
Solving Exist-Random Quantified Stochastic Boolean Satisfiability via Clause
Selection

Nian-Ze Lee∗1, Yen-Shi Wang∗2 and Jie-Hong R. Jiang1,2

1Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan
2Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

{d04943019, b03901116, jhjiang}@ntu.edu.tw

Abstract
Stochastic Boolean satisfiability (SSAT) is an ex-
pressive language to formulate decision problems
with randomness. Solving SSAT formulas has the
same PSPACE-complete computational complex-
ity as solving quantified Boolean formulas (QBFs).
Despite its broad applications and profound the-
oretical values, SSAT has received relatively lit-
tle attention compared to QBF. In this paper, we
focus on exist-random quantified SSAT formulas,
also known as E-MAJSAT, which is a special frag-
ment of SSAT commonly applied in probabilis-
tic conformant planning, posteriori hypothesis, and
maximum expected utility. Based on clause selec-
tion, a recently proposed QBF technique, we pro-
pose an algorithm to solve E-MAJSAT. Moreover,
our method can provide an approximate solution
to E-MAJSAT with a lower bound when an ex-
act answer is too expensive to compute. Experi-
ments show that the proposed algorithm achieves
significant performance gains and memory savings
over the state-of-the-art SSAT solvers on a number
of benchmark formulas, and provides useful lower
bounds for cases where prior methods fail to com-
pute exact answers.

1 Introduction
Stochastic Boolean satisfiability (SSAT) was first formulated
in [Papadimitriou, 1985] and interpreted as games against na-
ture. In an SSAT formula, a Boolean variable can be ran-
domly quantified with probability p by a randomized quanti-
fier, which specifies that the variable evaluates to TRUE with
probability p. With randomized quantifiers, SSAT serves
as a natural formalism for an abundance of computational
problems endowed with randomness, such as propositional
probabilistic planning, trust management, and Bayesian net-
work inference [Hnich et al., 2011; Littman et al., 2001;
Majercik, 2009]. The verification problem of VLSI circuits
with probabilistic errors has also been investigated under the
framework of SSAT recently [Lee and Jiang, 2014]. From
the perspective of computational complexity, SSAT lies in the
∗The authors contributed equally to this work.

complexity class PSPACE-complete, the same as quantified
Boolean formula (QBF). Therefore, advancing the scalability
of SSAT solving not only benefits practical applications, but
also has profound theoretical values.

In this paper, we focus on the exist-random quantified
SSAT formulas of the form Φ = ∃X

R

Y.φ, which is known as
E-MAJSAT [Littman et al., 1998]. Computational problems,
such as computing a maximum a posteriori (MAP) hypothe-
sis or a maximum expected utility (MEU) solution [Dechter,
1998] in belief networks, and searching an optimal plan for
probabilistic conformant planning domains [Littman et al.,
1998], can be formulated with E-MAJSAT.

Among previous endeavors, several techniques have been
investigated to solve SSAT. Prior work MAXPLAN [Majer-
cik and Littman, 1998] utilizes Davis-Putnam-Logemann-
Loveland (DPLL) search [Davis et al., 1962] and improves
its efficiency by considering pure variables, unit propaga-
tion, and subproblem memorization. DCSSAT [Majercik and
Boots, 2005] enhances MAXPLAN by applying the divide-
and-conquer strategy to break SSAT formulas into many
subproblems and solve them separately. The technique of
knowledge compilation has also been exploited to solve E-
MAJSAT. ComPlan [Huang, 2006] compiles the problems
into deterministic, decomposable negation normal form (d-
DNNF) [Darwiche, 2001; 2002], and performs a branch-
and-bound search. It is further improved in [Pipatsrisawat
and Darwiche, 2009] by an enhanced bound computation
method. Recent work [Fremont et al., 2017] proposed a max-
imum model counting algorithm for solving a special case of
E-MAJSAT with all probabilities of randomized quantifiers
equal to 0.5.

Recently, modern SAT techniques have been utilized to
solve random-exist quantified SSAT formulas in [Lee et al.,
2017], which inspires us to examine the possibility of apply-
ing QBF solving techniques in the SSAT domain.

In this paper, we exploit the clause selection technique,
which has been introduced in QBF solving recently [Janota
and Marques-Silva, 2015; Rabe and Tentrup, 2015], and pro-
pose a clause containment learning method for E-MAJSAT
solving. To the best of our knowledge, this paper is the
first attempt to adopt approaches developed for QBF to solve
SSAT. In addition to the learning technique, weighted model
counting, which has been widely adopted in probabilistic in-
ference [Chavira and Darwiche, 2008; Sang et al., 2005], is

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1339

utilized in the proposed algorithm to compute probabilities.
We evaluate the proposed algorithm with a wide range of

benchmarks including random formulas, planning problems,
and probabilistic circuit verification. Experiments show that
our method achieves significant performance gains and mem-
ory savings compared to the state-of-the-art SSAT solvers.

2 Preliminaries
We represent Boolean values TRUE and FALSE by symbols >
and ⊥, respectively. In the sequel, a variable x is assumed
in the Boolean domain B = {>,⊥}. A literal is a variable
(called a positive literal) or the negation of a variable (called
a negative literal). For a literal l, let var(l) denote the vari-
able of l. Boolean connectives ¬,∨,∧,⇒,≡ are interpreted
in their conventional meanings. A clause is a disjunction of
literals. A propositional Boolean formula φ is in Conjunc-
tive Normal Form (CNF) if φ is a conjunction of clauses. A
variable x is said to be pure in a formula if its appearances in
the formula are all in the positive phase x or in the negative
phase ¬x. A cube is a conjunction of literals. In the sequel,
we assume propositional Boolean formulas are in CNF.

