
A General Approach to Running Time Analysis of
Multi-objective Evolutionary Algorithms

Chao Bian1, Chao Qian1, Ke Tang2

1 Anhui Province Key Lab of Big Data Analysis and Application,
University of Science and Technology of China, Hefei 230027, China

2 Shenzhen Key Lab of Computational Intelligence, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
biancht@mail.ustc.edu.cn, chaoqian@ustc.edu.cn, tangk3@sustc.edu.cn

Abstract
Evolutionary algorithms (EAs) have been widely
applied to solve multi-objective optimization prob-
lems. In contrast to great practical successes, their
theoretical foundations are much less developed,
even for the essential theoretical aspect, i.e., run-
ning time analysis. In this paper, we propose
a general approach to estimating upper bounds
on the expected running time of multi-objective
EAs (MOEAs), and then apply it to diverse situ-
ations, including bi-objective and many-objective
optimization as well as exact and approximate anal-
ysis. For some known asymptotic bounds, our anal-
ysis not only provides their leading constants, but
also improves them asymptotically. Moreover, our
results provide some theoretical justification for the
good empirical performance of MOEAs in solving
multi-objective combinatorial problems.

1 Introduction
Multi-objective optimization, which requires optimizing sev-
eral objective functions simultaneously, arises in many areas.
Since the objective functions are usually conflicting, the goal
is to find a set of Pareto optimal solutions (or the Pareto front),
which represent different optimal trade-offs between objec-
tives. Evolutionary algorithms (EAs) [Bäck, 1996] are a kind
of randomized heuristic optimization algorithms, inspired by
natural evolution. They maintain a set of solutions (called
a population), and iteratively improve the population by ge-
netic operators. Due to their population-based nature, EAs
are popular for solving multi-objective optimization prob-
lems, and have been found well useful in many real-world
applications [Coello Coello and Lamont, 2004].

However, due to their sophisticated behaviors of mimick-
ing natural phenomena, the theoretical analysis of EAs is dif-
ficult. Much effort thus has been devoted to understanding the
behavior of EAs from a theoretical point of view [Neumann
and Witt, 2010; Auger and Doerr, 2011], but most of them fo-
cus on single-objective optimization. In fact, multi-objective
EAs (MOEAs) are even more difficult to be analyzed owing
to the hardness of multi-objective optimization.

To the best of our knowledge, only a few pieces of case-
specific studies have been reported on the running time anal-
ysis of MOEAs. The running time complexity, which mea-
sures how fast an algorithm solves an optimization prob-
lem, is one essential theoretical aspect. In [Giel, 2003], the
GSEMO (a simple MOEA with a global mutation operator)
was proved to find the Pareto front of LOTZ in O(n3) ex-
pected running time (where n is the problem size), while for
another bi-objective problem COCZ, it needs O(n2 log n) ex-
pected time [Qian et al., 2013]. For mLOTZ and mCOCZ
with m objectives, which are generalized from LOTZ and
COCZ, both the expected running time of the SEMO (a coun-
terpart of the GSEMO, but with a local mutation operator)
were shown to be O(nm+1) [Laumanns et al., 2004]. More
results on synthetic problems include [Friedrich et al., 2010;
Giel and Lehre, 2010; Friedrich et al., 2011; Neumann, 2012;
Doerr et al., 2013; 2016; Qian et al., 2016; Osuna et al.,
2017]. The analysis on NP-hard multi-objective combina-
torial problems has been only slightly touched. For bi-
objective minimum spanning trees, the GSEMO was proved
able to find a 2-approximation of the Pareto front in expected
pseudo-polynomial time [Neumann, 2007]; and for multi-
objective shortest paths, a variant of the GSEMO can achieve
an (1 + ε)-approximation in polynomial time [Horoba, 2009;
Neumann and Theile, 2010].

Note that the analysis approaches employed in most of the
above mentioned studies are case-specific, which cannot pro-
vide a general guidance to analyze the running time of a given
MOEA solving a given problem. Meanwhile, ad hoc analy-
ses starting from scratch are quite difficult. In this paper, we
thus propose a general approach (Theorem 1) for estimating
upper bounds on the running time of MOEAs. The idea is to
contrast a given sophisticated MOEA process with an easily-
analyzable process, instead of directly analyzing the MOEA
process. We apply the approach to diverse situations, includ-
ing bi-objective and many-objective optimization as well as
exact and approximate analysis. The theoretical results are:

• For the GSEMO solving the two bi-objective problems
LOTZ and COCZ, the expected time for finding the Pareto
front is at most 6n3 and 3n2 log n (Theorems 2, 3), re-
spectively, which are consistent with the known asymptotic
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bounds O(n3) [Giel, 2003] and O(n2 log n) [Qian et al.,
2013], and further give the leading constants.
• For the SEMO solving the scalable m-objective problem
mCOCZ where m ≥ 4, the expected time for finding the
Pareto front is O(nm) (Theorem 4), which is tighter than
the known bound O(nm+1) [Laumanns et al., 2004] by a
factor of n. Furthermore, a better upper boundO(n3 log n)
is also derived for m = 4.

• For optimizing two linear functions simultaneously, which
often appears in multi-objective combinatorial problems
such as multi-objective minimum spanning trees and multi-
objective knapsacks, a variant of the GSEMO can find
a good approximation of the Pareto front in polynomial
time (Theorem 5). Our analysis thus provides some the-
oretical justification for the good empirical performance
of MOEAs in solving multi-objective combinatorial prob-
lems [Zhou and Gen, 1999; Ishibuchi et al., 2015].
The rest of this paper starts with a section of preliminaries.

Section 3 presents the proposed approach, which is applied
in three subsequent sections to analyze MOEAs in different
situations. Section 7 concludes the paper.

