
Abstract 
The alldifferent constraint is an essential ingredient 
of most Constraints Satisfaction Problems (CSPs). 
It has been known that the generalized arc con-
sistency (GAC) of alldifferent constraints can be 
reduced to the maximum matching problem in a 
value graph. The redundant edges, which do not 
appear in any maximum matching of the value graph, 
can and should be removed from the graph. The ex-
isting methods attempt to identify these redundant 
edges by computing the strongly connected compo-
nents after finding a maximum matching for the 
graph. Here, we present a novel theorem for identi-
fication of the redundant edges. We show that some 
of the redundant edges can be immediately detected 
after finding a maximum matching. Based on this 
theoretical result, we present an efficient algorithm 
for processing alldifferent constraints. Experimental 
results on real problems show that our new algo-
rithm significantly outperforms the-state-of-art ap-
proaches. 

1 Introduction 
Constraint Programming is a powerful tool for problem solv-
ing and has been widely used in various real-world applica-
tions. Constraint Satisfaction Problem (CSP) defines a set of 
variables whose values must satisfy some specified con-
straints. One of the most useful and important constraints is 
the alldifferent constraint [Lauriere 1978], which requires 
that all variables of the constraint must have different values. 
The alldifferent constraint can be found in wide varieties of 
combinational problems [Wallace 1996], including various 
puzzles, graph coloring, and assignment problems. 

A typical approach to solve a CSP is to search from all 
possible variable values. To accelerate this search process, 
various consistency techniques have been introduced to re-
move values from the domain of a variable which does not 
belong to any solution to the problem. A classic filtering 
algorithm for Generalized Arc Consistency (GAC) for 

alldifferent constraints is proposed by Régin [Régin 1994]. 
The algorithm utilizes a theorem of C. Berge [Berge and 
Minieka 1973] from graph theory and prunes redundant 
edges that do not appear in any maximum matching of the 
value graph of alldifferent constraints. For weaker forms of 
the consistency of alldifferent constraints, Leconte  [Leconte 
1996] provides an algorithm for the range consistency based 
on identifying Hall intervals. Puget [Puget 1998] proposes an 
algorithm for the bounds consistency, which is weaker than 
the range consistency. To our knowledge, Régin’s algorithm 
is still the-state-of-art filtering method for GAC of the alldif-
ferent constraint. Gent [Gent, Miguel et al. 2008] discuss sev-
eral implementation details of Régin’s algorithm, especially 
the computation of the Strongly Connected Components 
(SCC) of the residual graph. A survey for the alldifferent con-
straint can be found in  [van Hoeve 2001]. Recently, as a pow-
erful tool, alldifferent constraints are extensively used to 
solve difficult constraint optimization problems, such as sub-
graph isomorphism  [Solnon 2010] and constraint clustering 
[Duong and Vrain 2017]. 

In this paper, we developed a simple and fast algorithm 
for the alldifferent constraint. Our new algorithm is based a 
novel theorem for identifying redundant edges of the value 
graph of alldifferent constraints. We classified the redundant 
edges into two types: one type of redundant edges can be ob-
tained immediately by finding a maximum matching, and the 
second type of redundant edges can be found by computing 
SCCs in a small sub-graph. Based on this theorem, we de-
signed an efficient algorithm for the alldifferent constraint. 
The major improvement of our algorithm comes from 
identification of type 1 redundant edges, which allow us to 
remove a substantial number of redundant edges without any 
additional computation. Compared with the-state-of-art ap-
proach, our new algorithm does not need to construct a 
residual graph, which has more edges than the original value 
graph. Therefore, the SCCs computation in our algorithm is 
also faster than the previous algorithm. We evaluated the per-
formance of our new algorithm on many benchmark in-
stances by using Minion 1.8 software [Gent, Jefferson et al.], 
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and the result showed that our algorithm outperformed Ré-
gin’s algorithm on all problem instances.  

The paper is organized as follows. We present in Section 
2 the definitions related to constraint satisfaction problems 
and graph theory. We present and prove in Section 3 the 
novel theorem for identifying the redundant edges of a value 
graph, and present a fast algorithm for the alldifferent con-
straint.  We evaluate the performance of our algorithm on 
several real problems in Section 4, and conclude with discus-
sions in Section 5. 