A Boolean formula φ over a set of variables X =
{x1, . . . , xn} defines a unique Boolean function Bn → B.
Let vars(φ) denote the set of variables appearing in a
Boolean formula φ. An assignment τ over a set of variables
X ⊆ vars(φ) for a formula φ is a mapping τ : X → B.
An assignment τ : X → B is a complete assignment for for-
mula φ if X = vars(φ); otherwise, i.e., X ⊂ vars(φ), it
is a partial assignment. Given a Boolean formula φ and an
assignment τ over vars(φ), the cofactor of φ under τ , de-
noted by φ|τ , is derived by substituting every occurrence of
each variable x ∈ vars(φ) in φ by τ(x). If φ|τ = >, we call
τ a satisfying assignment of φ. The satisfiability problem of
a Boolean formula φ asks whether or not φ has a satisfying
assignment. We write SAT(φ) = > to denote that φ is satis-
fiable. A satisfying assignment of φ is also called a model of
φ. On the other hand, if φ has no satisfying assignment, it is
unsatisfiable and written as SAT(φ) = ⊥. Given two Boolean
formulas φ and ψ, we write φ |= ψ if every satisfying assign-
ment for φ also satisfies ψ. In the sequel, we alternatively
represent an assignment τ as a cube, a clause C as a set of
literals, and a CNF formula as a set of clauses.

2.1 Stochastic Boolean Satisfiability
A stochastic Boolean satisfiability (SSAT) formula is of the
form

Φ = Q1x1 . . . Qnxn.φ(x1, . . . , xn),

where Qi ∈ {∃,

Rpi} and φ is a quantifier-free Boolean for-
mula. Symbol ∃ denotes the existential quantifier, and

Rpi

denotes the randomized quantifier on xi for the probability
of xi = > equal to pi ∈ [0, 1]. Given an SSAT formula Φ,
the quantification structure Q1x1 . . . Qnxn is called the pre-
fix, and the Boolean formula φ is called the matrix.

Let v be the outermost variable in the prefix of an SSAT
formula Φ. The satisfying probability of Φ, denoted by Pr[Φ],
can be computed recursively by the following rules.

a) Pr[>] = 1,

b) Pr[⊥] = 0,

c) Pr[Φ] = max{Pr[Φ|¬v],Pr[Φ|v]}, if v is existentially
quantified,

d) Pr[Φ] = (1− p) Pr[Φ|¬v] + pPr[Φ|v], if v is randomly
quantified by

Rp.

In this paper, we focus on solving E-MAJSAT, the
exist-random fragment of SSAT with the form Φ =
∃X

R

Y.φ(X,Y), whereX and Y are two disjoint sets of vari-
ables. The satisfying probability of Φ is obtained through
maximizing Pr[Φ|τ], called the satisfying probability of Φ
conditioned on τ , over all assignments τ on X .

2.2 Model Counting
The model counting problem of a Boolean formula φ asks to
find the number of satisfying assignments of φ. Model count-
ing algorithms can be classified into two categories: exact
model counting and approximate model counting. The for-
mer computes the exact number of satisfying assignments of a
formula; the latter computes an upper or a lower bound of the
number of satisfying assignments with some confidence level.
In its weighted version, a weight function ω is defined to map
each variable x ∈ vars(φ) to some weight ω(x) ∈ [0, 1],
which can be seen as the probability Pr[x = >]. The weight
of a positive literal x (resp. negative literal ¬x) of variable
x is defined to be ω(x) (resp. 1 − ω(x)). The weight of an
assignment is defined to be the product of the weights of its
individual literals. The weight of a formula equals the sum-
mation of weights of its satisfying assignments.

Given an E-MAJSAT formula Φ = ∃X

R

Y.φ(X,Y) and
an assignment τ on X , cofactoring the matrix with τ re-
sults in a formula φ|τ referring only to variables in Y . The
prefix

R

Y induces a weight function ω : Y → [0, 1] for
each variable y ∈ Y , where ω(y) equals the probability
annotated on the randomized quantifier of y. As a result,
the conditional satisfying probability Pr[Φ|τ], which equals
the weight of the formula φ|τ under the weight function ω,
can be obtained by invoking a weighted model counter on
the formula φ|τ with the weight function ω. In the sequel,
the invocation of a weighted model counter is expressed by
WeightModelCount(

R

Y.φ|τ), which returns the conditional
satisfying probability Pr[

R

Y.φ|τ].

2.3 Clause Selection
Clause selection is a recently proposed technique for QBF
solving [Janota and Marques-Silva, 2015; Rabe and Tentrup,
2015]. Given a CNF formula φ(X,Y) over a set of variables
X∪Y withX∩Y = ∅, we divide each clauseC ∈ φ into two
sub-clauses CX and CY , where CX (resp. CY) consists of
the literals whose variables are in X (resp. Y). For example,
for C = (x1 ∨ x2 ∨ y1 ∨ y2), we have CX = (x1 ∨ x2) and
CY = (y1 ∨ y2). Clearly, C = CX ∨ CY .