2 Preliminaries
2.1 Multi-objective Evolutionary Algorithms
Multi-objective optimization requires simultaneously opti-
mizing two or more objective functions, as shown in Defini-
tion 1. We consider maximization here, while minimization
can be defined similarly. The objectives are usually conflict-
ing, and thus there is no canonical complete order in the solu-
tion space S . The comparison between solutions relies on the
domination relationship, as presented in Definition 2. A so-
lution is Pareto optimal if there is no other solution in S that
dominates it. The set of objective vectors of all the Pareto
optimal solutions constitutes the Pareto front. The goal of
multi-objective optimization is to find the Pareto front, that
is, to find at least one corresponding solution for each objec-
tive vector in the Pareto front.
Definition 1 (Multi-objective Optimization). Given a feasi-
ble solution space S and objective functions f1, f2, . . . , fm,
multi-objective optimization can be formulated as

maxs∈S
(
f1(s), f2(s), ..., fm(s)

)
.

Definition 2 (Domination). Let f = (f1, f2, . . . , fm) : S →
Rm be the objective vector. For two solutions s and s′ ∈ S:

1. s weakly dominates s′ if ∀1 ≤ i ≤ m, fi(s) ≥ fi(s
′),

denoted as s � s′;
2. s dominates s′ if s � s′ and fi(s) > fi(s

′) for some i,
denoted as s � s′.

The GSEMO algorithm is a simple MOEA for multi-
objective optimization over the Boolean solution space S =
{0, 1}n. As described in Algorithm 1, it randomly selects an
initial solution, and then repeatedly tries to improve the pop-
ulation P . In each iteration, a solution uniformly selected
from the current P is used to generate a new solution by bit-
wise mutation; then the newly generated solution is compared
with the solutions in P , and only non-dominated solutions

Algorithm 1 GSEMO Algorithm
Given the solution space S = {0, 1}n and the objective vector
f , the procedure:

1: Choose s ∈ S uniformly at random.
2: P ← {s}.
3: repeat until some criterion is met
4: Choose s from P uniformly at random.
5: Create s′ by flipping each bit of s with prob. 1/n.
6: if @z ∈ P such that z � s′
7: P ← (P \ {z ∈ P | s′ � z}) ∪ {s′}.

are kept. The SEMO algorithm is the same as the GSEMO
except that bit-wise mutation which searches globally is re-
placed by one-bit mutation which searches locally, i.e., line 5
of Algorithm 1 becomes “Create s′ by flipping a randomly
chosen bit of s”. These two algorithms explain the common
structure of various MOEAs and are widely used in theoret-
ical analyses [Laumanns et al., 2004; Friedrich et al., 2010;
Qian et al., 2013]. We will also use them in case studies.

The running time of a MOEA is usually measured by the
number of calls to f (the most costly computational pro-
cess) until finding the Pareto front or an approximation of
the Pareto front. For any c ≤ 1, a set P of solutions is a
c-approximation of the Pareto front if for each objective vec-
tor (f∗1 , f

∗
2 , . . . , f

∗
m) in the Pareto front, there always exists a

solution s ∈ P such that ∀i ∈ {1, 2, . . . ,m} : fi(s) ≥ c · f∗i .

2.2 Markov Chain Modeling
EAs often generate offspring solutions from their current so-
lutions rather than the historical ones; thus, they can be mod-
eled as Markov chains. Let X be the population space and
X ∗⊆X be the target population space. If the goal is to find a
c-approximation of the Pareto front, each population in X ∗ is
a c-approximation of the Pareto front. Let ξt ∈ X be the pop-
ulation after t generations. Then, a MOEA can be described
as a random sequence {ξ0, ξ1, ξ2, . . .}. Since ξi+1 can often
be decided from ξi (i.e., P(ξi+1|ξi, . . . , ξ0) = P(ξi+1|ξi)),
the random sequence forms a Markov chain {ξt}+∞t=0 with
state space X , denoted as “ξ ∈ X ” for simplicity.

Given a Markov chain ξ ∈ X and ξt0 = x, we define τ as
a random variable such that τ = min{t ≥ 0 | ξt0+t ∈ X ∗}.
That is, τ is the number of steps needed to reach the target
space for the first time. The mathematical expectation of τ ,
E[[τ |ξt0 = x]] =

∑∞
i=0 i · P(τ = i|ξt0 = x), is called the

conditional first hitting time (CFHT). If ξt0 is drawn from
a distribution πt0 , the expectation of the CFHT over πt0 ,
E[[τ |ξt0 ∼ πt0 ]] =

∑
x∈X πt0(x)E[[τ |ξt0 = x]], is called the

distribution-CFHT (DCFHT). For a Markov chain ξ ∈ X
modeling a MOEA, E[[τ |ξ0 ∼ π0]] is just the expected num-
ber of iterations of the MOEA until reaching X ∗. We always
use E[[·]] to denote the expectation of a random variable.

A Markov chain ξ ∈ X is absorbing, if ∀t ≥ 0 : P(ξt+1 ∈
X ∗|ξt ∈ X ∗) = 1. Note that a Markov chain can be trans-
formed to be absorbing by making it unchanged once finding
a target state, which obviously does not affect its first hitting
time. Lemma 1 is to compare the DCFHT of two absorbing
Markov chains, which will be used in this paper.
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Lemma 1. [Yu et al., 2015] Given two absorbing Markov
chains ξ ∈ X and ξ′ ∈ Y with target spaces X ∗ and Y∗,
respectively, let τ and τ ′ denote their hitting times, respec-
tively, and let πt denote the distribution of ξt. Given a series
of values {ρt ∈ R}+∞t=0 with ρ =

∑+∞
t=0 ρt and a mapping

φ : X → Y with ∀x ∈ X \ X ∗ : φ(x) /∈ Y∗, if for all t ≥ 0,∑
x∈X ,y∈Y πt(x)P(ξt+1 ∈ φ−1(y)|ξt = x)E[[τ ′|ξ′0 = y]]

≤
∑
u,y∈Y π

φ
t (u)P(ξ

′
1 = y|ξ′0 = u)E[[τ ′|ξ′1 = y]] + ρt,

where φ−1(y) = {x ∈ X | φ(x) = y}, πφt (u) =∑
x∈φ−1(u) πt(x), then E[[τ |ξ0 ∼ π0]] ≤ E[[τ ′|ξ′0 ∼ π

φ
0 ]] + ρ.

