
Compiling Model Representations for Querying Large ABoxes in Expressive DLs

Labinot Bajraktari, Magdalena Ortiz and Mantas Šimkus
Faculty of Informatics, TU Wien, Austria

bajraktari@kr.tuwien.ac.at, ortiz@kr.tuwien.ac.at, simkus@dbai.tuwien.ac.at

Abstract
Answering ontology mediated queries (OMQs) has
received much attention in the last decade, but
the big gap between practicable algorithms for
lightweight ontologies, that are supported by im-
plemented reasoners, and purely theoretical al-
gorithms for expressive ontologies that are not
amenable to implementation, has only increased.
Towards narrowing the gap, we propose an algo-
rithm to compile a representation of sets of mod-
els for ALCHI ontologies, which is sufficient for
answering any monotone query. Rather than rea-
soning for specific ABoxes, or being fully data-
independent, we use generic descriptions of fami-
lies of ABoxes, given by what we call profiles. Our
model compilation algorithm runs on TBoxes and
sets of profiles, and supports the incremental addi-
tion of new profiles. To illustrate the potential of
our approach for OMQ answering, we implement
a rewriting into an extension of Datalog for OMQs
comprising reachability queries, and provide some
promising evaluation results.

1 Introduction
Answering ontology mediated queries (OMQs) has been a
very active field of research over the last decade. How-
ever, there is a large gap between two main research lines.
On the one hand, for the so-called lightweight Description
Logics (DLs), algorithms have been developed, improved,
and implemented in reasoners, from DL-Lite (e.g., [Cal-
vanese et al., 2005; Rosati and Almatelli, 2010; Rodriguez-
Muro et al., 2013]), to EL [Stefanoni et al., 2014; Pérez-
Urbina et al., 2010], and other Horn DLs [Eiter et al., 2012b;
Ortiz et al., 2011]. Most works use query rewriting ap-
proaches, where an OMQ (T , q) comprising of a DL ontol-
ogy T (a.k.a. TBox) and a query q in a standard language
(e.g., conjunctive queries (CQs)) is written into a new query
q′ in a target query language. Obtaining q′ may be costly,
but it is independent from a concrete dataset (ABox, in DL
jargon), and then q′ can be evaluated over any ABox us-
ing existing engines for the target language. On the other
hand, for expressive DLs containing ALC, most of the re-
search on OMQ answering has had theory-oriented goals, like

understanding decidability and worst-case complexity [Lutz,
2008]. Many algorithms employ tools that are not amenable
to implementation, like automata [Calvanese et al., 2008;
2014]. Rewritings have been proposed (e.g.,[Bienvenu et al.,
2014b; Ahmetaj et al., 2016; Eiter et al., 2012a]) but they
appear unpracticable, and to our knowledge, they have not
led to implementation attempts. A rewriting into Datalog for
SHIQ was implemented a decade ago in the KAON2 rea-
soner, but only for instance queries. A published extension
to CQs did not yield a data-independent rewriting, and was
never implemented [Hustadt et al., 2004]. State-of-the-art
reasoners for expressive DLs can handle very large ontolo-
gies (e.g., Pellet [Sirin et al., 2007], HermiT [Glimm et al.,
2014], Konclude [Steigmiller et al., 2014]), but they usually
aim at deciding if some model exists, and it remains unclear
whether they could be adapted for OMQ answering.

To start bridging this gap, we propose an algorithm for the
DL ALCHI that can efficiently compute a representation of
a set of models for answering OMQs. A key feature of our
approach is that we compromise data independence, and use
generic descriptions of the ABoxes of interest. Our contribu-
tions can be summarized as follows:
• We propose profile sets as a simple yet general way to

describe families of ABoxes. Profiles are combinations of
concepts, role domains, and role ranges that an object may
be asserted to participate in. We claim that, in many cases,
only a moderate number of profiles is relevant, even when the
datasets are large, or ontologies are very complex; prelimi-
nary experimental evidence backs this claim.
• We provide an algorithm that takes as an input a TBox
T in ALCHI , and a set of profiles P, and effectively com-
putes a structure T that represents a set of relevant models,
for all knowledge bases of interest, and that can be used for
answering OMQs. Specifically, for any ABox A that com-
plies to the description given by P, we can construct from T
a set of models of (T ,A) that is sufficient for answering any
monotone query preserved under homomorphisms.
• To illustrate the potential of our algorithm for OMQ an-

swering, we consider two kinds of queries: instance queries
and reachability queries. For both of them, we provide a
rewriting into ASP programs, reducing query answering to
cautious entailment over the answer sets of the rewriting.
• Our algorithm supports incremental reasoning for

ABoxes: if the model compilation has been obtained for a set
of profiles, and a new family of ABoxes becomes of interest,

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1691

new profiles can be incorporated easily. The ASP rewriting
can also be efficiently updated by adding new rules.
• Experiments carried out with a proof of concept imple-

mentation reveal promising results. Indeed, compiling mod-
els and rewriting into ASP is feasible even for complex on-
tologies. Query answering with our ASP rewritings is scal-
able for large ABoxes, using off-the-shelf ASP solvers.