A clause C is said to be selected by an assignment τ over
X if every literal in CX is assigned to ⊥ by τ ; C is said to be
deselected by τ if some literal inCX is assigned to> by τ ; C
is said to be undecided if it is neither selected nor deselected.
We also use φ|τ to denote the set of clauses selected by the
assignment τ . A selection variable sC is introduced for each

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1340

clause C and defined by sC ≡ ¬CX . Hence, sC is an in-
dicator of the selection of clause C. That is, sC = > (resp.
sC = ⊥) indicates C is selected (resp. deselected). Let S be
the set of selection variables for clauses in φ(X,Y). The for-
mula ψ(X,S) =

∧
C∈φ(sC ≡ ¬CX) is called the selection

relation of φ(X,Y).

Example 1 Consider a CNF formula φ(X,Y) over two sets
of variablesX = {e1, e2, e3} and Y = {r1, r2, r3}. φ(X,Y)
consists of four clauses:

C1 : (e1 ∨ r1 ∨ r2)

C2 : (e1 ∨ e2 ∨ r1 ∨ r2 ∨ ¬r3)

C3 : (¬e2 ∨ ¬e3 ∨ r2 ∨ ¬r3)

C4 : (¬e1 ∨ e3 ∨ r3)

A selection variable si is introduced for each clause, and S =
{s1, s2, s3, s4}. The selection relation ψ(X,S) of φ(X,Y)
equals

ψ(X,S) = (s1 ≡ ¬e1) ∧ (s2 ≡ ¬e1 ∧ ¬e2) ∧ (s3 ≡ e2 ∧ e3)

∧(s4 ≡ e1 ∧ ¬e3).

Consider the complete assignment τ1 = ¬e1¬e2¬e3 over X .
It selects C1 and C2, and deselects C3 and C4, as can be
seen from the selection relation cofactored by τ1, which re-
sults in ψ(X,S)|τ1 = s1s2¬s3¬s4. Consider the partial as-
signment τ2 = ¬e1e3 over X . It selects C1, deselects C4,
and leaves C2 and C3 undecided. Notice that the two com-
plete assignments ¬e1¬e2e3 and ¬e1e2e3 consistent with τ2
select {C1, C2} and {C1, C3}, respectively. The clause C1

selected by the partial assignment τ2 lies in the intersection of
the sets of clauses selected by the two complete assignments
consistent with τ2.

3 Clause Containment Learning
Consider an E-MAJSAT formula Φ = ∃X

R

Y.φ. To ob-
tain the satisfying probability of Φ, it suffices to enumerate
every assignment τ on X , and calculate the corresponding
conditional satisfying probability Pr[Φ|τ]. Clearly, the above
brute-force approach is computationally expensive. Inspired
by the idea of clause selection discussed above, we propose
clause containment learning to prune the search space. The
proposed learning technique deduces useful information after
each trial of an assignment τ on X . The learnt information
is recorded as blocking clauses to avoid wasteful exploration
and thus accelerates the search process. The proposed learn-
ing technique is based on the following key observation.

Property 1 Given an E-MAJSAT formula Φ =
∃X

R

Y.φ(X,Y) and two assignments τ1 and τ2 over
X , we have

(φ|τ2 |= φ|τ1) ⇒ Pr[Φ|τ2] ≤ Pr[Φ|τ1].

By Property 1 and clause selection, we propose clause con-
tainment learning as detailed below. After cofactoring φ with
an arbitrary assignment τ1 over X , a set of clauses φ|τ1 is
selected. For any other assignment τ2 selecting every clause
in φ|τ1 , i.e., φ|τ1 ⊆ φ|τ2 , we have φ|τ2 |= φ|τ1 . Therefore,
Pr[Φ|τ2] ≤ Pr[Φ|τ1] holds by Property 1. Since the satisfying

probability Pr[Φ|τ2] is not greater than Pr[Φ|τ1], the assign-
ment τ2 is not worth trying. For all such assignments, they
should be blocked after τ1 has been explored.

The core idea in the proposed clause containment learning
is to block every unexplored assignment τ2 that selects a set
of clauses φ|τ2 containing a set of clauses φ|τ1 previously se-
lected by an explored assignment τ1. To block the assignment
τ2, we enforce at least one of the clauses in φ|τ1 to be dese-
lected. Recall that the selection variable sC of clause C val-
uates to ⊥ if and only if C is deselected. Therefore, a learnt
clause, which is the disjunction of the negation of selection
variables of clauses in φ|τ1 , is deduced to record this infor-
mation. The above idea gives rise to the proposed algorithm
in Figure 1 to solve E-MAJSAT formulas. (Lines 03,07,08
and 11 describe enhancement techniques of the proposed al-
gorithm, which will be discussed in Section 4.)

SolveEMAJSAT
input: Φ = ∃X

R

Y.φ(X,Y)
output: Pr[Φ]
begin
01 ψ(X,S) := (

∧
C∈φ(sC ≡ ¬CX)) ∧ (

∧
pure l:var(l)∈X l);

02 prob := 0;
03 s-table := BuildSubsumeTable(φ);
04 while SAT(ψ) = >
05 τ := the found model of ψ for variables in X;
06 if SAT(φ|τ) = >
07 τ ′ := SelectMinimalClauses(φ, ψ);
08 ϕ := RemoveSubsumedClauses(φ|τ ′ ,s-table);
09 prob := max{prob, WeightModelCount(

R

Y.ϕ)};
10 CS :=

∨
C∈ϕ ¬sC ;

11 CL := DiscardLiterals(φ,CS ,prob);
12 else //SAT(φ|τ) = ⊥
13 CL := MinimalConflicting(φ, τ);
14 ψ := ψ ∧ CL;
15 return prob;
end

Figure 1: E-MAJSAT solving with clause containment learning.