3 The Proposed Approach
For a MOEA solving a multi-objective problem, we propose
a general approach (i.e., Theorem 1) to analyze running time
upper bounds for finding a c-approximation of the Pareto
front. Note that c = 1 implies finding the Pareto front. The
idea is to model the given MOEA process as a Markov chain
ξ ∈ X , and compare it with an easy-to-analyze chain ξ′ ∈ Y .
From the condition Eq. (1) of Theorem 1, we can see that the
long-term behavior of the given chain ξ ∈ X is waived, since
E[[τ |ξt]] is not involved. In the comparison, we need a func-
tion hα,c to measure the goodness of x ∈ X . As shown in
Definition 3, hα,c(x) is the sum of two terms: the maximal
weighted sum of objective values of the solution in x, and the
number of objective vectors in F ∗ which are c-approximated
by x. It is easy to verify that g(F ∗, x, c) ≤ |F ∗|, and for
any x which is a c-approximation of F ∗, g(F ∗, x, c) = |F ∗|.
When α and c are clear, we will write h for short.
Definition 3. Given a Markov chain ξ ∈ X modeling a
MOEA solving a multi-objective problem (f1, f2, . . . , fm)
with the Pareto front F ∗, let the target space X ∗ = {x ∈
X | x is a c-approximation of F ∗}, where c ≤ 1. For a non-
negative real vector α = (α0, α1, ..., αm), we define a func-
tion hα,c : X → R as for any x ∈ X ,

hα,c(x) = maxs∈x
∑m
i=0 αifi(s) + g(F ∗, x, c),

where f0(s) = 1, g(F ∗, x, c) = |{(f∗1 , f∗2 , . . . , f∗m) ∈ F ∗ |
∃s ∈ x, ∀1 ≤ i ≤ m : fi(s) ≥ c · f∗i }| and | · | denotes the
cardinality of a set. If ∀x ∈ X , hα,c(x) ∈ N0 and

maxx∈X\X∗ hα,c(x) < minx∈X∗ hα,c(x),

then hα,c is called a well-defined function.
Theorem 1. Given a Markov chain ξ∈X modeling a MOEA
solving a multi-objective problem with the Pareto front F ∗, let
the target space X ∗={x∈X |x is a c-approximation of F ∗},
where c ≤ 1. If there exists a well-defined function hα,c :
X → N0 and a Markov chain ξ′ ∈ Y = {0, 1}r with Y∗ =
{1r} satisfying that ∀x /∈ X ∗, ∀t ≥ 0,∑

i∈[r]
P(min{h(ξt+1), r}= i|ξt=x)E[[τ ′|ξ′0=1i0r−i]] (1)

≤
∑
y∈YP(ξ

′
1=y|ξ′0=1h(x)0r−h(x))E[[τ ′|ξ′1=y]]+δ,

where r = min{h(x)|x ∈ X ∗}, [r] denotes {0, . . . , r} and
δ<1, the expected number of iterations until the MOEA find-
ing a c-approximation of F ∗ when starting from x0 is at most

E[[τ ′|ξ′0 = 1min{h(x0),r}0r−min{h(x0),r}]]/(1− δ).

Proof. We use Lemma 1 to prove it by comparing the
two Markov chains ξ ∈ X and ξ′ ∈ Y . We con-
struct the mapping function φ : X → Y as ∀x ∈ X ,
φ(x) = 1min{h(x),r}0r−min{h(x),r}. Since h is well-defined,
we have x ∈ X ∗ iff φ(x) ∈ Y∗ = {1r}. Let πt denote the
distribution of ξt. Then, for any t,∑
x∈X ,y∈Y

πt(x)P(ξt+1 ∈ φ−1(y)|ξt = x))E[[τ ′|ξ′0 = y]]

=
∑

x/∈X∗,i∈[r]
πt(x)P(min{h(ξt+1), r}= i|ξt=x)E[[τ ′|ξ′0=1i0r−i]]

≤
∑
x/∈X∗

πt(x)
( ∑
y∈Y

P(ξ′1=y|ξ′0=1h(x)0r−h(x))E[[τ ′|ξ′1=y]]+δ
)

=
∑

u,y∈Y
πφt (u)P(ξ

′
1=y|ξ′0=u)E[[τ ′|ξ′1=y]]+ δ · (1−πt(X ∗)),

where the first equality is by the absorbing property of ξ ∈ X
and the definition of φ, the inequality is by Eq. (1), and the
last equality is by the absorbing property of ξ′ ∈ Y and the
definition of πφt in Lemma 1. Thus, the condition of Lemma 1
holds with ρt = δ · (1 − πt(X ∗)). When the MOEA starts
from x0, i.e., π0(x0) = 1, we get from Lemma 1 that

E[[τ |ξ0 = x0]] ≤ E[[τ ′|ξ′0 = φ(x0)]]+ δ ·
∑+∞
t=0 (1−πt(X ∗)).

By applying
∑+∞
t=0 (1 − πt(X ∗)) = E[[τ |ξ0 = x0]] and

φ(x0) = 1min{h(x0),r}0r−min{h(x0),r} to the above inequal-
ity, the theorem holds.