2 Preliminaries
We briefly recall the syntax and semantics of the DL
ALCHI . We assume countably infinite sets NC, NR, and NI

of concept names, role names, and individuals. If r ∈ NR,
then r and r− are roles; the set of all roles is denoted NR. For
readability, r− stands for s whenever r = s− for s ∈ NR.
(Complex) concepts are defined as usual: (a)>,⊥ and every
concept name A ∈ NC is a concept, and (b) if C,D are con-
cepts and r is a role, then C uD, C tD, ¬C, ∀r.C, ∃r.C are
also concepts. A TBox (or, ontology) T is a finite set of ax-
ioms of the forms C vD (concept inclusions), where C and
D are concepts, and r v s (role inclusions), where r and s
are roles. An ABox A is a finite set of assertions of the forms
A(a) (called concept assertion) and r(a, b) (called role asser-
tion), where a, b ∈ NI, A ∈ NC, r ∈ NR. NI(A) denotes the
individuals occurring in A. An interpretation I = (∆I , ·I)
consists of a non-empty domain ∆I and a valuation function
·I that maps each individual a ∈ NI to an element aI ∈ ∆I ,
each A ∈ NC to a set CI ⊆ ∆I , and each r ∈ NR to a
set rI ⊆ ∆I × ∆I . The function ·I is extended to all con-
cepts in the usual way [Baader, 2003]. An interpretation I
is a model of a TBox T if CI ⊆ DI for each concept in-
clusion C v D ∈ T , and rI ⊆ sI for each role inclusion
r v s ∈ T . An interpretation I is a model of an ABox A if
aI ∈ CI for each assertion C(a) ∈ A, and 〈aI , bI〉 ∈ rI

for each assertion r(a, b) ∈ A. An interpretation I is a model
of (T ,A), if it’s a model of both T and A. A TBox or an
ABox is consistent (or, satisfiable) if it has some model. For
a TBox T , we usev∗T for the transitive closure of the relation
{(r, s) | r v s ∈ T or r− v s− ∈ T } ∪ {(r, r)|r ∈ NR}.

We write I . J for two interpretations I and J , if there
exists a mapping h from ∆I to ∆J such that: (i) d ∈ AI

implies h(d) ∈ AJ for all A ∈ NC, and (ii) (d, d′) ∈ rI

implies (h(d), h(d′)) ∈ rJ for all r ∈ NR.
Normal Form We assume w.l.o.g. that TBoxes are normal-
ized so that they only contain axioms of the following forms:

(NF1)
d
Ai vB (NF3) Av ∃r.B (NF5) Av ∀r.B

(NF2) Av
⊔
Bi (NF4) ∃r.AvB (NF6) r v s

where A,B,Ai, Bi are concept names in NC, > or ⊥, and
r, s are roles. It is well known that by means of fresh concept
names any TBox T can be normalized into a TBox T ′ in
polynomial time so that (i) the models of T ′ are models of T ,
and (ii) each model of T can be extended to a model of T ′.

3 Compiling Models for Families of ABoxes
To describe families of ABoxes, we define profiles.
Definition 1 (Profiles). Concept names in NC, and concepts
of the forms ∃r and ∃r− with r ∈ NR are called basic con-
cepts. A profile is a set of basic concepts. Given an ABox A,

the profile of a in A is:

profA(a) ={A | A∈NC, A(a)∈A} ∪ {∃r | r∈NR, r(a, b)∈A}
∪ {∃r− | r∈NR, r(b, a)∈A}

A set P of profiles coversA if profA(a)∈P for all a∈NI(A).
Example 1. Consider the set of profiles P = {p1, p2} with
p1 = {A,B, ∃r} and p2 = {A, ∃r−}. Then P covers the
ABox A1 = {A(a), B(a), r(a, b), A(b)}, but it doesn’t cover
A2 = {A(a), r(a, b), A(b)}, as profA2(a) = {A, ∃r} 6∈ P.

In the rest of this section, we assume we are given a fixed
TBox T , and a set P of profiles that covers all the ABoxes
of interest. We then expand the profiles p ∈ P with concept
names A such that, for some A covered by P, and some a
with profA(a) = p, it may be the case that a ∈ AI holds
in the models I of (T ,A). Roughly, we first expand each
profile with possibly different ‘guesses’ of concepts that their
neighbours may propagate to it, and then partially complete it
with concepts inferred from T . This gives us base types, that
in the next stage are further expanded to satisfy the axioms in
T , or eliminated if we infer that they cannot occur in models.
Definition 2. The relevant guesses for a profile p are:

GuessT (p) ={B | ∃r ∈ p, ∃s.AvB ∈ T , r v∗T s,B 6∈ p}∪
{B | ∃r− ∈ p,Av ∀s.B ∈ T , r v∗T s,B 6∈ p}

The subsets of the guesses induce base types of p. A type is
a set τ ⊆ NC ∪ {⊥,>}. For a type τ , we let

detT (τ) = {B | {A1, . . . , An} ⊆ τ and A1u . . .uAnvB ∈ T }.

For a profile p, we define its deterministic closure detClT (p)
as the smallest type τ such that (p ∩ NC) ⊆ τ , and
(d1) detT (τ) ⊆ τ ,
(d2) if ∃r ∈ p and ∃s.>vB ∈ T with r v∗T s, then B ∈ τ ,
(d3) if ∃r− ∈ p and >v ∀s.B ∈ T with r v∗T s, then B ∈ τ .

For S ⊆ GuessT (p), we let btyp(p, S) = detClT (p ∪ S).
We define base types induced by profiles and sets of profiles.

btypT (p) = {btyp(p, S) | S ⊆ GuessT (p),⊥ 6∈ btyp(p, S)}

btypT (P) =
⋃
p∈P

btypT (p).

To understand the relevant guesses, we observe that each
ABox A, by asserting specific relations between individuals,
stipulates concepts that the individuals will need to partici-
pate in to satisfy the axioms in T , particularly the ones of the
forms (NF4) and (NF5). For example, assume ∃r.AvB ∈ T ,
if in a concrete A we have r(a, b) ∈ A, then a ∈ BI must
hold in any model I of (A, T) with b ∈ AI . However, this
is not enforced if no relations between a and b are asserted in
A, or if b turns out not to be an instance of AI . To abstract
away from the relations asserted in each concrete ABox, and
the specific concepts that the neighbours of an object may
satisfy, we take a simple approach: we consider all possible
combinations (or ‘guesses’) of sets of concepts that may be
enforced at an individual due to its neighbourhood inA. That
is, we reason explicitly about both a ∈ BI and a 6∈ BI , but
only if a participates in a relation r involved in an axiom of
the form (NF4) or (NF5). As shown by our experiments (Sec-
tion 5), despite being quite naive, this approach already leads
to manageable type sets for many large ontologies.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1692

Example 2. For our running example, we use the TBox T :

∃s.Av C C v C1 t C2 C v ∀s.B
C2 v ∃r.C C2 v ∃s.D r v s

For P from Example 1, we get these guesses and base types:

GuessT (p1) = {C} btypT (p1) = {τ1, τ2}
GuessT (p2) = {B} btypT (p2) = {τ3, τ1}

where τ1 = {A,B}, τ2 = {A,B,C}, and τ3 = {A}.

