
Abstract
The alldifferent constraint is an essential ingredient
of most Constraints Satisfaction Problems (CSPs).
It has been known that the generalized arc con-
sistency (GAC) of alldifferent constraints can be
reduced to the maximum matching problem in a
value graph. The redundant edges, which do not
appear in any maximum matching of the value graph,
can and should be removed from the graph. The ex-
isting methods attempt to identify these redundant
edges by computing the strongly connected compo-
nents after finding a maximum matching for the
graph. Here, we present a novel theorem for identi-
fication of the redundant edges. We show that some
of the redundant edges can be immediately detected
after finding a maximum matching. Based on this
theoretical result, we present an efficient algorithm
for processing alldifferent constraints. Experimental
results on real problems show that our new algo-
rithm significantly outperforms the-state-of-art ap-
proaches.

1 Introduction
Constraint Programming is a powerful tool for problem solv-
ing and has been widely used in various real-world applica-
tions. Constraint Satisfaction Problem (CSP) defines a set of
variables whose values must satisfy some specified con-
straints. One of the most useful and important constraints is
the alldifferent constraint [Lauriere 1978], which requires
that all variables of the constraint must have different values.
The alldifferent constraint can be found in wide varieties of
combinational problems [Wallace 1996], including various
puzzles, graph coloring, and assignment problems.

A typical approach to solve a CSP is to search from all
possible variable values. To accelerate this search process,
various consistency techniques have been introduced to re-
move values from the domain of a variable which does not
belong to any solution to the problem. A classic filtering
algorithm for Generalized Arc Consistency (GAC) for

alldifferent constraints is proposed by Régin [Régin 1994].
The algorithm utilizes a theorem of C. Berge [Berge and
Minieka 1973] from graph theory and prunes redundant
edges that do not appear in any maximum matching of the
value graph of alldifferent constraints. For weaker forms of
the consistency of alldifferent constraints, Leconte [Leconte
1996] provides an algorithm for the range consistency based
on identifying Hall intervals. Puget [Puget 1998] proposes an
algorithm for the bounds consistency, which is weaker than
the range consistency. To our knowledge, Régin’s algorithm
is still the-state-of-art filtering method for GAC of the alldif-
ferent constraint. Gent [Gent, Miguel et al. 2008] discuss sev-
eral implementation details of Régin’s algorithm, especially
the computation of the Strongly Connected Components
(SCC) of the residual graph. A survey for the alldifferent con-
straint can be found in [van Hoeve 2001]. Recently, as a pow-
erful tool, alldifferent constraints are extensively used to
solve difficult constraint optimization problems, such as sub-
graph isomorphism [Solnon 2010] and constraint clustering
[Duong and Vrain 2017].

In this paper, we developed a simple and fast algorithm
for the alldifferent constraint. Our new algorithm is based a
novel theorem for identifying redundant edges of the value
graph of alldifferent constraints. We classified the redundant
edges into two types: one type of redundant edges can be ob-
tained immediately by finding a maximum matching, and the
second type of redundant edges can be found by computing
SCCs in a small sub-graph. Based on this theorem, we de-
signed an efficient algorithm for the alldifferent constraint.
The major improvement of our algorithm comes from
identification of type 1 redundant edges, which allow us to
remove a substantial number of redundant edges without any
additional computation. Compared with the-state-of-art ap-
proach, our new algorithm does not need to construct a
residual graph, which has more edges than the original value
graph. Therefore, the SCCs computation in our algorithm is
also faster than the previous algorithm. We evaluated the per-
formance of our new algorithm on many benchmark in-
stances by using Minion 1.8 software [Gent, Jefferson et al.],

A Fast Algorithm for Generalized Arc Consistency of the Alldifferent Constraint

Xizhe Zhang1,2, Qian Li1 and Weixiong Zhang3,4
1School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China
2Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University and

Northeastern University, Shenyang, Liaoning, China
3College of Math and Computer Science, Institute for Systems Biology, Jianghan University, Wuhan,

China
4Department of Computer Science and Engineering, Washington University, Saint Louis, Missouri, USA

zhangxizhe@mail.neu.edu.cn

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1398

and the result showed that our algorithm outperformed Ré-
gin’s algorithm on all problem instances.