The algorithm involves two SAT solvers: one works on the
matrix φ(X,Y) of the input formula, and the other works on
the selection relation ψ(X,S) for clauses in φ(X,Y). Using
the definition of selection variables, line 01 initializes the se-
lection relation together with asserting the literals of pure X
variables. If a variable e in X is pure in φ, assigning the liter-
als of e to > deselects the clauses containing e, and does not
affect other clauses. Because the conditional satisfying prob-
ability is greater if less clauses are selected, we can always
assert pure X variables.

The selection relation is used to select different assign-
ments τ over X . If φ|τ is satisfiable, a weighted model
counter is invoked to compute the conditional satisfying prob-
ability Pr[

R

Y.φ|τ] under the assignment τ . The blocking
clause CL derived based on the proposed containment learn-
ing technique is conjoined with ψ to prevent clauses in φ|τ
being simultaneously selected again.

On the other hand, suppose φ|τ is unsatisfiable. We can
deduce a conjunction of literals from τ responsible for the
conflict by using a SAT solver to analyze the conflict (e.g.,
using the subroutine analyzeFinal in Minisat [Eén and

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1341

Sörensson, 2003a; 2003b]). In general, the conjunction of
literals may not be minimal, meaning that some literals can
be discarded and the conflict remains unaffected. The sub-
routine MinimalConflicting makes the conjunction of lit-
erals responsible for the conflict minimal as follows. For
each literal l in the conjunction, temporarily drop l and check
whether φ(X,Y) is still unsatisfiable. If it is unsatisfiable,
discard l; otherwise, keep l in the conjunction. Repeating the
above process for every literal makes the conjunction min-
imal. Complementing the minimal conjunction of literals
yields a learnt clause, which is then conjoined with the selec-
tion relation to block assignments that make φ unsatisfiable.

When the selection relation becomes unsatisfiable, it indi-
cates that the space spanned by variables X has been com-
pletely searched. The algorithm will return the encountered
maximum conditional satisfying probability, which equals
the satisfying probability of the input E-MAJSAT formula.

We illustrate the working of algorithm SolveEMAJSAT in
the following example.

Example 2 Continuing Example 1, we show how algo-
rithm SolveEMAJSAT in Figure 1 (without the enhance-
ment techniques) solves the E-MAJSAT instance Φ =
∃e1e2e3

R0.5r1r2r3.φ(X,Y). Let the first tried assignment
τ1 be ¬e1¬e2¬e3, which selects C1, C2. The algorithm de-
rives Pr[

R0.5Y.φ|τ1] = 0.75 by invoking the weighted model
counter in line 09. The learnt clause CL = (¬s1 ∨ ¬s2)
is conjoined with ψ to prevent C1 and C2 being selected si-
multaneously again. Suppose the second tried assignment τ2
is ¬e1e2¬e3, which selects C1. The weighted model counter
gives Pr[

R0.5Y.φ|τ2] = 0.75, and the learnt clause CL =
(¬s1) is conjoined with ψ to prevent C1 being selected again.
Let the third tried assignment τ3 be e1e2¬e3, which selects
C4. The weighted model counter gives Pr[

R0.5Y.φ|τ3] = 0.5,
and the learnt clause CL = (¬s4) is conjoined with ψ to
prevent C4 being selected again. Let the fourth tried assign-
ment τ4 be e1e2e3, which selects C3. The conditional satis-
fying probability Pr[

R0.5Y.φ|τ4] equals 0.75, and the learnt
clause CL = (¬s3) is conjoined with ψ to prevent C3 be-
ing selected again. Suppose the fifth tried assignment τ5 is
e1¬e2e3, which deselects every clause, making φ|τ5 = > and
Pr[

R0.5Y.φ|τ5] = 1. Since there is no selected clause, the
learnt clause CL is empty, and the selection relation becomes
unsatisfiable after being conjoined with an empty clause. The
unsatisfiability of the selection relation reveals that the space
spanned by variables X has been exhaustively searched, and
the algorithm returns the satisfying probability, which equals
1, of the E-MAJSAT instance.

4 Enhancement Techniques
The computational efficiency of algorithm SolveEMAJSAT is
greatly affected by the strength of learnt clauses. We in-
troduce three enhancement methods, minimal clause selec-
tion, clause subsumption, and partial assignment pruning, to
strengthen the learnt clauses deduced by the proposed learn-
ing technique. In Figure 1, the enhancement techniques
are executed by subroutines SelectMinimalClauses (in
line 07), RemoveSubsumedClauses (in line 08), and

DiscardLiterals (in line 11), to be detailed in the follow-
ing three sections, respectively.