3.1 Type Table Compilation
The goal of this section is to provide an algorithm that, start-
ing from the base types of P, computes a representation of all
the relevant models of the KBs whose ABox is covered by P.
We represent models by means of what we call type tables.
Definition 3. For T a set of types, a type table T is a pair
(L,S) with S ⊆ T×

(
NR ×NC

)
×T, L ⊆

(
T×T

)
. We let

L(τ) ={τ ′ | (τ, τ ′) ∈ L}, and

S(τ, r, B) ={τ ′ | (τ, (r,B), τ ′) ∈ S}.

A type table T covers a profile p if L(τ) 6= ∅ for all τ ∈
btypT (p), and it covers a set P of profiles if it covers all p ∈
P. The set TG of good types in T contains each τ such that (i)
⊥ 6∈ τ , and (ii) there is some τo with τ ∈ L(τ0) and ⊥ 6∈ τ0.

We let, for each τ ∈ T, and each r ∈ NR:

fwdT (τ, r) ={B | Av ∀s.B ∈ T , A ∈ τ, and r v∗T s},
bckT (τ, r) ={B | ∃s.AvB ∈ T , A ∈ τ, and r v∗T s}.

The algorithm for computing T works as follows:

(S1) Initialize L0 = btypT (P)× btypT (P), S0 = ∅.
(S2) We obtain (Li+1,Si+1) from (Li,Si) by applying one

of the following rules:

(rule-mark) If there exists τ, r, B with Si(τ, r, B) 6= ∅ such
that τ ∈ TGi and Si(τ, r, B) ∩ TGi = ∅ , then replace

each (τ0, τ) ∈ Li by (τ0, τ ∪ {⊥}), and
each (τ, (r,B), τ ′)∈Si by (τ ∪ {⊥}, (r,B), τ ′).

(rule-det) If there exists some (τ0, τ) ∈ Li with detT (τ) 6⊆
τ and τ ∈ TGi , then replace
each (τ0, τ) ∈ Li by (τ0, τ ∪ detT (τ)),

each (τ, (r,B), τ ′)∈Si by (τ ∪ detT (τ), (r,B), τ ′),

each (τ ′, (r,B), τ)∈Si by (τ ′, (r,B), τ ∪ detT (τ)).

(rule-nondet) If there exists some (τ0, τ) ∈ Li with τ ∈ TGi
and an axiom AvB1t · · ·tBn of the form (NF2) in T
such that A ∈ τ and {B1, . . . Bn}∩ τ = ∅, then replace,
for 1 ≤ i ≤ n:
each (τ0, τ) ∈ Li by all (τ0, τ ∪ {Bi}),
each (τ, (r,B), τ ′)∈Si by all (τ ∪ {Bi}, (r,B), τ ′),
each (τ ′, (r,B), τ)∈Si by all (τ ′, (r,B), τ ∪ {Bi}).

(rule-addSucc) If there exists some (τ0, τ) ∈ Li with τ ∈
TGi and some A v ∃r.B ∈ T such that A ∈ τ and
Si(τ, r, B) = ∅, then let τn = {B ∪ fwdT (τ, r)} and:

If Li(τn) = ∅, then add (τn, τn) to Li, and
add (τ, (r,B), τn) to Si.

If Li(τn) 6= ∅, then add (τ, (r,B), τ̂) to Si
for each τ̂ ∈Li(τn).

(rule-forw) If there exists some (τ, (r,B), τ ′) ∈ Si with τ
and τ ′ in TGi and fwdT (τ, r) 6⊆ τ ′, then we:
let τn = τ ′ ∪ fwdT (τ, r), and:
If Li(τn) = ∅ then add (τn, τn) to Li, and
replace (τ, (r,B), τ ′) in Si by (τ, (r,B), τn).
Otherwise, replace (τ, (r,B), τn) in Si by (τ, (r,B), τ ′)
for each τ ′ ∈ Li(τn).

(rule-back) If there exists some (τ, (r,B), τ ′) ∈ Si with τ
and τ ′ in TGi , such that bckT (τ ′, r) 6⊆ τ , we:
let τn = τ ∪ bckT (τ ′, r),
replace (τ, (r,B), τ ′) in Si by (τn, (r,B), τ ′),
and then, for each τ0 such that (τ0, τ) ∈ Li:
If there is some (τ̂ , (r,B), τ ′) in Si with (τ0, τ̂) ∈ Li
and τ̂ 6= τn, then add (τ0, τn) to Li
Otherwise, replace (τ0, τ) in Li by (τ0, τn).

(S3) If no rules are applicable, the type table (Li,Si) is
called T -complete and the algorithm terminates.

The algorithm starts with (L0,S0), and generates (L1,S1),
(L2,S2), . . . until a T -complete (Lfin ,Sfin) is reached. Intu-
itively, in Li we keep track of ‘fresh’ types and how they are
modified. Initially, it only contains the base types, and when
the algorithm expands some type, the second component of
the corresponding pair is modified. For instance, in our run-
ning example, L0 = {(τ1, τ1), (τ2, τ2), (τ3, τ3)}. When τ2 is
expanded to satisfyCvC1tC2 into τ21 = {A,B,C,C1} and
τ22 = {A,B,C,C2} using rule-nondet, the pair (τ2, τ2) ∈
Li−1 is replaced by {(τ2, τ21), (τ2, τ22)} ⊆ Li.