The paper is organized as follows. We present in Section
2 the definitions related to constraint satisfaction problems
and graph theory. We present and prove in Section 3 the
novel theorem for identifying the redundant edges of a value
graph, and present a fast algorithm for the alldifferent con-
straint. We evaluate the performance of our algorithm on
several real problems in Section 4, and conclude with discus-
sions in Section 5.

2 Background and Preliminaries
Constraint programming. A constraint satisfaction problem
(CSP) is a triple (X, D, C), where X is a set of variables, {x1,
x2, ... , xn}, D is a set of domains {D1, D2, . . ., Dn}, where Di
is the set of possible values for variable xi, and C is a set of
constraints between variables. A constraint c∈C is defined
as a subset of the Cartesian product of the domains of the
variables that are in C. A solution to a CSP (X, D, C) is a set
of values (d1,...,dn) ∈ D1×···×Dn, where for every constraint
c∈C on the variables xi1,...,xim, we have (di1, ..., dim)∈c. A
constraint is generalized arc consistent (GAC) iff every value
of the variables can be extended to all the other variables of
the constraint in such a way the constraint is satisfied.

An alldifferent constraint c(x1,...,xn) is a constraint that
specifies that xi≠xj for any i < j. For an alldifferent constraint
c, a bipartite graph B(c) = (Xc, Dc, E) is called a value graph
of c, where (xi, d) ∈ E iff d ∈ Di. To achieve the GAC on an
alldifferent constraint, we need to introduce some concepts
from graph theory, especially about maximum matching.

Graph Theory. Consider a bipartite graph B(U,V,E), in
which U, V are two disjoint sets of nodes and every edge in
E connects a node in U to one in V. A matching is a set of
edges that share no common node. A node is called a matched
node if it is connected to an edge in the matching, or a free
node, otherwise. A matching with the maximum number of
edges is called a maximum matching. An alternating path is
a path whose edges are alternate in and out of the matching.
An augmenting path is an alternating path whose two end
nodes are free nodes.

A bipartite graph may have more than one maximum
matching, so that maximum matching is usually not unique.
There may exist many maximum matchings with the same
size for a graph. An allowed edge is an edge belonging to
some, but not all, of maximum matchings. A redundant edge
is an edge that does not appear in any maximum matchings.
Similarly, an allowed node is a node covered by some, but
not all, of maximum matchings.

Régin’s filtering Algorithm. An alldifferent constraint is
GAC iff every edge of its value graph belong to some match-
ings that cover Xc in B(c) [Régin 1994]. Therefore, to achieve

Figure 1: Illustration of Régin’s filtering algorithm [Régin 1994].
The algorithm first computes a maximum matching, then constructs
the directed residual graph by adding one node and |Dc| edges to
original graph, and computes SCC of the residual graph. The un-
matched edges between independent SCCs are redundant.

GAC, we need to remove the redundant edges of its value
graph. Régin [Régin 1994] present a filtering algorithm based
on the following property:

Property 1 (Berge 1970) An edge is allowed, iff, for an
arbitrary maximum matching M, it belongs to either an even
alternating path begins at a free node or an even alternating
cycle.

Therefore, to identify all of the redundant edges of the
value graph, the algorithm first computes a maximum
matching, and then finds all alternating paths beginning at
free nodes and all even alternating cycle based on SCCs. The
last two steps can be combined by finding SCCs in a directed
residual graph. The residual graph is constructed by adding
one virtual node and |Dc| edges to the original value graph.
Therefore, the residual graph is always larger than value
graph. The unmatched edges between independent SCCs of
the residual graph are redundant edges. An example is shown
in Figure.1.

3 Identify Redundant Edges
For an alldifferent constraint c, the variable-value pairs cor-
responding to the edges that never appear in any maximum
matching should be pruned. Therefore, in the rest of the paper,
we focus on how to efficiently identify all of the redundant
edges of a value graph.

Consider an alldifferent constraint c(Xc, Dc) and its value
graph B(c) = (Xc, Dc, E). Let A be the set of allowed nodes of
B(c), and Γ(A) be the set of the neighbor nodes of A. It is
obvious that if there exists a solution to the constraint, all
nodes of Xc must be matched. Therefore, the allowed nodes
can only be found in set Dc. The node set of the value graph
can be divided into four sets: A, Γ(A), Dc-A, Xc-Γ(A). The
allowed nodes can be easily identified by our previous work
[Zhang, Han et al. 2017], which was originally used to iden-
tify the input node of a network.

