut 7→ bt be the assignment
which falsifies Cm. Then di is the unique integer in
[0, prpspt − 1] such that di ≡ br mod pr, di ≡ bs
mod ps, di ≡ bt mod pt.

We note that the existence and uniqueness of di follows
directly from the Chinese Remainder Theorem. Observe
that for any partial assignment α such that α(y) 6≡ di
mod prpspt, it is easy to compute a value of α(zi) such that
the two inequalities where zi appears are satisfied.

It follows from the Prime Number Theorem that pi =
O(i log(i)). Hence, the absolute value of the largest coef-
ficient in I is upper-bounded by 2p3n = O(n4), and in par-
ticular I is an instance of UNARY-COEFFICIENT ILP FEA-
SIBILITY whose size is polynomial in |F |. The primal graph
of I is a star with center y and leaves x1, . . . , xn, z1, . . . , zm.
Now, it suffices to show that there is a satisfying assignment
for F iff there is a feasible assignment for I .

The reduction provided in Theorem 5 immediately yields
the following lower bound based on the Exponential Time
Hypothesis (ETH) [Impagliazzo et al., 2001].

Corollary 6. Unless the Exponential Time Hypothesis fails,
there is no 2o(n+m) algorithm solving UNARY-COEFFICIENT
ILP FEASIBILITY with n variables and m inequalities, even
on instances whose primal graph is a star.

4.2 ILP on Tree-like Incidence Graph
Theorem 7. ILP FEASIBILITY restricted to instances with
an acyclic incidence graph is polynomial-time solvable.

Proof Sketch. Let I = (X, dom,F , ∅) be the input instance,
and recall that HI is the incidence graph of I , i.e., a tree. Let
us set an arbitrary variable as the root r of HI . The algo-
rithm works as follows: It takes an inequality A that is fur-
thest from r, computes the domain restrictions imposed by A
on the unique variable x ∈ var(A) that lies on the path be-
tween A and r (i.e., x is the parent of A), and then it removes
A and all variables in var(A) \ {x} from HI . The algorithm
proceeds in this manner until only r is left. If the domain of r

is not empty, the algorithm outputs yes, otherwise it outputs
no. The proof of correctness and the step of simplifying an
instance by removing an inequality can be handled by induc-
tion on the number of inequalities.

Lemma 8. UNARY-COEFFICIENT ILP is NP-complete on
instances whose incidence graph is a tree of depth 2.

Proof Sketch. The proof follows a similar strategy as the
proof of Theorem 5. As before, we will reduce from a 3-
SAT instance F with n variables u1, . . . , un and m clauses
C1, . . . , Cm and we will have a central variable y in the ILP
instance I such that ui 7→ y mod pi should satisfy F .

However, here we are not allowed to specify both lower
and upper bounds for the same pair of variables of ILP, as
this would introduce cycles in the incidence graph. So in-
stead of specifying both bounds, we introduce new variables
x01, . . . , x

0
n, z

0
1 , . . . , z

0
m, which represent the remainder of y

after dividing, respectively, by pi’s for variables (x1, . . . , xn)
and by pr · ps · pt for clauses (z1, . . . , zm) with variables
ur, us, ut. Furthermore, to achieve equality, we will set ε
so that it maximizes the sum of all left sides of the inequal-
ities in I . Observe that while a feasible assignment of I can
satisfy an inequality without having the left side equal to its
right side, the optimization function only achieves the value∑
A∈F bA if and only if all inequalities are tight, i.e., their left

side equals the right side; in all other cases, the optimization
function will achieve a value lower than

∑
A∈F bA. In the

end, we get an ILP instance I that has a solution α such that
ε(α) ≥

∑
A∈F bA if and only if F is a YES-instance.

Lemma 9. UNARY-DOMAIN ILP is NP-complete, even on
instances with incidence graph isomorphic to a star.

Proof Sketch. We employ a reduction from SUBSET SUM
similar to the one used in Lemma 2; however, here we use
a single inequality constraint together with ε applied on the
left side of the inequality to model the desired.

5 Concluding Remarks
We have presented new algorithms and lower bounds for ILP
in the case where rather mild restrictions on the formulation
of the instance (unary encoding of the coefficients or do-
main) are combined with structural restrictions on variable-
constraint interactions. The results naturally complement re-
cent works on ILPs [Jansen and Kratsch, 2015; Ganian and
Ordyniak, 2018; Ganian et al., 2017; Dvořák et al., 2017].

We believe that the algorithm using signed incidence
clique-width (Theorem 1) is of particular interest; since, un-
like previously considered parameters, it can deal with ILP
instances which are “dense”. We also consider the nontrivial
reduction presented in Theorem 5 to be surprising.

Acknowledgments
Eduard Eiben was supported by Pareto-Optimal Parameter-
ized Algorithms (ERC Starting Grant 715744). Robert Ga-
nian is also affiliated with FI MU, Brno, Czech Republic.
Dušan Knop is also affiliated with MFF UK, Praha, Czech
Republic and was supported by projects NFR MULTIVAL
and P202/12/G061 of GAČR.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1289

References
[Alumur and Kara, 2008] Sibel A. Alumur and Bahar Yetis

Kara. Network hub location problems: The state of the
art. European Journal of Operational Research, 190(1):1–
21, 2008.