In S we store links to the types that objects of the current
type can use to satisfy the existential axioms. S0 starts empty.
When (τ2, τ22) ∈ Li, rule rule-addSucc becomes applicable
due to C2 v ∃r.C, and a new successor for τ22 is created by
setting Si+1 = {(τ22, (r, C), τ4)} with τ4 = {B,C}; the
fresh type is also added to Li+1, that is, (τ4, τ4) ∈ Li+1. A
similar rule application will create a τ5 = {B,D} successor
for τ22 and C2 v ∃s.D. Type τ4 will also be expanded by
rule-nondet into τ41 = {B,C,C1} and τ42 = {B,C,C2},
and rule-addSucc will become applicable for the latter and
bothC2v∃r.C andC2v∃s.D. However, the fresh successors
will be the same as for τ22 and the entries already in the table
will be reused. The final Tfin for this example contains:

Lfin ={(τ3, τ3), (τ1, τ1), (τ2, τ21), (τ2, τ22),
(τ4, τ41), (τ4, τ42), (τ5, τ5)}

Sfin ={(τ22, (r, C), τ41), (τ22, (r, C), τ42), (τ22, (s,D), τ5),

(τ42, (r, C), τ41), (τ42, (r, C), τ42), (τ42, (s,D), τ5)}

The rule applications always lead to a T -complete type table,
in at most exponential time:

Lemma 1. The number of different tables (Li,Si) that can
be produced by the rule applications, and the number of rule
applications required to reach a T -complete (Lfin ,Sfin), are
bounded by an exponential in T , and by a polynomial in P.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1693

Incremental Reasoning for dynamic ABoxes. Note that
if a type table covers P, then it also covers every P′ ⊆ P.
Moreover, the information stored in the L table allows us to
expand a type table if we need to cover additional profiles,
while reusing as much as possible from previous computa-
tions. Let T = (L,S) be a T -completed type table, let P be
a set of profiles, and let P′ contain those p ∈ P that are not
covered by T. Then we can obtain a T -completed type table
T′ that covers P by applying exhaustively the rules in (S2)
above to (L ∪ (btypT (P′)× btypT (P′)),S).

3.2 Type Tables as Model Representations
In the rest of this section, we assume a given ABoxA covered
by P, and a T -complete T = (L,S) that covers P.

Different models of (T ,A) can be constructed by selecting
good types from T. First, the L relation allows us to assign
good types to the input profiles.
Definition 4. For p ∈ P, the set of good types for p in T is:

GTT(p) = {τ ∈ TG | (τ0, τ) ∈ L for some τ0 ∈ btypT (p)}

To capture different models of (T ,A), we need to consider
the different ways of assigning types from GTT(profA(a))
to the individuals, so that the axioms of the forms (NF4) and
(NF5) in T are compatible with the role assertions in A.
Definition 5 (T-assignment). A T-assignment for A is a
mapping t that assigns a type from GTT(profA(a)) to each
a ∈ NI(A) so that:
(t1) for each r(a, b) ∈ A with A ∈ t(b), if ∃s.A v B ∈ T

for some r v∗T s, then B ∈ t(a), and
(t2) for each r(b, a) ∈ A with A ∈ t(b), if A v ∀s.B ∈ T

for some r v∗T s, then B ∈ t(a).

Note that GTT(profA(a)) 6= ∅ for each a ∈ NI(A) is neces-
sary (but not sufficient) for the existence of T-assignments.
Example 3. In our running example, we get:

GTTfin
(p1) = {τ1, τ21, τ22} GTTfin

(p2) = {τ1, τ3}

and there are two possible Tfin -assignments for the ABox A:

t1(a) = τ21 t2(a) = τ22
t1(b) = τ1 t2(b) = τ1

We define a special kind of models of (T ,A) that can be
constructed by taking A and a T-assignment t, and adding
successors according to the S in our type table.
Definition 6. Let t be a T-assignment. An (A, t,T)-
interpretation I = (∆I , ·I) is defined as follows:
• Its domain ∆I is a set of sequences of the form

ar1B1τ1 · · · rnBnτn with n ≥ 0, a ∈ NI(A), and for
each 0 ≤ i < n, where τ0 denotes t(a), we have
(τi, (ri+1, Bi+1), τi+1) ∈ S and τi+1 is in TG.
• NI(A)⊆∆I and for each a∈NI(A) and pair (r,B)

with S(t(a), r, B) 6= ∅, there is exactly one arBτ ∈ ∆I .
• For each a · · · τn ∈ ∆I and pair (r,B) with

S(τn, r, B) 6= ∅, there is exactly one a · · · τnrBτ ′ in ∆I .
• For each a ∈ NI(A), aI = a.
• For eachA ∈ NC,AI = {d ∈ ∆I | A ∈ tail(d)}, where

tail(d) = t(d) if d ∈ NI, and tail(d) = τn if d = a · · · τn.

• For all r∈NR, rI = {(a, b) | s(a, b)∈A with s v∗T
r} ∪ {(b, a) | s(a, b) ∈ A with s v∗T r−} ∪ {(d, dsBτ) ∈
∆I ×∆I | sv∗T r} ∪ {(dsBτ, d) ∈ ∆I ×∆I | sv∗T r−}
The set of (A, t,T)-interpretations is denoted modst(A,T),
and mods(A,T) denotes the union of modst(A,T) for all t.

Each interpretation in mods(A,T) is a model of (T ,A):
Proposition 1. If I ∈ mods(A,T), then I |= (T ,A).

Conversely, every model is reflected in mods(A,T).
Proposition 2. If I |= (T ,A), then there is some J ∈
mods(A,T) such that J . I.