4.1 Minimal Clause Selection
As discussed before, the selection relation ψ(X,S) is in
charge of choosing an assignment τ over variables X and
thus selects a set of clauses from the matrix φ(X,Y). How-
ever, the set of selected clauses may not be minimal, meaning
that it is possible for another assignment τ ′ to select a set of
clauses contained in that selected by τ , i.e., φ|τ ′ ⊂ φ|τ . No-
tice that the length of a learnt clause equals the number of
selected clauses. Therefore, selecting fewer clauses gives a
stronger learnt clause, as well as a higher conditional satisfy-
ing probability. Starting from a set of initially selected clauses
φ|τ , the first enhancement technique minimal clause selection
decreases the number of selected clauses by making the set
of initially selected clauses minimal as follows. The learnt
clause is conjoined with ψ(X,S) so that ψ(X,S) is solved
under the unit assumption [Eén and Sörensson, 2003b] to en-
sure that at least one of the currently selected clauses must be
deselected in the future. The above process repeats until the
selection relation becomes unsatisfiable.

4.2 Clause Subsumption
The second enhancement technique, clause subsumption, de-
creases the length of the learnt clause via examining the sub-
sumption relation among the selected clauses. Recall that
clause C1 subsumes clause C2 if every literal appears in C1

also appears in C2. Using the lookup table of the subsump-
tion relation computed by subroutine BuildSubsumeTable,
the procedure RemoveSubsumedClauses simplifies the set
of selected clauses φ|τ by removing subsumed clauses.

4.3 Partial Assignment Pruning
To illustrate the third enhancement technique partial assign-
ment pruning, we first take a closer look at the learnt clause
deduced by the proposed clause containment learning. Given
a matrix φ(X,Y) and an assignment τ overX , a learnt clause
consists of the negation of the selection variables of the se-
lected clauses. For each selected clause C, if the selection
variable sC is substituted by its definition sC ≡ ¬CX , the
learnt clause CL becomes the disjunction of the sub-clauses
CX , i.e., CL =

∨
C∈φ|τ C

X .
From the above illustration, we observe that the learnt

clause can be strengthened as follows. First, temporarily dis-
card some literal l in the learnt clause. Second, invoke a
weighted model counter to compute the conditional satisfy-
ing probability contributed by the selected clauses. Third,
compare the probability to the current maximum satisfying
probability. If the probability is no greater, literal l is dis-
carded; otherwise, it is kept in the clause. Fourth, repeat the
above steps for other literals.

Benefiting from the three enhancement techniques, the effi-
ciency of the proposed algorithm is greatly improved, as will
be shown in our experiments.

We emphasize two more strengths of the proposed algo-
rithm. First, during the computation, the proposed algo-
rithm keeps deriving lower bounds for the satisfying proba-
bility, and the bounds gradually converge to the final answer.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1342

Therefore, in contrast to previous DPLL-based methods like
DC-SSAT [Majercik and Boots, 2005], the proposed algo-
rithm can be easily modified to solve approximate SSAT by
returning the greatest encountered lower bound upon timeout.
Second, the proposed algorithm is efficient in memory usage,
since it stores the learnt information compactly via selection
variables, and the weighted model counting is invoked on se-
lected clauses, whose sizes are typically much smaller than
that of original matrix.

5 Experimental Results
A prototyping program1 of the proposed algorithm
SolveEMAJSAT was implemented in the ABC [Mishchenko,
2005] environment with SAT solver Minisat-2.2
[Eén and Sörensson, 2003a]. For weighted model
counting, we tried Cachet [Sang et al., 2004;
2005], but the overall performance was not satisfactory.
Instead, we adopt the well-developed BDD package CUDD
[Somenzi, 1998], and weighted model counting of the
formula is done by traversing the BDD built from the
formula, as proposed in [Darwiche and Marquis, 2002]. The
experiments were conducted on a Linux machine with an
Intel Xeon 2.1 GHz CPU and 126 GB RAM.

We evaluated the proposed algorithm on both random k-
CNF and application formulas. We compared the proposed
approach to the state-of-the-art SSAT solver DC-SSAT,
the maximum model counter MAXCOUNT [Fremont et al.,
2017], which relies on the approximate counter APPROXMC
[Chakraborty et al., 2016], and the E-MAJSAT solver
ComPlan. As ComPlan is not publicly available, we used
the CNF-to-d-DNNF compilation time of c2d [Darwiche,
2002], a key step in ComPlan, to estimate the performance
of ComPlan. Because MAXCOUNT can only handle ran-
domized quantifiers with probability 0.5, to compare MAX-
COUNT against other methods we convert formulas involving
randomized quantifiers with probabilities not equal to 0.5 into
equivalent ones with all probabilities equal to 0.5 by the con-
version method proposed in [Lee and Jiang, 2014].

In the sequel, our proposed approach with all three en-
hancement techniques enabled, DC-SSAT, MAXCOUNT,
and the CNF-to-d-DNNF compiler are referred to as
erSSAT, Dc, Max, and c2d, respectively. A runtime limit of
1000 seconds was imposed on each formula, and the symbol
“-” denotes timeout. We did not impose a memory limit, but
recorded the maximum memory usage during execution.

5.1 Random k-CNF Formulas
The random k-CNF formulas were generated by the cnfgen
package [Lauria, 2012]. A collection of 280 formulas were
generated with k, i.e., the number of literals in a clause, rang-
ing in {3, 4, 5, 6, 7, 8, 9}, the number of variables ranging in
{10, 20, 30, 40, 50}, and clause-to-variable ratio ranging in
{k−1, k, k+1, k+2}. Two formulas were generated for each
parameter combination. To convert the propositional formu-
las into E-MAJSAT formulas, half of the variables are exis-
tentially quantified, and the rest are randomly quantified with
probability 0.5.