2 Background and Preliminaries  
Constraint programming. A constraint satisfaction problem 
(CSP) is a triple (X, D, C), where X is a set of variables, {x1, 
x2, ... , xn}, D  is a set of domains {D1, D2, . . ., Dn}, where Di 
is the set of possible values for variable xi, and C is a set of 
constraints between variables. A constraint c∈C is defined 
as a subset of the Cartesian product of the domains of the 
variables that are in C. A solution to a CSP (X, D, C) is a set 
of values (d1,...,dn) ∈ D1×···×Dn, where for every constraint 
c∈C on the variables xi1,...,xim, we have (di1, ..., dim)∈c. A 
constraint is  generalized arc consistent (GAC) iff every value 
of the variables can be extended to all the other variables of 
the constraint in such a way the constraint is satisfied. 

An alldifferent constraint c(x1,...,xn) is a constraint that 
specifies that xi≠xj for any i < j. For an alldifferent constraint 
c,  a bipartite graph B(c) = (Xc, Dc, E) is called a value graph 
of c, where (xi, d) ∈ E iff d ∈ Di. To achieve the GAC on an 
alldifferent constraint, we need to introduce some concepts 
from graph theory, especially about maximum matching. 

Graph Theory. Consider a bipartite graph B(U,V,E), in 
which U, V are two disjoint sets of nodes and every edge in 
E connects a node in U to one in V. A matching is a set of 
edges that share no common node. A node is called a matched 
node if it is connected to an edge in the matching, or a free 
node, otherwise. A matching with the maximum number of 
edges is called a maximum matching. An alternating path is 
a path whose edges are alternate in and out of the matching. 
An augmenting path is an alternating path whose two end 
nodes are free nodes.  

A bipartite graph may have more than one maximum 
matching, so that maximum matching is usually not unique. 
There may exist many maximum matchings with the same 
size for a graph. An allowed edge is an edge belonging to 
some, but not all, of maximum matchings. A redundant edge 
is an edge that does not appear in any maximum matchings. 
Similarly, an allowed node is a node covered by some, but 
not all, of maximum matchings. 

Régin’s filtering Algorithm. An alldifferent constraint is 
GAC iff every edge of its value graph belong to some match-
ings that cover Xc in B(c) [Régin 1994]. Therefore, to achieve  

 
Figure 1: Illustration of Régin’s filtering algorithm  [Régin 1994]. 
The algorithm first computes a maximum matching, then constructs 
the directed residual graph by adding one node and |Dc| edges to 
original graph, and computes SCC of the residual graph. The un-
matched edges between independent SCCs are redundant. 

GAC, we need to remove the redundant edges of its value 
graph. Régin [Régin 1994] present a filtering algorithm based 
on the following property: 

Property 1 (Berge 1970) An edge is allowed, iff, for an 
arbitrary maximum matching M, it belongs to either an even 
alternating path begins at a free node or an even alternating 
cycle. 

Therefore, to identify all of the redundant edges of the 
value graph, the algorithm first computes a maximum 
matching, and then finds all alternating paths beginning at 
free nodes and all even alternating cycle based on SCCs. The 
last two steps can be combined by finding SCCs in a directed 
residual graph. The residual graph is constructed by adding 
one virtual node and |Dc| edges to the original value graph. 
Therefore, the residual graph is always larger than value 
graph. The unmatched edges between independent SCCs of 
the residual graph are redundant edges. An example is shown 
in Figure.1. 

3 Identify Redundant Edges 
For an alldifferent constraint c, the variable-value pairs cor-
responding to the edges that never appear in any maximum 
matching should be pruned. Therefore, in the rest of the paper, 
we focus on how to efficiently identify all of the redundant 
edges of a value graph. 

Consider an alldifferent constraint c(Xc, Dc) and its value 
graph B(c) = (Xc, Dc, E). Let A be the set of allowed nodes of 
B(c), and Γ(A) be the set of the neighbor nodes of A. It is 
obvious that if there exists a solution to the constraint, all 
nodes of Xc must be matched. Therefore, the allowed nodes 
can only be found in set Dc. The node set of the value graph 
can be divided into four sets: A, Γ(A), Dc-A, Xc-Γ(A). The 
allowed nodes can be easily identified by our previous work 
[Zhang, Han et al. 2017], which was originally used to iden-
tify the input node of a network. 

Property 2  [Zhang, Han et al. 2017] A node is allowed, iff 
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for an arbitrary maximum matching M, it can be reached by 
an even alternating path that begins at a free node. 