Finally, we remark that, since the algorithm guarantees that
good types always have suitable successors in S to continue
the model construction, the existence of a T-assignment al-
ready implies the existence of an (A, t,T)-interpretation.
Lemma 2. (T ,A) is satisfiable iff A has a T-assignment.

4 Answering Reachability Queries
Our model compilation is sufficient for answering OMQs
subject to a reasonable restriction. We call a query q mono-
tone if I . J and I |= q implies J |= q. Practi-
cally all families of queries that have been considered in the
context of DLs are monotone, including CQs, regular path
queries (RPQs), fragments of Datalog, etc. In fact, decid-
ability results for non-monotone OMQs are very limited, e.g.,
[Gutiérrez-Basulto et al., 2015].

Propositions 1 and 2 imply that the models in mods(A,T)
are sufficient for answering OMQs (T , q) where q is mono-
tone. However, if q goes beyond instance queries, we still
need an algorithm to evaluate q over mods(A,T). For exam-
ple, if q is a CQ, the algorithm in [Eiter et al., 2012a] assumes
a very similar representation of models and could be adapted
rather easily.1 Here we consider a simpler but nevertheless
interesting family of queries, that illustrates the usefulness of
our model compilation for OMQ answering:
Definition 7. A reachability query (RQ) q takes the form

q(x) = ∃y r∗(x, y), C(y)

where r is a (possibly inverse) role, and C is of the formA1u
· · · u An with n ≥ 1 and Ai ∈ NC for 1 ≤ i ≤ n. We call x
the answer variable of q. An ontology-mediated reachability
query (OMRQ) is a pair (T , q) of a TBox T and an RQ q.

Let I be an interpretation, let e1, e2 ∈ ∆I , and let r be
a role. We say that e1 r-reaches e2 if there is a sequence
d1, . . . , dn of objects from ∆I such that d1 = e1, dn = e2,
n ≥ 1, and for each 1 ≤ i < n, (di, di+1) ∈ rI .

We write I |= q(a), if aI r-reaches some d ∈ ∆I with d ∈
CI . We call a ∈ NI an answer to (T , q) over A, and write
(T ,A) |= q(a) if I |= q(a) for all I |= (T ,A).
Example 4. Assume we have an ontology describing items in
an inventory system. It may contain, e.g., the following:
Phone5 v ∃hasProcessor .AtmZ Tab2 v ∃hasPart .PU25

PU25 v ∃hasProcessor .AtmX AtmX vAtomProcessor

Watch3 v ∃hasPart .PU25 AtmZ vAtomProcessor

1We did not include the adaptation here, since it needs more ma-
chinery than what can be included in this paper, and an efficient
implementation would still need some care.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1694

Algorithm 1: Retrieve types that reach C through r
input : r, C, T = (L,S)
output: set reach [r,C] of types from TG

Let reach [r,C] := {τ |τ ∈ TG and C ∈ τ}
Let reach ′[r,C] := reach [r,C]

repeat
forall τ ∈TG and s,B with sv∗T r such that
S(τ, s, B) ∩ TG 6= ∅ do

if τ ′ ∈ reach [r,C]

for each (τ, (s,B), τ ′)∈S with τ ′ ∈ TG then
reach [r,C] := reach [r,C] ∪ {τ}

until reach ′[r,C] = reach [r,C];
return reach [r,C]

as well as the role inclusion hasProcessor v hasPart .
Assume a dataset containing instances of concepts like
Phone5 , Tab2 , etc. If the prices of Atom processors in-
crease, we may want to find all items that contain one.
It would then be valuable to be able support RQs like
(∃y hasPart∗(x, y), AtomProcessor(y)), which can nav-
igate the hasPart relation to different levels of depth.

We note that in ALCHI , RQs can be reduced to in-
stance queries by modifying the TBox (see [Bienvenu et
al., 2014a]), but then the ‘expensive’ TBox reasoning step
would depend on the query. RQs are a restricted case of
the well-known RPQs (see e.g., [Bienvenu et al., 2015a;
Calvanese et al., 2003; 2002]), and as they are monotone,
they can be answered with our model compilation.
Lemma 3. Let (T , q) be OMRQ, P be a set of profiles, and
T be a T -complete type table that covers P. Given an ABox
A covered by P, and an individual a, we have (T ,A) 6|= q(a)
iff there is some I ∈ mods(A,T) such that I 6|= q(a).

We now provide a technique to decide whether I |= q(a)
for all models in mods(A,T). Below, for an interpretation I
and d ∈ ∆I , we let typeI(d) = {A ∈ NC | d ∈ AI}. The
core component of our technique is Algorithm 1, which runs
on T = (L,S). It takes as an input a role r and a concept
C = A1 u · · · u An, and collects the set reach [r,C] of all
the good types τ from T such that each d with typeI(d) = τ
r-reaches some d′ ∈ CI , for every I ∈ mods(A,T). For
convenience, we write C ∈ τ to denote {A1, . . . , An} ⊆ τ .

Proposition 3. Let τ ∈ TG. Then τ ∈ reach [r,C] iff for every
I ∈ mods(A,T) and every d ∈ ∆I , typeI(d) = τ implies
that d r-reaches in I some d′ ∈ CI .
Example 5. Let q(x) = ∃y s∗(x, y), D(y) be a reachability
query that we would like to answer against the knowledge
base in our running example. After the computation of the
Algorithm 1 the reach [s,D] would contain τ22, τ42 and τ5.
τ5 would be contained trivially since it already contains D,
where as types τ22, τ42 will be added since each of them has
an s-successor in the table Sfin that contains the concept D.

To test I |= q(a) for all I ∈ mods(A, T), we consider a set
of ABoxes, which intuitively capture models of modst(A, T)

for the different T-assignments t, and add to them the infor-
mation from reach [r,C], using a fresh concept name RrC .