Using the above approach to derive running time upper
bounds of a MOEA (modeled by a chain ξ ∈ X ) for find-
ing a c-approximation of the Pareto front, one needs to
1. design a well-defined function hα,c : X → N0 and con-
struct a reference chain ξ′∈Y={0, 1}r with Y∗={1r};
2. analyze the transition probabilities (i.e., P(ξt+1|ξt) and
P(ξ′t+1|ξ′t)) and the CFHT of the chain ξ′∈Y (i.e., E[[τ ′|ξ′t]]),
and then examine Eq. (1) to get the value of δ;
3. divide E[[τ ′|ξ′0]] by 1−δ to get an upper bound on E[[τ |ξ0]].
Since the running time of a MOEA is measured by the num-
ber of fitness evaluations, the cost of each iteration should be
considered. For example, the expected running time of the
GSEMO (i.e., Algorithm 1) is just the expected number of
iterations (i.e, E[[τ |ξ0]]), since we only need to evaluate the
newly generated solution s′ in each iteration.

4 Bi-objective Analysis
In this section, we apply the proposed approach to an-
alyze the running time of the GSEMO solving two bi-
objective pseudo-Boolean problems LOTZ and COCZ, which
are widely used in MOEAs’ theoretical analyses. The de-
rived running time bounds in Theorems 2 and 3 are consis-
tent with the known asymptotic bounds O(n3) [Giel, 2003]
andO(n2 log n) [Qian et al., 2013], and further give the lead-
ing constants. For LOTZ as presented in Definition 4, it is to
maximize the number of leading 1-bits and trailing 0-bits of
a solution s ∈ {0, 1}n simultaneously. The Pareto front is
F ∗ = {(i, n − i) | 0 ≤ i ≤ n}, and the set of all the Pareto
optimal solutions is S∗ = {0n, 10n−1, . . . , 1n−10, 1n}.
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Definition 4 (LOTZ [Giel, 2003]). The pseudo-Boolean func-
tion LOTZ: {0, 1}n → N2

0 is defined as

LOTZ(s) =
(∑n

i=1

∏i
j=1 sj ,

∑n
i=1

∏n
j=i(1− sj)

)
,

where sj ∈ {0, 1} is the j-th bit of s.
Theorem 2. For the GSEMO solving LOTZ, the expected
running time for finding the Pareto front is at most 6n3.

Proof. We use Theorem 1 to prove it. Let ξ ∈ X model the
GSEMO solving LOTZ. From the algorithm procedure, we
know that the solutions in any x ∈ X (i.e., in any possible
population P ) are incomparable. Let c=1 (i.e., the goal is to
find the Pareto front F ∗). Then X ∗ = {S∗}. We design the
function h by setting α=(0, 1, 1), i.e.,

h(x) = maxs∈x(f1(s) + f2(s)) + |x ∩ S∗|.
Note that g(F ∗, x, 1) in Definition 3 equals to |x ∩ S∗| here.
For any x ∈ X \ X ∗, maxs∈x(f1(s)+f2(s)) ≤ n and |x ∩
S∗| < n+1, thus h(x) < 2n+1 = h(S∗). It is easy to
see that h(x)∈N0. Thus, h is well-defined and r = 2n+1.
For the Markov chain ξ′ ∈ Y = {0, 1}r with Y∗ = {1r},
we construct its transition behavior as follows: for any ξ′t /∈
Y∗, ξ′t+1 is generated by flipping the first 0-bit of ξ′t with
probability 1/r; otherwise, ξ′t+1 = ξ′t. Thus, for any ξ′t ∈Y ,
E[[τ ′|ξ′t]] = r · |ξ′t|0, where | · |0 denotes the number of 0-bits.

Then, we are to investigate Eq. (1). For any ξt = x /∈ X ∗,
assume that h(x) = k < r and let ŝ ∈ argmaxs∈x(f1(s) +
f2(s)). It is easy to verify that h(ξt+1) ≥ h(ξt) = k, since
|x∩S∗| never decreases and if ŝ is deleted, the newly included
solution s′ must weakly dominate ŝ (line 7 of Algorithm 1)
and thus f1(s′)+f2(s′) ≥ f1(ŝ)+f2(ŝ). We then show that
h(ξt+1) ≥ h(ξt) + 1 = k + 1 with probability at least 1

en2

by considering two cases. (1) If |x ∩ S∗| = 0, ŝ must not be
Pareto optimal, and flipping only its first 0-bit will generate a
new solution s′ with f1(s′)+f2(s′) > f1(ŝ)+f2(ŝ) = k. (2)
If |x∩S∗| > 0, flipping only the last 1-bit or the first 0-bit of a
specific Pareto optimal solution in x∩S∗ can generate a new
Pareto optimal solution, and thus |ξt+1 ∩S∗| = |x∩S∗|+1.
In both cases, h(ξt+1) ≥ h(x) + 1 = k + 1. Note that the
probability of selecting a specific solution from x in line 4
of Algorithm 1 is 1

|x| and the probability of flipping only one
specific bit in line 5 is 1

n (1−
1
n )
n−1 ≥ 1

en . Since the solutions
in x are incomparable, we have |x| ≤ n. Thus, our claim that
P(h(ξt+1) ≥ k + 1|ξt = x) ≥ 1

en2 holds. We then have∑
i∈[r]

P(min{h(ξt+1), r} = i|ξt = x)E[[τ ′|ξ′0 = 1i0r−i]] (2)

≤ P(h(ξt+1) ≥ k + 1|ξt = x)E[[τ ′|ξ′0 = 1k+10r−k−1]]

+ (1− P(h(ξt+1) ≥ k + 1|ξt = x))E[[τ ′|ξ′0 = 1k0r−k]]

≤ (1/(en2)) · r(r − k − 1) + (1− 1/(en2)) · r(r − k),
where the first inequality is by min{h(ξt+1), r} = h(ξt+1),
h(ξt+1) ≥ k and E[[τ ′|ξ′0 = 1i0r−i]] = r(r − i) decreasing
with i, and the second is by P(h(ξt+1) ≥ k + 1|ξt = x) ≥
1
en2 . Meanwhile, by the transition behavior of ξ′ ∈ Y , we get∑

y∈YP(ξ
′
1 = y|ξ′0 = 1k0r−k)E[[τ ′|ξ′1 = y]]

= (1/r) · r(r − k − 1) + (1− 1/r) · r(r − k).
(3)

By combining the above two formulas, the condition Eq. (1)
of Theorem 1 holds with δ = 1− r

en2 < 1− 2
en .