1Available at https://github.com/nianzelee/ssatABC.git

Among the collection of 280 formulas, erSSAT solved
216 instances exactly and computed lower bounds for the
rest 64 instances with confidence level 1, while Dc and c2d
solved 210 and 209 instances, respectively. On the other
hand, Max computed lower bounds for 257 instances with
confidence level greater than 0.8. Moreover, the maximum
memory usage of erSSAT is two orders (resp. one order) of
magnitude less than that of Dc (resp. c2d). As the runtime
and memory usage of ComPlan are bounded below by c2d,
we conclude that erSSAT has the best performance among
compared solvers over random formulas.

5.2 Application Formulas
We collected seven families of application formulas for eval-
uation. The first two families, Toilet-A and Conformant, are
exist-forall-exist quantified QBFs from [Giunchiglia et al.,
2005]. We converted them into exist-random-exist SSAT for-
mulas by changing universal quantifiers to randomized ones
with probabilities 0.5. The third family Sand-Castle is a
probabilistic conformant planning problem, which was en-
coded as an E-MAJSAT formula in [Majercik and Littman,
1998]. The fourth, fifth, and sixth families are taken from
[Fremont et al., 2017], which encode the maximum satisfia-
bility (MaxSat), quantitative information flow (QIF), and pro-
gram synthesis (PS) problems, respectively, into maximum
model counting. The last family is taken from [Lee and Jiang,
2014], which encodes the maximum probabilistic equivalence
checking (MPEC) of analyzing the maximum probability for
a probabilistic circuit to produce erroneous outputs.

Table 1 shows the results, where benchmarks statistics,
including the numbers of variables (#V), clauses (#C), out-
ermost existentially quantified variables (#E1), randomized
quantified variables (#R), and innermost existentially quan-
tified variables (#E2), are reported. In the table, runtime in-
formation is reported in seconds. For erSSAT, the obtained
lower bound (LB), the time (T1) spent to first reach the ob-
tained LB, and the entire runtime (T2), are reported. For Dc,
the exact probability (Pr) and runtime (T) are reported. As
Dc is an exact SSAT solver, either it terminates and returns
an answer, or it times out without producing any information.
For Max, the lower bound (LB), confidence level (CL) of LB,
and the rumtime (T) are reported. For c2d, the time (T) spent
on compiling a formula into d-DNNF is reported. A “-” entry
in T, T1, or T2 indicates that the time limit was reached. We
note that, if T2 of erSSAT is not a “-”, the corresponding
LB is the exact answer to the formula. Also the LB values
obtained by erSSAT are of confidence level 1.

The results suggest that erSSAT was able to quickly de-
rive tight lower bounds in families Toilet-A, Conformant,
Sand-Castle, MaxSat, and MPEC. Specifically, for Toilet-A,
erSSAT generally spent less time than Max did to derive the
same lower bounds while Max timed out on four larger cases.
For Conformant, erSSAT derived lower bounds at the order
of 10−1 for all formulas, while Dc, Max, and c2d timed out
on most of them. For Sand-Castle, erSSAT exactly solved
three formulas, and derived lower bounds greater than 0.99
for the rest. In contrast, Dc and c2d outperformed erSSAT
on these instances because they are specially designed for
solving probabilistic conformant planning tasks. On the other

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1343

benchmark statistics erSSAT Dc Max c2d
family formula #V #C #E1 #R #E2 LB T1 T2 Pr T LB CL T T

Toilet-A

10 01.3 106 10604 33 10 63 1.95e-3 0 27 1.95e-3 13 1.95e-3 1.00 36 3
10 01.5 170 10902 55 10 105 3.91e-3 19 577 3.91e-3 208 3.91e-3 1.00 67 5
10 01.7 234 11200 77 10 147 7.81e-3 179 - - - 7.81e-3 1.00 294 19
10 05.2 170 11315 110 10 50 3.13e-2 565 - - - - - -
10 05.3 250 12000 165 10 75 1.56e-2 0 - - - - - - 244
10 05.4 330 12685 220 10 100 1.56e-2 888 - - - - - - -
10 10.2 290 12840 220 10 60 1.00 3 3 - - - - - 181

Conformant

blocks enc 2 b4 3043 57130 1248 7 1788 4.38e-1 341 - - - - - - -
cube c7 ser—23 1479 15164 138 9 1332 3.38e-1 620 - - - - - - -

cube c7 ser–opt-24 1542 15510 144 9 1389 3.44e-1 679 - - - - - - -
cube c9 par—10 847 24106 60 10 777 2.90e-1 185 - - - 2.92e-1 1.00 802 -

cube c9 par–opt-11 928 24548 66 10 852 2.89e-1 192 - - - - - - -
emptyroom e3 ser–20 982 6286 80 6 896 1.88e-1 869 - - - - - - -

ring r4 ser–opt-11 373 5333 44 9 320 4.96e-1 506 - - - 4.53e-1 1.00 102 29

Sand-Castle

SC-11 101 201 22 55 24 9.77e-1 32 50 9.77e-1 0 - - - 0
SC-12 110 219 24 60 26 9.84e-1 133 187 9.84e-1 0 - - - 0
SC-13 119 237 26 65 28 9.89e-1 441 619 9.89e-1 0 - - - 0
SC-14 128 255 28 70 30 9.92e-1 632 - 9.92e-1 1 - - - 0
SC-15 137 273 30 75 32 9.93e-1 979 - 9.94e-1 1 - - - 1
SC-16 146 291 32 80 34 9.94e-1 785 - 9.96e-1 3 - - - 0
SC-17 155 309 34 85 36 9.94e-1 654 - 9.97e-1 6 - - - 1