Definition 8. Let t be a T-assignment. At is the smallest
A ⊆ At such that:

(a1) A(a) ∈ At for all A ∈ t(a) and all a ∈ NI(A).
(a2) s(a, b) ∈ At for each r(a, b) ∈ A and r v∗T s.

Let q(x) = ∃y r∗(x, y), C(y) with C = A1 u · · · uAn be an
RQ. Then At,q is the smallest At ⊆ At,q such that:
(q1) RrC(a) ∈ At,q if t(a) ∈ reach [r,C].
(q2) RrC(a) ∈ At,q if Ai(a) ∈ At for all 1 ≤ i ≤ n.
(q3) RrC(a) ∈ At,q if R(a, b) ∈ At,q and RrC(b) ∈ At,q .

Already the ABoxes At suffice for answering instance
queries, and the assertions added in At,q correctly capture
the entailment of q in all the models in modst(A,T).
Lemma 4. Let α be an assertion and q an RQ. Then:
• I |= α for all I ∈ modst(A,T) iff α ∈ At.
• I |= q(a) for all I ∈ modst(A,T) iff RrC(a) ∈ At,q .

4.1 A Practicable ASP Rewriting
ASP programs. We briefly introduce ASP, for more details
refer to [Brewka et al., 2011]. We use an alphabet of unary
and binary predicates, which includes NC (unary) and NR (bi-
nary), and an infinite countable set of variables V . A term t
is a variable x ∈ V or an individual a ∈ NI. Atoms take
the form pu(t) or pb(t, t′), where t, t′ are terms, pu is a unary
predicate and pb a binary one. If the terms in an atom do not
contain variables, we say they are ground.

h1 ∨ . . . ∨ hk ← b1, . . . , b`,not b`+1, . . . , not bm

where the hl, . . . hk are the head atoms, and b1, . . . , bm are
the body atoms. Among the latter, b1, . . . , b` are positive, and
b`+1, . . . , bm are negative. A rule with no head atoms (i.e.,
k = 0) is a constraint. A rule p(~a) ← consisting of a single
ground head is called a fact. A ground program contains only
ground atoms. For a program P , its grounding ground(P) is
the program obtained by replacing each rule by all its ground
instances obtained by applying a substitution, that is, a map-
ping from variables to individuals.

The semantics of ASP programs is given by Herbrand in-
terpretations, which are sets of ground atoms. Note that
ABoxes are Herbrand interpretations, and a Herbrand inter-
pretation becomes an ABox when restricted to atoms over the
predicates in NC ∪NR. An answer set (a.k.a. stable model) of
P is a Herbrand interpretation M that is a minimal model of
the GL-reduct [Gelfond and Lifschitz, 1988] of ground(P)
w.r.t. M , obtained by: (i) deleting every rule ρ that contains
a negative body atom r(~u) with r(~u) ∈ M , and (ii) deleting
all negated atoms in the remaining rules.

We now provide a rewriting of OMRQs into logic pro-
grams that extend Datalog with disjunction and negation un-
der the answer set semantics. In this section we assume a
T -complete type table T = (L,S) that covers a given set P
containing all the profiles of interest. We show how to obtain
a program PT,q such that, for an input ABox A represented
as a program PA (see below), the answer sets of PT,q ∪ PA
are in close correspondence with the ABoxes At,q , so that
answering OMRQs amounts to cautious entailment. As an-
ticipated, the rewriting does not depend on a specific ABox,

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1695

∨
t∈GTT(p)

typeτ (x)← prof p(x) for each p ∈ P (1)

A(x)← typeτ (x) for each τ ∈ TG and eachA ∈ τ (2)

s(x, y)← r(x, y) for each r v∗T s (3)

⊥ ← r(x, y), A(y),notB(x) for each ∃r.Av B ∈ T (4)

⊥ ← r(x, y), A(x),notB(y) for eachAv ∀r.B ∈ T (5)

RrC(x)← typeτ (x) for each τ ∈ reach [r,C] (6)

RrC(x)← A1(x), · · · , An(x) with C = A1 u · · · u An(x) (7)

RrC(x)← r(x, y), RrC(y) (8)

Figure 1: ASP rewriting for reachability queries in ALCHI

but only on a T that covers a set P of profiles, and it can be
used for answering q over any ABox that is covered by P.

First we define the program PT comprising the rules (1)
– (5) in the upper part of Figure 1. We use names in NC as
unary predicates and (possibly inverse) roles in NR as binary
predicates. We also use a unary predicate prof p for each p ∈
P and a unary predicate typeτ for each τ ∈ TG. Intuitively,
assuming that the fact prof p(a) holds for each a ∈ NI(A)

with p = profA(a), rule (1) guesses assignments of types to
individuals. Rules (2) and (3) generate the assertions (a1) and
(a2) in At for each guess, while (4) and (5) verify conditions
(t1) and (t2) in Definition 5.

For a given RQ q(x) = ∃y r∗(x, y), C(y), the rules (6)
– (8) in the lower part of the figure define the program Pq;
generate the assertions (q1) – (q3) in the definition of At,q .

Finally, we represent each given ABox A as a program
PA, with facts α ← for all assertions α ∈ A, and facts
prof p(a)← for each a ∈ NI(A) with p = profA(a). 2

Example 6. Let A, T ,T and reach[s,D] be taken from our
running example. We get the following ASP rewriting (here
we use τi and pi rather than typeτi and prof pi as predicates):

PA = r(a, b)← . A(a)← . B(a)← . A(b)← .
p1(a)← . p2(b)← .

PT = τ1(X) ∨ τ21(X) ∨ τ22(X)← p1(X).
τ1(X) ∨ τ3(X)← p2(X).
A(X)← τ3(X).
A(X)← τ1(X). B(X)← τ1(X).
A(X)← τ21(X). B(X)← τ21(X).
C(X)← τ21(X). C1(X)← τ21(X).
A(X)← τ22(X). B(X)← τ22(X).
C(X)← τ22(X). C2(X)← τ22(X).
s(X,Y)← r(X,Y).
⊥ ← r(x, y), A(y),not C(x).
⊥ ← r(x, y), C(x),not B(y).