[Bliem et al., 2016] Bernhard Bliem, Sebastian Ordyniak,
and Stefan Woltran. Clique-width and directed width mea-
sures for answer-set programming. In Gal A. Kaminka,
Maria Fox, Paolo Bouquet, Eyke Hüllermeier, Virginia
Dignum, Frank Dignum, and Frank van Harmelen, ed-
itors, Proc. ECAI 2016, volume 285, pages 1105–1113.
IOS Press, 2016.

[Courcelle and Olariu, 2000] Bruno Courcelle and Stephan
Olariu. Upper bounds to the clique width of graphs. Dis-
crete Applied Mathematics, 101(1-3):77–114, 2000.

[Courcelle et al., 2000] Bruno Courcelle, Johann A.
Makowsky, and Udi. Rotics. Linear time solvable opti-
mization problems on graphs of bounded clique-width.
Theory Comput. Syst., 33(2):125–150, 2000.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Lukasz
Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parame-
terized Algorithms. Springer, 2015.

[Diestel, 2012] Reinhard Diestel. Graph Theory, 4th Edition,
volume 173 of Graduate texts in mathematics. Springer,
2012.

[Downey and Fellows, 2013] Rodney G. Downey and
Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013.

[Dvořák et al., 2017] Pavel Dvořák, Eduard Eiben, Robert
Ganian, Dušan Knop, and Sebastian Ordyniak. Solving
integer linear programs with a small number of global vari-
ables and constraints. In Carles Sierra, editor, Proc. IJCAI
2017, pages 607–613. ijcai.org, 2017.

[Fellows et al., 2009] Michael R. Fellows, Frances A. Rosa-
mond, Udi Rotics, and Stefan Szeider. Clique-width is np-
complete. SIAM J. Discrete Math., 23(2):909–939, 2009.

[Fischer et al., 2008] Eldar Fischer, Johann A. Makowsky,
and Elena V. Ravve. Counting truth assignments of for-
mulas of bounded tree-width or clique-width. Discrete Ap-
plied Mathematics, 156(4):511–529, 2008.

[Floudas and Lin, 2005] ChristodoulosA. Floudas and Xi-
aoxia Lin. Mixed integer linear programming in process
scheduling: Modeling, algorithms, and applications. An-
nals of Operations Research, 139(1):131–162, 2005.

[Ganian and Ordyniak, 2016] Robert Ganian and Sebastian
Ordyniak. The complexity landscape of decompositional
parameters for ILP. In Proc. AAAI 2016, pages 710–716,
2016.

[Ganian and Ordyniak, 2018] Robert Ganian and Sebastian
Ordyniak. The complexity landscape of decompositional
parameters for ilp. Artificial Intelligence, 257:61 – 71,
2018.

[Ganian et al., 2017] Robert Ganian, Sebastian Ordyniak,
and M. S. Ramanujan. Going beyond primal treewidth for
(M)ILP. In Satinder P. Singh and Shaul Markovitch, edi-
tors, Proc. AAAI 2017, pages 815–821. AAAI Press, 2017.

[Heule and Szeider, 2015] Marijn Heule and Stefan Szeider.
A SAT approach to clique-width. ACM Trans. Comput.
Log., 16(3):24:1–24:27, 2015.

[Impagliazzo et al., 2001] Russell Impagliazzo, Ramamo-
han Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. Comput. Syst. Sci.,
63(4):512–530, 2001.

[Jansen and Kratsch, 2015] Bart M. P. Jansen and Stefan
Kratsch. A structural approach to kernels for ilps:
Treewidth and total unimodularity. In Nikhil Bansal and
Irene Finocchi, editors, Proc. ESA 2015, volume 9294
of Lecture Notes in Computer Science, pages 779–791.
Springer, 2015.

[Lodi et al., 2002] Andrea Lodi, Silvano Martello, and
Michele Monaci. Two-dimensional packing problems:
A survey. European Journal of Operational Research,
141(2):241–252, 2002.

[Oum and Seymour, 2006] Sang-il Oum and Paul D. Sey-
mour. Approximating clique-width and branch-width. J.
Comb. Theory, Ser. B, 96(4):514–528, 2006.

[Samer and Szeider, 2010] Marko Samer and Stefan Szeider.
Constraint satisfaction with bounded treewidth revisited. J.
Comput. Syst. Sci., 76(2):103–114, 2010.

[Toth and Vigo, 2001] Paolo Toth and Daniele Vigo, editors.
The Vehicle Routing Problem. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2001.

[van den Briel et al., 2005] Menkes van den Briel, Thomas
Vossen, and Subbarao Kambhampati. Reviving integer
programming approaches for AI planning: A branch-and-
cut framework. In Proc. ICAPS 2005, pages 310–319.
AAAI, 2005.

[Vossen et al., 1999] Thomas Vossen, Michael O. Ball, Am-
non Lotem, and Dana S. Nau. On the use of integer pro-
gramming models in AI planning. In Proc. IJCAI 99,
pages 304–309. Morgan Kaufmann, 1999.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1290