Property 2 [Zhang, Han et al. 2017] A node is allowed, iff

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1399

for an arbitrary maximum matching M, it can be reached by
an even alternating path that begins at a free node.

Based on Property 2 and using our node set partition, we
now present a new theorem for identifying redundant edges:

Theorem: For an arbitrary maximum matching, an un-
matched edge emn is redundant, iff

1. m∈Γ(A) and n∈Dc-A , or
2. m∈Xc-Γ(A), n∈Dc-A and emn does not belong to any

alternating cycle.
Proof: Based on the definitions of A, Γ(A), Dc-A and Xc-

Γ(A), the edges of a value graph can be divided into three sets:
E(Γ(A),A), E(Γ(A),Dc-A) and E(Xc-Γ(A),Dc-A) (Figure.2).
Note that based on the definition of Γ(A), all neighbor nodes
of A should be in Γ(A). Therefore, there is no edge between
A and Xc-Γ(A).

We first prove that all edges of E(Γ(A), A) are allowed
edges. Consider an unmatched edge eba∉M, where a∈A and
b∈Γ(A). Because a is an allowed node, based on property 2,
there must exist an even alternating path P connecting node
a and a free node. Consider the path P+eba, if we swap the
matched and unmatched edges of the path, we have a new
maximum matching M’, where eba∈M. Therefore, all edges
of E(Γ(A), A) are allowed edges and can be in the new
maximum matching M’.

Next, we prove that all edges of E(Γ(A), Dc-A) are
redundant. Because Γ(A) is part of the set of variables, any
node of Γ(A) should be matched. Otherwise, there is no
solution to the constraint. Suppose emn is an allowed edge,
where m∈Γ(A) and n∈Dc-A. Because Γ(A) is the neighbor set
of A and any node of A is allowed, there must exist an
alternating path P starting at a free node connected to node m.
Therefore, the path P+emn is an alternating path. Based on
Property 2, node n is an allowed node. That contradicts with
the definition of node n. Therefore, all edges of E(Γ(A), Dc-
A) are redundant edges.

Finally, we prove the edges of E(Xc-Γ(A), Dc-A) are
redundant edges iff they are not matched and do not belong
to any alternating cycle. Note that it is a corollary of Property
1. Therefore, the proof is completed.

Figure 2: The value graph of an alldifferent constraint and its
redundant edges.

Figure 2 gives a simple example of above theorem. After
finding a maximum matching (red edges) of the value graph,
node 5 is the only free node. The set of allowed nodes are
A={3,4,5} because the nodes 3 and 4 can be reached by
alternating path start from node 5. The neighbor set of A is
Γ(A)={x3,x4}. Based on our theorem, the edges between set
Γ(A) and Dc-A can be removed from the value graph.
Therefore, we only need to find the unmatched edges
between sets {x1, x2} and {1,2} and not in any alternating
cycle, which is the edge e(x2,1).

This theorem offers us an efficient way to find redundant
edges in a bipartite graph. Based on this theorem, the edges
between node sets Γ(A) and Dc-A are denoted by type 1
redundant edges, and the other redundant edges by type 2
redundant edges. The type 1 redundant edges can be easily
obtained after finding the set of allowed nodes. The allowed
nodes can be found by finding a maximum matching based
on Property 2. The basic idea of a maximum matching algo-
rithm, such as Hopcroft–Karp algorithm [Hopcroft and Karp
1973] or Hungarian Algorithm [Kuhn 1955], is to iteratively
find all augmenting paths corresponding to the matching M
at hand, and then to derive a larger matching M’. A maximum
matching is obtained when no augmenting path can be found.
The last step of the algorithm is exactly to find all alternating
paths starting at the free nodes of the maximum matching.
Therefore, all allowed nodes and their neighbors can be
obtained in the last step of a maximum matching algorithm,
which provides the first part of redundant edges. For the rest
of redundant edges, we only need to find SCCs in a smaller
sub-graph B’(Xc-Γ(A), Dc-A, E’), where E’⊂E is the edge\ set
connecting Xc-Γ(A) and Dc-A.

The above idea and steps are formulated in Algorithm 1
for filtering value graph B of alldifferent constraints.