MaxSat keller4.clq 120 1212 43 15 62 9.76e-1 0 0 - - 9.13e-1 0.82 5 1

QIF

backdoor-2x16-8 200 272 32 32 136 5.96e-8 0 - - - 5.96e-8 1.00 9 1
backdoor-32-24 147 76 32 32 83 1.00 0 0 - - 1.95e-3 0.82 601 0

bin-search-16 1448 5825 16 16 1416 1.95e-3 106 - - - 9.85e-1 0.91 230 -
CVe-2007-2875 784 1740 32 32 720 1.00 2 2 - - 9.85e-1 0.82 13 342

pwd-backdoor 400 609 64 64 272 0.00 - - - - 9.85e-1 0.99 93 1
reverse2 333 293 32 32 269 2.98e-7 271 - - - - - - 2
reverse 229 293 32 32 165 5.96e-7 839 - - - - - - 2

PS

ConcreteActService 4836 17866 71 37 4728 0.00 - - - - 9.60e-1 0.82 52 -
IssueServiceImpl 3625 13028 77 29 3519 0.00 - - - - 9.06e-1 0.82 34 -

IterationService 4167 15264 70 34 4063 0.00 - - - - 9.70e-1 0.82 47 -
LoginService 5229 21566 92 27 5110 0.00 - - - - 9.45e-1 0.82 56 -
PhaseService 4167 15264 70 34 4063 0.00 - - - - 9.70e-1 0.82 47 -
ProcessBean 9880 41451 166 39 9675 0.00 - - - - 9.27e-1 0.82 126 -

UserServiceImpl 4019 14657 87 31 3901 0.00 - - - - 9.22e-1 0.82 43 -

MPEC

c499(2.34e-1) 217 522 41 2 174 2.34e-1 0 0 2.34e-1 0 2.34e-1 1.00 0 2
c880(2.34e-1) 451 1167 60 2 389 1.25e-1 0 - - - 1.25e-1 1.00 14 72

c1355(3.30e-1) 771 2181 41 3 727 3.30e-1 0 - - - 3.30e-1 1.00 41 10
c1908(2.34e-1) 270 705 33 2 235 2.34e-1 23 - 2.34e-1 91 1.25e-1 1.00 1 3
c3540(1.25e-1) 321 807 50 2 269 1.25e-1 0 - 1.25e-1 92 1.25e-1 1.00 2 3
c5315(7.37e-1) 918 2190 178 10 730 4.14e-1 154 - - - 6.27e-1 0.82 63 217
c7552(4.87e-1) 648 1308 207 5 436 2.34e-1 0 - - - 2.18e-1 0.82 66 5

Maximum memory usage (GB) 2.2 38.6 0.2 4.2

Table 1: Results of Application Formulas

hand, Max failed in deriving lower bounds for all the formu-
las. For families QIF and PS, erSSAT did not perform as
good as Max due to the fact that the formulas in these two
families share the property that only very few assignments
to the outermost existentially quantified variables can lead to
large satisfying probabilities close to 1. It is not surprising as
Max is particularly designed for such formulas.

In terms of memory usage, erSSAT is more efficient than
Dc and c2d while Max used the least amount.

5.3 Analysis of Enhancement Techniques
To analyze the effect of the proposed enhancement tech-
niques on computational efficiency, we tested our pro-
gram under different configurations over random k-CNF
formulas. Let the enabled enhancement techniques be in-
dicated by letter m for minimal clause selection, s for
clause subsumption, and p for partial assignment prun-
ing. On average, erSSAT-{p} achieved 31% speedup
over erSSAT; erSSAT-{m,p} achieved 11% speedup over
erSSAT-{p}; erSSAT-{m,s,p} achieved 2% speedup
over erSSAT-{m,p}.

For application formulas, the enhancement techniques in
general do not produce consistent runtime improvements due

to their computational overheads. However they helped in ex-
act solving of more formulas within the timeout limit. The re-
sults suggest the benefit of the three enhancement techniques
to the efficiency of the proposed algorithm.

6 Conclusions
We developed a new approach to solving E-MAJSAT for-
mulas. In contrast to prior methods based on DPLL search
or knowledge compilation, we proposed the clause contain-
ment learning technique, inspired by clause selection recently
developed in QBF evaluation, and design a novel algorithm
to solve E-MAJSAT efficiently. Under the framework of
clause containment learning, three enhancement techniques
were proposed to improve the computational efficiency. Ex-
periment results show the benefit of our method. For future
work, we intend to solve SSAT with general prefix structure.

Acknowledgements
This work was supported in part by the Ministry of Sci-
ence and Technology of Taiwan under grants 104-2628-
E-002-013-MY3, 105-2221-E-002-196-MY3, 105-2923-E-
002-016-MY3, and 106-2912-E-002-002-MY3.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1344

References
[Chakraborty et al., 2016] S. Chakraborty, K. Meel, and

M. Vardi. Algorithmic improvements in approximate
counting for probabilistic inference: From linear to loga-
rithmic SAT calls. In Proc. IJCAI, pages 3569–3576, 2016.