Based on Property 2 and using our node set partition, we 
now present a new theorem for identifying redundant edges: 

Theorem: For an arbitrary maximum matching, an un-
matched edge emn is redundant, iff  

1. m∈Γ(A) and n∈Dc-A , or  
2. m∈Xc-Γ(A), n∈Dc-A  and emn does not belong to any 

alternating cycle. 
Proof: Based on the definitions of A, Γ(A), Dc-A and Xc-

Γ(A), the edges of a value graph can be divided into three sets: 
E(Γ(A),A), E(Γ(A),Dc-A) and E(Xc-Γ(A),Dc-A) (Figure.2). 
Note that based on the definition of Γ(A), all neighbor nodes 
of A should be in Γ(A). Therefore, there is no edge between 
A and Xc-Γ(A). 

We first prove that all edges of E(Γ(A), A) are allowed 
edges. Consider an unmatched edge eba∉M, where a∈A and 
b∈Γ(A). Because a is an allowed node, based on property 2, 
there must exist an even alternating path P connecting node 
a and a free node. Consider the path P+eba, if we swap the 
matched and unmatched edges of the path, we have a new 
maximum matching M’, where eba∈M. Therefore, all edges 
of E(Γ(A), A) are allowed edges and can be in the new 
maximum matching M’. 

Next, we prove that all edges of E(Γ(A), Dc-A) are 
redundant. Because Γ(A) is part of the set of variables, any 
node of Γ(A) should be matched. Otherwise, there is no 
solution to the constraint. Suppose emn is an allowed edge, 
where m∈Γ(A) and n∈Dc-A. Because Γ(A) is the neighbor set 
of A and any node of A is allowed, there must exist an 
alternating path P starting at a free node connected to node m. 
Therefore, the path P+emn is an alternating path. Based on 
Property 2, node n is an allowed node. That contradicts with 
the definition of node n. Therefore, all edges of E(Γ(A), Dc-
A) are redundant edges.  

Finally, we prove the edges of E(Xc-Γ(A), Dc-A) are 
redundant edges iff they are not matched and do not belong 
to any alternating cycle. Note that it is a corollary of Property 
1. Therefore, the proof is completed.  

 
Figure 2: The value graph of an alldifferent constraint and its 
redundant edges. 

Figure 2 gives a simple example of above theorem. After 
finding a maximum matching (red edges) of the value graph, 
node 5 is the only free node. The set of allowed nodes are 
A={3,4,5} because the nodes 3 and 4 can be reached by 
alternating path start from node 5. The neighbor set of A is 
Γ(A)={x3,x4}. Based on our theorem, the edges between set 
Γ(A) and Dc-A can be removed from the value graph. 
Therefore, we only need to find the unmatched edges 
between sets {x1, x2} and {1,2} and not in any alternating 
cycle, which is the edge e(x2,1). 

This theorem offers us an efficient way to find redundant 
edges in a bipartite graph. Based on this theorem, the edges 
between node sets Γ(A) and Dc-A are denoted by type 1 
redundant edges, and the other redundant edges by type 2 
redundant edges. The type 1 redundant edges can be easily 
obtained after finding the set of allowed nodes. The allowed 
nodes can be found by finding a maximum matching based 
on Property 2. The basic idea of a maximum matching algo-
rithm, such as Hopcroft–Karp algorithm [Hopcroft and Karp 
1973] or Hungarian Algorithm [Kuhn 1955], is to iteratively 
find all augmenting paths corresponding to the matching M 
at hand, and then to derive a larger matching M’. A maximum 
matching is obtained when no augmenting path can be found. 
The last step of the algorithm is exactly to find all alternating 
paths starting at the free nodes of the maximum matching. 
Therefore, all allowed nodes and their neighbors can be 
obtained in the last step of a maximum matching algorithm, 
which provides the first part of redundant edges. For the rest 
of redundant edges, we only need to find SCCs in a smaller 
sub-graph B’(Xc-Γ(A), Dc-A, E’), where E’⊂E is the edge\ set 
connecting Xc-Γ(A) and Dc-A. 

The above idea and steps are formulated in Algorithm 1 
for filtering value graph B of alldifferent constraints. 