Thus, we get that starting from any x0 ∈ X , the expected
number of iterations until finding the Pareto front is at most
E[[τ ′|ξ′0 = 1h(x0)0r−h(x0)]]/(1− δ) ≤ E[[τ ′|ξ′0 = 0r]] · en2 =

(2n+1)2 · en2 ≤ 6n3. Since only a new solution is evaluated
in each iteration of the GSEMO, the theorem holds.

For COCZ as presented in Definition 5, the first objective
is to maximize the number of 1-bits, and the other is to max-
imize the number of 1-bits in the first half of a solution plus
the number of 0-bits in the second half. The Pareto front is
{(n/2+ i, n− i) | 0 ≤ i ≤ n/2}, and the set of all the Pareto
optimal solutions is S∗ = {s ∈ {0, 1}n |

∑n/2
i=1 si = n/2}.

Definition 5 (COCZ [Qian et al., 2013]). The pseudo-Boolean
function COCZ: {0, 1}n → N2

0 is defined as

COCZ(s) =
(∑n

i=1 si,
∑n/2
i=1 si +

∑n
i=n/2+1(1− si)

)
,

where n is even.
Theorem 3. For the GSEMO solving COCZ, the expected
running time for finding the Pareto front is at most 3n2 log n.

Proof. Let ξ∈X model the GSEMO solving COCZ and c=1.
Then, X ∗={{s0, . . . , sn/2}|si∈S∗,

∑n
j=n

2 +1 s
i
j = i}. We

design the function h by setting α=(−n/4, 1/2, 1/2), i.e.,
h(x) = maxs∈x(f1(s) + f2(s)− n/2)/2 + |x ∩ S∗|.

It is easy to verify that h is well-defined and r=n+1. For the
chain ξ′∈Y={0, 1}r with Y∗={1r}, the transition behavior
is constructed as follows. Suppose ξ′t = s and

∑n/2
i=1 si = j.

ξ′t+1 is generated by flipping the first 0-bit of s with probabil-
ity n/2−j

r for j < n
2 and |s|0r for j = n

2 ; otherwise, ξ′t+1 =

ξ′t. Thus, E[[τ ′|ξ′0 = 1k0r−k]] − E[[τ ′|ξ′0 = 1k+10r−k−1]] =
r

n/2−k for k < n
2 , and r

n+1−k for n2 ≤ k < r.
We then show that Eq. (1) holds with δ ≤ 1− 2

e(n+1) . For
any ξt = x /∈ X ∗, assume that h(x) = k < r and let ŝ ∈
argmaxs∈x(f1(s)+f2(s)). It is easy to verify that h(ξt+1)≥
h(ξt)=k. We consider two cases. (1) If |x ∩ S∗|=0, ŝ must
not be Pareto optimal and k < n/2. Flipping only one 0-
bit in the first half of ŝ will generate a new solution s′ with
f1(s

′)+f2(s
′)=f1(ŝ)+f2(ŝ)+2. Thus, P(h(ξt+1)≥k+1)≥

n/2−k
en|x| . By using the same analysis as Eqs. (2) and (3), we get

δ =
(
n/2−k
en|x| −

n/2−k
r

)
·
(
− r
n/2−k

)
≤ 1− 2

e(n+1) ,

where the inequality is by r = n + 1 and |x| ≤ n/2 + 1.
(2) If |x ∩ S∗| > 0, we have k = n/2 + |x ∩ S∗| ≥
n/2 + 1. Let Ĉ ∈ argmaxC⊆x∩S∗ |C| s.t. maxs∈C f1(s)−
mins∈C f1(s) = |C| − 1. Let u = argmaxs∈Ĉ f1(s) and
v = argmins∈Ĉ f1(s). Then, flipping one 0-bit of u or flip-
ping one 1-bit in the second half of v can generate a new
Pareto optimal solution. We thus have P(h(ξt+1) = k+1) ≥
n−|u|1+|v|1−n/2

en|x| ≥ n/2+1−|x∩S∗|
en|x| = n+1−k

en|x| . Using the same
analysis as case (1), we also get δ ≤ 1− 2

e(n+1) .
By applying δ ≤ 1 − 2

e(n+1) and E[[τ ′|ξ′0 = 0r]] ≤
2r(log(n/2 + 1) + 1) to Theorem 1, the theorem holds.
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5 Many-objective Analysis
In this section, we apply the proposed approach to analyze the
running time of the SEMO solving the scalable m-objective
problem mCOCZ, where m ≥ 4. Note that as the number
of objectives increases, the size of the Pareto front can expo-
nentially increase and thus the problem becomes more com-
plicated. Our derived running time bound in Theorem 4 is
asymptotically tighter than the known bound O(nm+1) [Lau-
manns et al., 2004]. As presented in Definition 6, all the m
objectives are cooperative in the first half of a solution (i.e.,
maximizing the number of 1-bits), and the second half is di-
vided into m′ = m/2 blocks, each of which is to maximize
the number of 1-bits and 0-bits simultaneously. The Pareto
front is F ∗ = {(n2+i1,

n
2+n

′−i1, . . . , n2+im′ ,
n
2+n

′−im′) |
∀1 ≤ j ≤ m′ : 0 ≤ ij ≤ n′}, where n′ = n/m is the size
of each block. The set of all the Pareto optimal solutions is
S∗ = {s ∈ {0, 1}n |