Pq = RsD(X)← τ22(X). RsD(X)← τ42(X).
RsD(X)← τ5(X).
RsD(X)← D(X).
RsD(X)← s(X,Y), RsD(Y).

The ASP program PT ∪ Pq ∪ PA has two answer sets:
{τ21(a), τ1(b), A(a), B(a), C(a), C1(a), A(b), B(b)}, and

2We chose to use negation and constraints in the program, but
transforming it into plain disjunctive Datalog is easy. Using Datalog
rules to infer the facts prof p(a) from an input ABox is also easy.

{τ22(a), τ1(b), A(a), B(a), C(a), C2(a), A(b), B(b).RsD(a)}.
Note their correspondence with the T-assignments from Ex-
ample 3. C(a) is found in all the answers sets, as a is an
instance of C. In contrast, q from Example 5 has no certain
answers: RsD(a) is in only one answer set, RsD(a) in none.

The answer sets of PT ∪ PA coincide (on the com-
mon vocabulary) with the ABoxes At for the different T-
assignments. Similarly, the answer sets of PT ∪ Pq ∪ PA
coincide with the At,q . From this and Lemma 4 we get:
Theorem 1. Let A be an ABox covered by P.
• For any assertion α, we have (T ,A) |= α iff α ∈M for

all answer sets M of PT ∪ PA.
• Given RQ q(x) = ∃y r∗(x, y), C(y), we have (T ,A) |=

q(a) iff RrC(a) ∈M for all answer setsM of PT∪Pq ∪PA.

5 Implementation and Experiments
We have implemented our approach in a prototype reasoner
Mod4Q3 for the DL ALCH. Given a TBox T and a set P of
profiles, the reasoner: (1) transforms T into normal form and
drops axioms not inALCH; (2) computes btypT (P); (3) runs
the algorithm described in Section 3.1 to obtain a T -complete
type table T that covers P, and (4) generates the ASP program
PT ∪PA as described in Section 4.1. If a set of RQs is given,
it adds the rules in Pq for each q in the set.

The reasoner can also take a TBox T and an ABox A as
an input. In this case, it first extracts the set {profA(a) |
a ∈ NI(A)} of profiles occurring in A, and then executes
steps (1)–(3) above. It also generates the program PA for
the given A, additionally to PT and possibly Pq . Moreover,
the reasoner supports incremental reasoning over ABoxes: if
after running over some set P of profiles, an ABox that is
not covered by P is given, it detects which individuals have
profiles not found in P, and runs the algorithm for these new
profiles only, reusing the previous type table.

Mod4Q is written in Java, and uses a PostgreSQL database
to store computed type tables for later use. Experiments were
run on a PC with an i7 2.4 GHz CPU running 64bit Linux-
Mint 17, with a JAVA heap space of 12GB. The generated
ASP programs were evaluated with Clingo [Gebser et al.,
2011]. In all cases, we used the profile set obtained from
the ABox, and did the following sets of experiments:

Querying large ABoxes We considered some large real-
world data sets, including NPD, a petroleum ontology, IMDb,
a film ontology, and MyITS, a transport ontology. The first
two were obtained from [Glimm et al., 2017] while the latter
from [Bajraktari et al., 2017]. These are shown in Table 1.
The time reported for producing PA includes the extraction
of P from the ABox, while the time for producingPT includes
the full computation of T. Our experiments showed that:
• Very large real-world datasets are covered by small sets

of profiles. The upper part of the table shows that the ratio of
profiles to individuals found in these ABoxes is very small.
• Our approach to compiling models and rewriting into

ASP is feasible even for large ABoxes. The time to com-
pute T and PT is very short. The generated ASP programs
are simple and perform well when evaluated with Clingo.

3http://www.kr.tuwien.ac.at/research/systems/Mod4Q/

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1696

Ontology |A| |NI(A)| |P| |P|/|NI(A)|
MyITS50 125K 20K 206 1.056%
MyITS150 501K 20K 206 1.056%
MyITS250 1073K 20K 206 1.056%
NPD 856K 1510K 173 0.011%
IMDb 4736K 3765K 190 0.005%

PA PT RQs (avg) IQs (avg)

MyITS50 4.66s 1.21s 2.55s 1.67s
MyITS150 7.12s 1.19s 5.08s 4.53s
MyITS250 10.17s 1.29s 10.21s 8.87s
NPD 89s 2.02s 8.89s 8.47s
IMDb 1034s 2.42s 56.48 55.13s

Table 1: Querying large ABoxes

CN |T | |T ′| |P| BTmax GT PT

DOLCE21 0.3K 1.3K 0.7K 11 29 17 14s
Gardin.81 0.3K 0.4K 0.3K 27 20 224 0.3s
Gardin.283 0.2K 1K 0.5K 11 26 17 9.4s
Gardin.284 0.3K 1.3K 0.7K 22 21 73 9.5s
OBI350 3.2K 10K 0.4K 38 225 – –
OBO354 4.5K 7.2K 0.6K 9 20 69 0.4s
WINE781 0.6K 0.7K 0.2K 62 228 – –

Table 2: Compilation of complex ontologies. CN denotes |NC(T)|,
T ′ contains the axioms of forms (NF2,NF4,NF5) in the normalized
TBox; BTmax=maxp∈P(btyp

T (p)), and GT = |GTT(P)|.