ALGORITHM1: Fast filtering alldifferent constraint 
1. Input: Value graph B(c) = (Xc, Dc, E), initial match-

ing M; 
2. Repeat  
3.     Find all alternating paths AP from all free node 

based on current matching M; 
4.     Put the nodes in Dc of AP into set A, and their 

 neighbor nodes in Xc into set Γ(A); 
5.     If AP contains the augmenting paths then  
6.          expand the augmenting paths and obtain  

a new matching M’;  
7.          Let M=M’; clear set A and Γ(A); 
8.     If size(M)=size(Xc) then  
9.          prune all edges between set Γ(A) and set Dc-A; 
10. Until no augmenting path is found; 
11. If size(M)<size(Xc) return false; 
// Above is the first parts of the redundant edges of value graph 
12. Find all strong connected component (SCC) of bipar-

tite graph B’(Xc-Γ(A), Dc-A, E’); 
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13. Prune all edges that are unmatched and connect nodes 
between two SCCs; 

The first part of our algorithm is to find a maximum 
matching, and this can be done in O(|Xc|0.5|E|) by the 
Hopcroft–Karp algorithm. The second part is to find SCC of 
the bipartite graph B’(Xc-Γ(A),Dc-A,E’), and this can be 
accomplished in O(|Xc-Γ(A)|+|Dc-A|+|E’|) by the Tarjan 
algorithm [Tarjan 1972]. Although our algorithm has the 
same worst-case complexity as the previous works, it has a 
better performance in practice. This is because many 
redundant edges can be immediately removed after finding a 
maximum matching and we only need to find SCCs in a 
smaller graph B’(Xc-Γ(A), Dc-A, E’) rather than the original 
value graph. 

The first part of Algorithm 1 (steps 1-10) is basically to 
find a maximum matching. Therefore, it can be integrated 
with many maximum matching algorithms, such as the 
Hopcroft–Karp algorithm or the Hungarian Algorithm. 
Furthermore, the improvement of our algorithm is the 
identification of type 1 redundant edges in the matching 
process, therefore, it can be combined with many 
optimization technics for alldifferent constraints, such as 
incremental matching, domain counting, priority queue, 
staged propagation or computing SCCs independently [Gent, 
Miguel et al. 2008]. 

4   Experimental Results 
We evaluated the performance of our new algorithm. We first 
analyzed the fraction of type 1 redundant edges among all 
redundant edges. We then compared the performance of our 
algorithm with the-state-of-art approaches on a large 
collection of benchmark instances for alldifferent constraints. 
Our algorithm was implemented based on Minion constraint 
solver 1.8 [Gent, Jefferson et al.]. All experiments were run 
on a Windows 7 workstation with a quad-core Intel i7-3770 
processor of 3.9 GHz and 32GB DDR3 1600MHz RAM.  

In our experiment, we first generated a series of synthetic 
bipartite graphs by using the scale-free network model of 
[Shen-Orr, Milo et al. 2002] and the ER random network 

model of [Bollobás 2013], where we set |Xc|=|Dc|=1000. 
Type 1 redundant edges can be obtained right after maximum 
matching. Therefore, our algorithm will be more efficient if 
there are more type 1 edges. When the average node degree 
increases, most of the redundant edges are type 1 and the size 
of B’(Xc-Γ(A), Dc-A, E’) is relatively small (Figure 3). This 
means that after finding a maximum matching, most of the 
redundant edges can be found, and the remaining redundant 
edges can be obtained in a small value graph B’(Xc-Γ(A), Dc-
A, E’). It will greatly increase the efficiency of our algorithm 
in practice. We also assessed the fraction of type 1 redundant 
edges in some real problems (Figure 4). We counted the total 
number of redundant edges during the searching process and 
computed the fraction of type 1 and type 2 redundant edges. 
It is evident that many problems also have a large portion of 
type 1 redundant edges. 