ALGORITHM1: Fast filtering alldifferent constraint
1. Input: Value graph B(c) = (Xc, Dc, E), initial match-

ing M;
2. Repeat
3. Find all alternating paths AP from all free node

based on current matching M;
4. Put the nodes in Dc of AP into set A, and their

 neighbor nodes in Xc into set Γ(A);
5. If AP contains the augmenting paths then
6. expand the augmenting paths and obtain

a new matching M’;
7. Let M=M’; clear set A and Γ(A);
8. If size(M)=size(Xc) then
9. prune all edges between set Γ(A) and set Dc-A;
10. Until no augmenting path is found;
11. If size(M)<size(Xc) return false;
// Above is the first parts of the redundant edges of value graph
12. Find all strong connected component (SCC) of bipar-

tite graph B’(Xc-Γ(A), Dc-A, E’);

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1400

13. Prune all edges that are unmatched and connect nodes
between two SCCs;

The first part of our algorithm is to find a maximum
matching, and this can be done in O(|Xc|0.5|E|) by the
Hopcroft–Karp algorithm. The second part is to find SCC of
the bipartite graph B’(Xc-Γ(A),Dc-A,E’), and this can be
accomplished in O(|Xc-Γ(A)|+|Dc-A|+|E’|) by the Tarjan
algorithm [Tarjan 1972]. Although our algorithm has the
same worst-case complexity as the previous works, it has a
better performance in practice. This is because many
redundant edges can be immediately removed after finding a
maximum matching and we only need to find SCCs in a
smaller graph B’(Xc-Γ(A), Dc-A, E’) rather than the original
value graph.

The first part of Algorithm 1 (steps 1-10) is basically to
find a maximum matching. Therefore, it can be integrated
with many maximum matching algorithms, such as the
Hopcroft–Karp algorithm or the Hungarian Algorithm.
Furthermore, the improvement of our algorithm is the
identification of type 1 redundant edges in the matching
process, therefore, it can be combined with many
optimization technics for alldifferent constraints, such as
incremental matching, domain counting, priority queue,
staged propagation or computing SCCs independently [Gent,
Miguel et al. 2008].

4 Experimental Results
We evaluated the performance of our new algorithm. We first
analyzed the fraction of type 1 redundant edges among all
redundant edges. We then compared the performance of our
algorithm with the-state-of-art approaches on a large
collection of benchmark instances for alldifferent constraints.
Our algorithm was implemented based on Minion constraint
solver 1.8 [Gent, Jefferson et al.]. All experiments were run
on a Windows 7 workstation with a quad-core Intel i7-3770
processor of 3.9 GHz and 32GB DDR3 1600MHz RAM.

In our experiment, we first generated a series of synthetic
bipartite graphs by using the scale-free network model of
[Shen-Orr, Milo et al. 2002] and the ER random network

model of [Bollobás 2013], where we set |Xc|=|Dc|=1000.
Type 1 redundant edges can be obtained right after maximum
matching. Therefore, our algorithm will be more efficient if
there are more type 1 edges. When the average node degree
increases, most of the redundant edges are type 1 and the size
of B’(Xc-Γ(A), Dc-A, E’) is relatively small (Figure 3). This
means that after finding a maximum matching, most of the
redundant edges can be found, and the remaining redundant
edges can be obtained in a small value graph B’(Xc-Γ(A), Dc-
A, E’). It will greatly increase the efficiency of our algorithm
in practice. We also assessed the fraction of type 1 redundant
edges in some real problems (Figure 4). We counted the total
number of redundant edges during the searching process and
computed the fraction of type 1 and type 2 redundant edges.
It is evident that many problems also have a large portion of
type 1 redundant edges.