∑n/2
i=1 si = n/2}. It is easy to see that

|F ∗| = (n′ + 1)m
′

and |S∗| = 2n/2.
Definition 6 (mCOCZ [Laumanns et al., 2004]). The pseudo-
Boolean function mCOCZ: {0, 1}n → Nm0 is defined as

mCOCZ(s) = (f1(s), f2(s), ..., fm(s)),
where

fk(s) =
n/2∑
i=1

si+

{∑n′

i=1sn/2+(k−1)n′/2+i, if k is odd,∑n′

i=1(1− sn/2+(k−2)n′/2+i), else,

m = 2 ·m′, n = m · n′ and m′, n′ ∈ N0.
Theorem 4. For the SEMO solving mCOCZ, the expected
running time for finding the Pareto front is O(nm) for m > 4
and O(n3 log n) for m = 4.

Proof. According to the intermediate result in Theorem 11
of [Laumanns et al., 2004], i.e., the number of mutations al-
located to non-Pareto-optimal solutions is O(nm/2+1 log n),
we only need to consider the number of mutations allocated
to Pareto optimal solutions, and thus we can assume that af-
ter O(nm/2+1 log n) iterations in expectation, the population
will always contain only Pareto optimal solutions. We then
use Theorem 1 to analyze the expected number of iterations
(denoted by E[T ]) until finding the Pareto front when starting
from any set of Pareto optimal solutions.

Let ξ ∈ X model the SEMO solving mCOCZ and c = 1.
We design the function h by setting α = 0, i.e., h(x) =
|x ∩ S∗|. It is easy to verify that h is well-defined and r =
|F ∗|= (n′+1)m

′
. For the chain ξ′ ∈Y = {0, 1}r with Y∗=

{1r}, we construct the transition behavior as follows: for any
ξ′t /∈ Y∗, ξ′t+1 becomes 1r with probability 1/(|ξ′t|0)1−1/m

′
;

otherwise, ξ′t+1=ξ
′
t. Thus, E[[τ ′|ξ′t]]=(|ξ′t|0)1−1/m

′
.

We then show that Eq. (1) holds with δ ≤ 1− 1
2nr . For

any ξt = x /∈ X ∗, assume that h(x) = k < r. Note that
for any t, ξt contains only incomparable Pareto optimal so-
lutions. Since the number of Pareto optimal solutions in the
population never decreases, h(ξt+1) ≥ h(ξt) = k. We then
analyze Pg := P(h(ξt+1) = k+1). For i ∈ {1, . . . ,m′}, let
Ai={f2i−1(s)|s∈x} and ai= |Ai|. Note that 1≤ai≤n′+1
and f2i−1 corresponds to the i-th block in the second half of a
solution, i.e., the bits in positions n2+(i−1)·n′+1 ∼ n

2+i·n
′.

Assume that a1 ≥ a2 ≥ · · · ≥ am′ . We consider two cases:
(1) am′ ≤ n′. For the m′-th block, there is at least one miss-
ing f2m′−1 value. Thus, for any value of f1 in A1, there
is at least one corresponding solution s in x, and flipping a
proper bit in the m′-th block of s can generate a Pareto op-
timal solution with a new value of f2m′−1; this implies that
h(ξt+1) = k + 1. Since |x| = k, Pg ≥ a1

nk ≥ k
1/m′/(nk).

(2) am′ = n′+1. LetNF ∗ = F ∗\{f(s) | s ∈ x} denote the
set of objective vectors in F ∗ that have not been found. For
1≤ i≤m′, let Bi={f∗2i−1 | (f∗1 , . . . , f∗m) ∈ NF ∗} and bi=
|Bi|. Suppose j∈argmaxi bi. For any value z∈Bj , there is
at least one corresponding solution s ∈ x with f2j−1(s) = z,
and flipping a proper bit of s can generate a Pareto optimal
solution s′ with f(s′) ∈ NF ∗; otherwise, all the objective
vectors in F ∗ with f∗2j−1=z have been found, which contra-
dicts with z∈Bj . Thus, Pg ≥ bj

nk ≥ (r − k)1/m′/(nk).

Combining these two cases, Pg ≥ min{k
1/m′

nk , (r−k)
1/m′

nk }.
By using the same analysis as Eqs. (2-3), Eq. (1) holds with

δ = Pg ·E[[τ ′|ξ′0=1k+10r−k−1]]+(1−Pg)E[[τ ′|ξ′0=1k0r−k]]

−(1− 1/(r − k)1−1/m′) · E[[τ ′|ξ′1 = 1k0r−k]]

= Pg · (r − k)1−1/m
′
((1− 1/(r − k))1−1/m′ − 1) + 1

≤ −(Pg/2) · (r − k)−1/m
′
+ 1,

where the inequality is by (1− 1
r−k )

1−1/m′≤1− 1−1/m′
r−k and

m′= m
2 ≥2. If k≤ r

2 , Pg≥ k1/m
′

nk ≥
1

nr1−1/m′ , thus δ≤1− 1
2nr .

If k> r
2 , Pg≥ (r−k)1/m

′

nk ≥ (r−k)1/m
′

nr , thus δ≤1− 1
2nr .

By applying δ ≤ 1 − 1
2nr and E[[τ ′|ξ′0 = 0r]] ≤ r1−1/m

′

to Theorem 1, we get that E[T ] ≤ r1−1/m
′ · 2nr = O(nm).