[Chavira and Darwiche, 2008] M. Chavira and A. Darwiche.
On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6-7):772–799, 2008.

[Darwiche and Marquis, 2002] A. Darwiche and P. Marquis.
A knowledge compilation map. Journal of Artificial Intel-
ligence Research, 17:229–264, 2002.

[Darwiche, 2001] A. Darwiche. Decomposable negation
normal form. Journal of the ACM, 48(4):608–647, 2001.

[Darwiche, 2002] A. Darwiche. A compiler for determinis-
tic, decomposable negation normal form. In Proc. AAAI,
pages 627–634, 2002.

[Davis et al., 1962] M. Davis, G. Logemann, and D. Love-
land. A machine program for theorem-proving. Commu-
nications of the ACM, 5(7):394–397, 1962.

[Dechter, 1998] R. Dechter. Bucket elimination: A unify-
ing framework for probabilistic inference. In Learning in
Graphical Models, pages 75–104. Springer, 1998.

[Eén and Sörensson, 2003a] N. Eén and N. Sörensson. An
extensible SAT-solver. In Proc. SAT, pages 502–518,
2003.

[Eén and Sörensson, 2003b] N. Eén and N. Sörensson. Tem-
poral induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science, 89(4):543–560,
2003.

[Fremont et al., 2017] D. Fremont, M. Rabe, and S. Seshia.
Maximum Model Counting. In AAAI, pages 3885–3892,
2017.

[Giunchiglia et al., 2005] E. Giunchiglia, M. Nariz-
zano, L. Pulina, and A. Tacchella. Quantified
Boolean formulas satisfiability library (QBFLIB),
2005. https://www.qbflib.org.

[Hnich et al., 2011] B. Hnich, R. Rossi, A. Tarim, and
S. Prestwich. A survey on CP-AI-OR hybrids for deci-
sion making under uncertainty. In Hybrid Optimization,
pages 227–270. Springer, 2011.

[Huang, 2006] J. Huang. Combining knowledge compilation
and search for conformant probabilistic planning. In Proc.
ICAPS, pages 253–262, 2006.

[Janota and Marques-Silva, 2015] M. Janota and
J. Marques-Silva. Solving QBF by clause selection.
In Proc. IJCAI, pages 325–331, 2015.

[Lauria, 2012] M. Lauria. CNFgen: Combi-
natorial benchmarks for SAT solvers, 2012.
https://massimolauria.github.io/cnfgen/.

[Lee and Jiang, 2014] N.-Z. Lee and J.-H. Jiang. Towards
formal evaluation and verification of probabilistic design.
In Proc. ICCAD, pages 340–347, 2014.

[Lee et al., 2017] N.-Z. Lee, Y.-S. Wang, and J.-H. Jiang.
Solving stochastic Boolean satisfiability under random-
exist quantification. In Proc. IJCAI, pages 688–694, 2017.

[Littman et al., 1998] M. Littman, J. Goldsmith, and
M. Mundhenk. The computational complexity of prob-
abilistic planning. Journal of Artificial Intelligence
Research, 9(1):1–36, 1998.

[Littman et al., 2001] M. Littman, S. Majercik, and
T. Pitassi. Stochastic Boolean satisfiability. Journal of
Automated Reasoning, 27(3):251–296, 2001.

[Majercik and Boots, 2005] S. Majercik and B. Boots. DC-
SSAT: A divide-and-conquer approach to solving stochas-
tic satisfiability problems efficiently. In Proc. AAAI, page
416, 2005.

[Majercik and Littman, 1998] S. Majercik and M. Littman.
MAXPLAN: A new approach to probabilistic planning. In
Proc. AIPS, pages 86–93, 1998.

[Majercik, 2009] S. Majercik. Stochastic Boolean satisfia-
bility. Handbook of Satisfiability, 185:887–925, 2009.

[Mishchenko, 2005] A. Mishchenko. ABC: A sys-
tem for sequential synthesis and verification, 2005.
https://github.com/berkeley-abc/abc.

[Papadimitriou, 1985] C. Papadimitriou. Games against
nature. Journal of Computer and System Sciences,
31(2):288–301, 1985.

[Pipatsrisawat and Darwiche, 2009] K. Pipatsrisawat and
A. Darwiche. A new d-DNNF-based bound computation
algorithm for functional E-MAJSAT. In Proc. IJCAI,
pages 590–595, 2009.

[Rabe and Tentrup, 2015] M. Rabe and L. Tentrup. CAQE:
A certifying QBF solver. In Proc. FMCAD, pages 136–
143, 2015.

[Sang et al., 2004] T. Sang, F. Bacchus, P. Beame, H. Kautz,
and T. Pitassi. Combining component caching and clause
learning for effective model counting. In Proc. SAT, pages
20–28, 2004.

[Sang et al., 2005] T. Sang, P. Beame, and H. Kautz. Per-
forming Bayesian inference by weighted model counting.
In Proc. AAAI, pages 475–481, 2005.

[Somenzi, 1998] F. Somenzi. CUDD: CU decision diagram
package release 2.3.0, 1998.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1345