Next, we implemented our new algorithm by using the
Minion software, Version 1.8 [Gent, Jefferson et al.]. This
software already has an implementation of Régin’s [Régin
1994] Filtering algorithm, and other optimization techniques,
such as incremental matching [Régin 1994], BFS matching
[Cormen 2009] and staged propagation [Schulte and Stuckey
2004]. For the implementation of our algorithm, we use
Hopcroft–Karp algorithm to obtain maximum matching and
Tarjan algorithm to compute SCCs. We also use incremental
matching technique, which is same as [Régin 1994]. We
compared our algorithm with the following implementations:
1) Régin’s Filtering algorithm with incremental matching
(IncMatch); 2) IncMatch using the FF-BFS matching
algorithm instead of Hopcroft-Karp algorithm (IncMatch-
BFS); 3) IncMatch-BFS with staged propagation (IncMatch-
BFS-Staged). The searching strategy we used to solve the
problems is the depth-first chronological backtracking. The
benchmark instances were chosen from [Gent, Miguel et al.
2008], including Langford’s number problem (prob024 in
CSPLib [Gent and Walsh 1999]), golomb ruler problem
(prob006 in CSPLib), balanced quasigroup with holes (QWH)
[Kautz, Ruan et al. 2001], quasigroup existence (prob003 in
CSPLib), social golfers (prob010 in CSPLib), graceful
graphs (prob053 in CSPLib), N-Queens (prob054 in CSPLib)
and sports scheduling.

Figure 3: Fraction of type 1 redundant edges in the ER and Scale-free bipartite graphs.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1401

Figure 4: Fraction of redundant edges in some real problems. We
counted the total number of redundant edges during searching
process.

We compared our algorithm with the three existing
methods mentioned above on these instances of constraint
satisfaction problems. In the experiments, we limited time to
4 hours and nodes to 106. For those problems which the
solution can be found within the time limit, we compared the
raw runtime (Figure 5 and Table 1). For those problems
which exceed the time limit, we counted the number of nodes
searched per second (Figure 6). As shown in Table 1 and
Figure 5-6, our algorithm is never slower than the other
algorithm compared and can typically run 1-6 times faster
than these methods. To reiterate, the gain on efficiency for
our algorithm comes from the identifying and removing type
1 constraints with little computation. On those problems that
do not have type 1 redundant edges, our algorithm also has a
better performance because it finds SCCs in the value graphs
rather than the residual graphs, which have more edges than
the original value graphs.

Figure 5: Speedups of our algorithm over the IncMatch-BFS-staged
method. The solution of these instances can be found within the time
limit, so we compared the raw runtime (seconds).

5 Conclusion
We developed a fast filtering algorithm for realization of gen-
eralized arc consistency for the alldifferent constraint. We
presented a novel theorem for identifying redundant edges in
a constraint graph which need to be removed. We showed that

our algorithm significantly outperformed the best GAC algo-
rithms on all of benchmark problems that we tested, signifi-
cantly reduced computation time on these real problems. Our
algorithm can be used to improve the performance of solving
constraint satisfaction problems that contain alldifferent con-
straints.

Figure 6: Speedups of our algorithm over the IncMatch-BFS-staged
method. The solution of these instances cannot be found within the
time limit, so we compared the number of nodes searched per second.

Problem Our IncMatc
h

IncMatc
h-BFS

IncMat
ch-

BFS-
staged

golomb-10-200 0.047 0.063 0.063 0.063

golomb-11-200 0.078 0.109 0.125 0.109

golomb-12-200 0.125 0.203 0.203 0.203

langford10 5.016 10.094 10.078 10.188

langford19 46.203 174.047 171.656 175.953

langford20 41.188 160.906 161.734 166.281

qg3nonidempotent9 1.875 2.281 2.344 2.297

qg4idempotent9 6.516 8.469 8.734 8.563

qg4nonidempotent8 1.313 1.563 1.609 1.609

qg4nonidempotent9 0.422 0.516 0.547 0.531

queens-16 0.172 0.359 0.359 0.359

queens-24 6.313 15.391 15.703 15.438

QWH-25-1 18.281 68.781 69.188 70.078

QWH-25-9 79.109 299.969 301.547 306.109

QWH-30-2 30.563 140.125 140.828 142.500

QWH-30-5 389.594 1723.09 1722.92 1743.61

socialgolfers547 31.641 62.266 62.125 61.547

socialgolfers647 276.141 1171.92 1166.84 1172

sportsScheduling8 0.063 0.125 0.109 0.125

sportsScheduling10 27.078 70.344 69.922 71.891
graceful graphs

K5×P2 5.359 9.484 9.453 9.547

graceful graphs
K6×P2 1178.39 2230.48 2221.98 2248.06

Table 1: Comparition of time to first solution (second)

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1402

Acknowledgments
This research was supported by the Natural Science Founda-
tion of China under grant number 91546110, and China
Scholarship Council under grant number 201606085011.