Note that r = (n′ + 1)m
′

and 2m′ = m. Thus, the expected
running time form > 4 isO(nm/2+1 log n+nm) = O(nm).

We further derive a tighter upper bound for m=4 by using
a different ξ′∈Y and analyzing Pg more carefully. The tran-
sition behavior of ξ′ is as follows: ξ′t+1 is generated by flip-
ping the first 0-bit of ξ′t with probability |ξ′0|/r; otherwise,
ξ′t+1 = ξ′t. Thus, E[[τ ′|ξ′t]] = rH|ξ′t|0 . We then show that
Eq. (1) holds with δ ≤ 1− 1

n by re-analyzing Pg . Note that
x⊆S∗. For any z ∈A2, let Cz ∈ argmaxC⊆x |C| s.t. ∀s∈
C, f3(s)=z and maxs∈C f1(s)−mins∈C f1(s)= |C|−1. Let
u=argmaxs∈Cz

f1(s) and v=argmins∈Cz
f1(s). Then, a

new Pareto optimal solution can be generated by flipping one
0-bit in the first block of u or flipping one 1-bit in the first
block of v , whose probability is n

′−(f1(u)−n/2)+f1(v)−n/2
nk =

n′+1−|Cz|
nk . By summing over all z∈A2, we get that one part

of Pg is at least (n′+1)a2−k
nk . By considering z ∈ A1 and ex-

changing f1 and f3 in the analysis above, we can similarly
get that the other part of Pg is at least (n′+1)a1−k

nk . Thus,

Pg ≥ (n′+1)(a1+a2)−2k
nk ≥ 2(n′+1)

√
k−2k

nk , where the second
inequality is by a1a2 ≥ k. Then, the δ in Eq. (1) satisfies that

δ = Pg ·
(
− r
r−k

)
+ 1 ≤ 1− 2r

n
√
k(n′+1+

√
k)
≤ 1− 1

n ,

where the last inequality is by k < r = (n′+1)2. By applying
δ ≤ 1 − 1

n and E[[τ ′|ξ′0 = 0r]] = rHr to Theorem 1, we get
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that E[T ] = O(n3 log n). Thus, the expected running time
for m = 4 is O(n3 log n+ n3 log n) = O(n3 log n).

6 Approximate Analysis
In this section, we consider a variant of the GSEMO solving
the WOMM problem, a generalization of the previously stud-
ied OneMinMax problem [Giel and Lehre, 2010; Osuna et
al., 2017]. As presented in Definition 7, it is to maximize the
weighted sum of 1-bits and 0-bits of a solution at the same
time. Note that optimizing two linear functions simultane-
ously often appears in multi-objective combinatorial prob-
lems such as multi-objective minimum spanning trees and
multi-objective knapsacks. The Pareto front F ∗ can be ex-
ponentially large, e.g., if wi = 2i, |F ∗| = 2n; thus we an-
alyze the running time until finding an approximation of F ∗
(i.e., approximate analysis), instead of that until finding F ∗
(i.e., exact analysis) in the previous two sections. Theorem 5
shows that a good approximation can be obtained in polyno-
mial time, which is consistent with the good empirical perfor-
mance of MOEAs in solving multi-objective combinatorial
problems [Zhou and Gen, 1999; Ishibuchi et al., 2015].
Definition 7 (WOMM). The pseudo-Boolean function WOMM:
{0, 1}n → R2 is defined as

WOMM(s) = (
∑n
i=1 wisi,

∑n
i=1 wi(1− si)).

where 0 < w1 ≤ w2 ≤ . . . ≤ wn.

We introduce two useful techniques into the GSEMO, i.e.,
the initialization strategy [Qian et al., 2013] and the diversity-
selecting mechanism [Horoba, 2009]. The former uses the
(1+1)-EA (a simple single-objective EA) to optimize each
objective separately, and then uses the optimum of each ob-
jective as the initial population. The latter is used to keep a
diverse population and then achieve a good spread over the
Pareto front. The objective space is divided into boxes, and
the box value of a solution s is defined as

bl(s) :=
(
dlogl(1 + f1(s)/w1)e, dlogl(1 + f2(s)/w1)e

)
,

where l > 1. In each iteration, a non-empty box (i.e., a
box which contains at least one solution in the population)
is chosen uniformly at random (u.a.r.); then a solution in the
chosen box is selected u.a.r. to generate a new solution. Let
W =

∑n
i=1 wi for simplicity. Lemma 2 gives an upper bound

on the number of non-empty boxes.
Lemma 2. For the GSEMO on WOMM, there are at most B =
2(logl(1 +W/w1) + 2) non-empty boxes in the population.

Proof. Assume that in the population, there are m > B
different non-empty boxes: (a1, b1), (a2, b2), . . . , (am, bm),
where a1 ≤ a2 ≤ . . . ≤ am, and for i < j, bi > bj if
ai = aj . Then, it must hold that b1 ≥ b2 ≥ . . . ≥ bm; oth-
erwise, it implies that for some i, ai < ai+1 and bi < bi+1,
which contradicts with the fact that the solutions in the popu-
lation are incomparable. Thus, we get a1 − b1 ≤ a2 − b2 ≤
. . . ≤ am − bm. Note that ai, bi ∈ {0, 1, . . . , L}, where
L = dlogl(1 +W/w1)e, and there are at most 2L+ 1 differ-
ent values for ai − bi. Meanwhile, m>B > 2L + 2. Thus,
for some i, ai−bi = ai+1−bi+1; this implies that ai=ai+1,
bi=bi+1, which contradicts with the assumption.

Lemma 3. A = {0n, 10n−1, 010n−2, . . . , 0n−11} is a 1
n -

approximation of F ∗. Furthermore, the approximation ratio
is max{ δ

1+δ ,
1
n}, if ∀i, wi+1≥(1 + δ) · wi, where δ>0.