Next, we implemented our new algorithm by using the 
Minion software, Version 1.8 [Gent, Jefferson et al.]. This 
software already has an implementation of Régin’s [Régin 
1994] Filtering algorithm, and other optimization techniques, 
such as incremental matching [Régin 1994], BFS matching 
[Cormen 2009] and staged propagation [Schulte and Stuckey 
2004]. For the implementation of our algorithm, we use 
Hopcroft–Karp algorithm to obtain maximum matching and 
Tarjan algorithm to compute SCCs. We also use incremental 
matching technique, which is same as [Régin 1994]. We 
compared our algorithm with the following implementations: 
1) Régin’s Filtering algorithm with incremental matching 
(IncMatch); 2) IncMatch using the FF-BFS matching 
algorithm instead of Hopcroft-Karp algorithm (IncMatch-
BFS); 3) IncMatch-BFS with staged propagation (IncMatch-
BFS-Staged). The searching strategy we used to solve the 
problems is the depth-first chronological backtracking. The 
benchmark instances were chosen from [Gent, Miguel et al. 
2008], including Langford’s number problem (prob024 in 
CSPLib [Gent and Walsh 1999]), golomb ruler problem 
(prob006 in CSPLib), balanced quasigroup with holes (QWH) 
[Kautz, Ruan et al. 2001], quasigroup existence (prob003 in 
CSPLib), social golfers (prob010 in CSPLib), graceful 
graphs (prob053 in CSPLib), N-Queens (prob054 in CSPLib) 
and sports scheduling.  

Figure 3: Fraction of type 1 redundant edges in the ER and Scale-free bipartite graphs.
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Figure 4: Fraction of redundant edges in some real problems. We 
counted the total number of redundant edges during searching 
process.  

We compared our algorithm with the three existing 
methods mentioned above on these instances of constraint 
satisfaction problems. In the experiments, we limited time to 
4 hours and nodes to 106. For those problems which the 
solution can be found within the time limit, we compared the 
raw runtime (Figure 5 and Table 1). For those problems 
which exceed the time limit, we counted the number of nodes 
searched per second (Figure 6). As shown in Table 1 and 
Figure 5-6, our algorithm is never slower than the other 
algorithm compared and can typically run 1-6 times faster 
than these methods. To reiterate, the gain on efficiency for 
our algorithm comes from the identifying and removing type 
1 constraints with little computation. On those problems that 
do not have type 1 redundant edges, our algorithm also has a 
better performance because it finds SCCs in the value graphs 
rather than the residual graphs, which have more edges than 
the original value graphs. 

 
Figure 5: Speedups of our algorithm over the IncMatch-BFS-staged 
method. The solution of these instances can be found within the time 
limit, so we compared the raw runtime (seconds). 

5 Conclusion 
We developed a fast filtering algorithm for realization of gen-
eralized arc consistency for the alldifferent constraint. We 
presented a novel theorem for identifying redundant edges in 
a constraint graph which need to be removed. We showed that 

our algorithm significantly outperformed the best GAC algo-
rithms on all of benchmark problems that we tested, signifi-
cantly reduced computation time on these real problems. Our 
algorithm can be used to improve the performance of solving 
constraint satisfaction problems that contain alldifferent con-
straints. 

 
Figure 6: Speedups of our algorithm over the IncMatch-BFS-staged 
method. The solution of these instances cannot be found within the 
time limit, so we compared the number of nodes searched per second. 

Problem Our IncMatc
h 

IncMatc
h-BFS 

IncMat
ch-

BFS-
staged 

golomb-10-200 0.047 0.063 0.063 0.063 

golomb-11-200 0.078 0.109 0.125 0.109 

golomb-12-200 0.125 0.203 0.203 0.203 

langford10 5.016 10.094 10.078 10.188 

langford19 46.203 174.047 171.656 175.953 

langford20 41.188 160.906 161.734 166.281 

qg3nonidempotent9 1.875 2.281 2.344 2.297 

qg4idempotent9 6.516 8.469 8.734 8.563 

qg4nonidempotent8 1.313 1.563 1.609 1.609 

qg4nonidempotent9 0.422 0.516 0.547 0.531 

queens-16 0.172 0.359 0.359 0.359 

queens-24 6.313 15.391 15.703 15.438 

QWH-25-1 18.281 68.781 69.188 70.078 

QWH-25-9 79.109 299.969 301.547 306.109 

QWH-30-2 30.563 140.125 140.828 142.500 

QWH-30-5 389.594 1723.09 1722.92 1743.61 

socialgolfers547 31.641 62.266 62.125 61.547 

socialgolfers647 276.141 1171.92 1166.84 1172 

sportsScheduling8 0.063 0.125 0.109 0.125 

sportsScheduling10 27.078 70.344 69.922 71.891 
graceful graphs 

K5×P2 5.359 9.484 9.453 9.547 

graceful graphs 
K6×P2 1178.39 2230.48 2221.98 2248.06 

Table 1: Comparition of time to first solution (second) 
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