References
[Berge, 1973]Berge Claude. Graphs and hypergraphs,

American Elsevier Publishing Company, New York, 1973.
[Bollobás, 2013]Béla Bollobás. Modern graph theory,

Springer Science & Business Media, 2013.
[Cormen et al., 2009]Thomas H. Cormen, Charles E.

Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to algorithms, MIT Press, Cambridge, Massachusetts,
2009.

[Duong et al., 2017]Thi-Bich-Hanh Dao, Khanh-Chuong
Duong, and Christel Vrain. Constrained clustering by con-
straint programming. Artificial Intelligence 244:70-94,
2017.

[Gent et al., 2006]Ian P. Gent, Christopher Jefferson, and Ian
Miguel. MINION: A Fast, Scalable, Constraint
Solver,(slides) in Proceedings of the 17th European Con-
ference on Artificial Intelligence (ECAI), 2006.

[Gent et al., 2008]Ian P. Gent, Ian Miguel, and Peter Night-
ingale. Generalised arc consistency for the alldifferent
constraint: An empirical survey. Artificial Intelligence
172(18): 1973-2000, 2008.

[Gent et al., 1999]Ian P. Gent and Toby Walsh. CSPLib: a
benchmark library for constraints. International Confer-
ence on Principles and Practice of Constraint Program-
ming, Springer, 1713:480-481, 1999.

[Hopcroft et al., 1973]John E. Hopcroft and Richard M. Karp.
An n^5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2(4): 225-231, 1973.

[Kautz et al., 2001]Kautz Henry, Yongshao Ruan, Dimitris
Achlioptas, Carla Gomes, Bart Selman, and Mark Stickel.
Balance and filtering in structured satisfiable problems.
Electronic Notes in Discrete Mathematics, 9:2-18, 2001.

[Kuhn, 1955]Harold W. Kuhn. The Hungarian method for
the assignment problem. Naval Research Logistics (NRL)
2(1-2): 83-97, 1955.

[Lauriere, 1978]Jena-Lonis Lauriere. A language and a pro-
gram for stating and solving combinatorial problems. Ar-
tificial intelligence 10(1): 29-127, 1978.

[Leconte, 1996]M. Leconte. A bounds-based reduction
scheme for constraints of difference. Proceedings of the
Constraint-96 International Workshop on Constraint-
Based Reasoning, 1996.

[Puget, 1998]Jean-Francois Puget. A fast algorithm for the
bound consistency of alldiff constraints. Fifteenth National
Conference on Artificial Intelligence and Tenth Innovative
Applications of Artificial Intelligence Conference, AAAI
98, Iaai 98, July 26-30, 1998, Madison, Wisconsin, Usa
DBLP, pages 359-366, 1998.

[Régin,1994]Jean-Charles Régin. A filtering algorithm for
constraints of difference in CSPs. Twelfth National Con-
ference on Artificial Intelligence American Association for
Artificial Intelligence, pages 362-367, 1994.

[Schulte et al., 2004]Christian Schulte and Peter J. Stuckey.
Speeding up constraint propagation. Principles and Prac-
tice of Constraint Programming - CP 2004, International
Conference, CP 2004, Toronto, Canada, September 27 -
October 1, 2004, Proceedings DBLP, pages 619-633, 2004.

[Shenorr et al., 2002] Shai S. Shen-Orr, Ron Milo, Shmoolik
Mangan, and Uri Alon. Network motifs in the transcrip-
tional regulation network of Escherichia coli. Nature ge-
netics 31(1): 64, 2002.

[Solnon, 2010]Christine Solnon. Alldifferent-based filtering
for subgraph isomorphism. Artificial Intelligence 174(12-
13): 850-864, 2010.

[Tarjan, 1972]Robert Tarjan. Depth-first search and linear
graph algorithms. SIAM journal on computing 1(2): 146-
160, 1972.

[Hoeve, 2001]Willem-Jan van Hoeve. The alldifferent con-
straint: A survey. Computer Science, 2001.

[Wallace, 1996]Mark Wallace. Practical applications of con-
straint programming. Constraints 1(1-2): 139-168, 1996.

[Zhang et al., 2017]Xizhe Zhang, Jianfei Han, and Weixiong
Zhang. An efficient algorithm for finding all possible input
nodes for controlling complex networks. Scientific Reports
7(1): 10677, 2017.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1403