Proof. We only need to show that for any s∈ {0, 1}n, there
exists a solution s′ ∈ A such that ∀i ∈ {1, 2} : fi(s

′) ≥
fi(s)/n. Let k=max{i|si=1}. We consider two cases: (1)
If k = 0, s = 0n ∈ A. (2) If 1 ≤ k ≤ n, f2(0k−110n−k) =
W−wk≥f2(s); f1(0k−110n−k)/f1(s) ≥ wk/(

∑k
i=1 wi) ≥

1/n, since wi increases with i. For the furthermore clause,
(
∑k
i=1 wi)/wk≤

1−1/(1+δ)k
1−1/(1+δ) ≤

1+δ
δ , since wi+1≥(1+δ) ·wi;

then,wk/(
∑k
i=1 wi)≥δ/(1+δ). Thus, the lemma holds.

Theorem 5. For maximizing WOMM, the GSEMO with an ini-
tialization strategy and a diversity-selecting mechanism can
find a 1

n -approximation of the Pareto front in O(n2(logl n +
logl(wn/w1))) expected running time, where l > 1. Further-
more, the approximation ratio is max{ δ

1+δ ,
1
n}, if ∀i, wi+1 ≥

(1 + δ) · wi, where δ > 0.

Proof. Since the (1+1)-EA optimizes a linear function in
O(n log n) expected time [Droste et al., 2002], the initial-
ization costsO(n log n) time, and the population will contain
1n and 0n. We then use Theorem 1 to analyze the expected
number of iterations until finding a 1

n -approximation of F ∗.
Let ξ∈X model the variant of the GSEMO solving WOMM

and c = 1
n . We design a well-defined function h by setting

α= 0, i.e., h(x) = g(F ∗, x, 1
n ). Note that r= |F ∗|. For the

chain ξ′∈Y={0, 1}r with Y∗={1r}, its transition behavior
is constructed as follows: for any ξ′t /∈ Y∗, ξ′t+1 becomes 1r
with probability 1/(1 + log |ξ′t|0); otherwise, ξ′t+1 = ξ′t. We
can easily derive that E[[τ ′|ξ′t]] = 1 + log |ξ′t|0 for ξ′t /∈ Y∗.

Then, we are to investigate Eq. (1). For any ξt=x /∈X ∗, as-
sume h(x)=k<r. It is easy to verify that h(ξt+1)≥h(ξt)=
k. Note that the solution 0n will be always contained in the
population, since no other solution can weakly dominate it.
Furthermore, it has a unique box value bl(0n)=(0, dlogl(1+
W/w1)e), since for any s 6= 0n, dlogl(1+f1(s)/w1)e ≥ 1.
Assume that there are j solutions (denoted by s1, s2, . . . , sj)
in A which are not weakly dominated by any solution in ξt.
Note that j≥ 1; otherwise, h(ξt)= r, which makes a contra-
diction. For 1 ≤ i ≤ j, si can be generated by choosing 0n

from ξt and flipping a specific 0-bit, whose probability is at
least 1

B ·
1
n (1 −

1
n )
n−1 ≥ 1

Ben . Once si is generated, it will
be added into the population, since no solution in ξt weakly
dominates it. For 1≤ i≤ j, let ki=h(x ∪ {si}), then ki≥k.
By using the same analysis as Eqs. (2) and (3), we have

δ ≤ (1/(Ben)) ·
∑j
i=1E[[τ

′|ξ′0 = 1ki0r−ki ]]

+ (1− j/(Ben)) · E[[τ ′|ξ′0 = 1k0r−k]]

− (1− 1/(1 + log(r − k))) · E[[τ ′|ξ′1 = 1k0r−k]]

= 1 + (1/(Ben)) ·
∑j
i=1 log

(
(r − ki)/(r − k)

)
≤ 1 + (1/(Ben)) ·

∑j
i=1(k−ki)/(r−k) ≤ 1−1/(Ben),

where the second inequality is by log t≤ t−1 for t>0, and the
last is by

∑j
i=1(ki−k)=

∑j
i=1(h(x∪{si})−h(x)) ≥ h(x∪

A)−h(x) = r−k. Thus, Eq. (1) holds with δ ≤ 1−1/(Ben).
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By applying δ≤ 1 − 1
Ben and E[[τ ′|ξ′0 = 0r]]≤ 1+n log 2

to Theorem 1, we get that the expected running time for find-
ing a 1

n -approximation of F ∗ is at most (1+n log 2)Ben =

O(n2(logl n+logl(wn/w1))). For the furthermore clause, the
analysis still holds by setting c=max{ δ

1+δ ,
1
n}.

7 Conclusion
In this paper, we propose a general approach for deriving up-
per bounds on the running time of MOEAs. The key is to re-
duce the analysis of a given MOEA process to that of an easy-
to-analyze process. We apply this approach to diverse situa-
tions, including bi-objective and many-objective optimization
as well as exact and approximate analysis. Our analysis can
give the leading constants as well as bring an asymptotic im-
provement for some known running time bounds, which dis-
plays the strength of the proposed approach. In addition, our
results provide some theoretical justification for MOEAs well
solving multi-objective combinatorial problems in practice.

Acknowledgments
This work was supported in part by the National
Key Research and Development Program of China
(2017YFC0804002), the NSFC (61603367, 61672478),
the YESS (2016QNRC001), and the Science and Tech-
nology Innovation Committee Foundation of Shenzhen
(ZDSYS201703031748284).

References
[Auger and Doerr, 2011] A. Auger and B. Doerr. Theory of

Randomized Search Heuristics: Foundations and Recent
Developments. World Scientific, Singapore, 2011.
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