• Query answering with our ASP rewritings scales to very
large ABoxes. We evaluated two families of queries:
Instance queries: Using the program (PT ∪ PA) and Clingo,
we tested for the instances of all concept names in each on-
tology. This resulted in 370 (MyITS), 333 (NPD) and 84
(IMDb) IQs. The average answer time over all of them is re-
ported in the table. For comparison, we ran the same instance
queries using HermiT [Glimm et al., 2014]; it took 4.5 hours
for MyITS50, versus 10 minutes accumulated time with our
prototype. For all other ontologies, HermiT either timed out
after 6 hours, or crashed due to memory exhaustion.
Reachability queries: We generated all RQs paring a role
name r and concept name A for which either (a) r occurs
in a role assertions in an ABox, and A in a good type match-
ing the profile of an individual in the range of r; or (b) there
was an (r,B) entry in the S with A in its end type. Note that
for all other pairs, the answers are trivially empty or coincide
with the instances of concept A. This resulted in a total of
139 (MyITS), 121 (NPD), and 51 (IMDb) RQs. Answering
RQs was on average slightly slower than answering IQs.

Compiling complex ontologies We took the 87 ontologies
from the Oxford ontology library4 that have both ABox as-
sertions, and axioms of the forms NF2, NF4 and NF5. In
Figure 2 we can observe that our prototype was successful on
roughly 80% of the ontologies (70), while the remaining 17
cases were infeasible since we had≥ 215 base types for some
profiles. For these 70 ontologies, on average the number of

4http://www.cs.ox.ac.uk/isg/ontologies/

20 21-22

successfull

not successfull

23-26 29 >215

70

17

Figure 2: Ontologies for which the model compilation succeeds,
categorised by maximal number of base types per profile.

profiles per ontology was 10, while the number of base types
24, and the number of computed good types was 23. The time
for compiling and producing PT ranged from 171 ms to 14 s,
with an average of 1.3 s. We report selected results in Table 2.

Our experiments showed that:
• In most cases, the number of base types generated from

the profiles used in the ABox is sufficiently small.
• Our model compilation can handle complex ontologies.

Both the number of good types in the computed T, and the
time required to produce T, were very small even for ontolo-
gies with thousands of concept names and axioms.

Not surprisingly, the evaluation on complex ontologies
made apparent that, while computing all the base types for the
given profiles is feasible in most cases, it is also the main bot-
tle neck of our approach. Indeed, in all cases where our proto-
type failed to compute the model compilation, there were pro-
files with over 9 relevant guesses, thus 29 base types. An in-
teresting observation is that some ontologies, like DOLCE21,
have a large number of base types, but result in few good
types that are often shared by profiles.

6 Discussion and Conclusions
We have presented an algorithm for compiling the models of
a set of relevant knowledge bases, which allows to answer
OMQs over families of ABox that comply to a given descrip-
tion. We have proposed ASP rewritings that can be executed
on standard ASP solvers to efficiently answer instance and
reachability queries over large ABoxes. We plan to extend
our technique to other families of OMQs, like CQs (using the
ideas in [Eiter et al., 2012a]), and RPQs (combining the for-
mer with the ideas in [Bienvenu et al., 2015b]); and to more
expressive DLs. Transitive and inverse roles can be easily in-
corporated. Supporting number restrictions seems feasible,
albeit technical, while nominals seem more challenging.

As a compromise between data-centric and data-indepen-
dent reasoning, our techniques work for families of ABoxes,
represented by sets of profiles. Despite their simplicity, pro-
files seem useful, and even large ABoxes seem to use few
profiles. This may sometimes be partially explained by au-
tomated processes that produce the data (mappings, forms,
scripts, etc), which naturally restrict its shape. Investigat-
ing this is an interesting path for future research. Currently,
the main bottleneck of our algorithm is the computation of
‘base types’ from profiles, which expands the profiles with
sets of guesses. Although the number of guesses was usually
small for the considered ontologies, it became unmanageable
in roughly 20% of the cases. Investigating more refined alter-
natives than this naive guessing seems crucial.

Acknowledgments
This work was supported by the Austrian Science Fund
(FWF) via projects P30360, P30873, and W1255.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1697

References
[Ahmetaj et al., 2016] Shqiponja Ahmetaj, Magdalena Or-

tiz, and Mantas Simkus. Polynomial datalog rewritings
for expressive description logics with closed predicates. In
IJCAI 2016, USA, 2016.

[Baader, 2003] Franz Baader. The description logic hand-
book: theory, implementation, and applications. Cam-
bridge university press, 2003.

[Bajraktari et al., 2017] Labinot Bajraktari, Magdalena Or-
tiz, and Mantas Simkus. Clopen knowledge bases: Com-
bining description logics and answer set programming. In
Proceedings of DL2017, Montpellier, France, 2017.

[Bienvenu et al., 2014a] Meghyn Bienvenu, Diego Cal-
vanese, Magdalena Ortiz, and Mantas Šimkus. Nested reg-
ular path queries in description logics. AAAI Press, 2014.

[Bienvenu et al., 2014b] Meghyn Bienvenu, Balder ten Cate,
Carsten Lutz, and Frank Wolter. Ontology-based data ac-
cess: A study through disjunctive datalog, CSP, and MM-
SNP. ACM Trans. Database Syst., 39(4):33:1–33:44, 2014.

[Bienvenu et al., 2015a] Meghyn Bienvenu, Magdalena Or-
tiz, and Mantas Simkus. Regular path queries in
lightweight description logics: Complexity and algo-
rithms. J. Artif. Intell. Res., 53:315–374, 2015.

[Bienvenu et al., 2015b] Meghyn Bienvenu, Magdalena Or-
tiz, and Mantas Šimkus. Regular path queries in
lightweight description logics: Complexity and algo-
rithms. J. Artif. Intell. Res. (JAIR), 53:315–374, 2015.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011.

[Calvanese et al., 2002] Diego Calvanese, Giuseppe De Gia-
como, Maurizio Lenzerini, and Moshe Y. Vardi. Rewriting
of regular expressions and regular path queries. J. Comput.
Syst. Sci., 64(3):443–465, 2002.

[Calvanese et al., 2003] Diego Calvanese, Giuseppe De Gia-
como, Maurizio Lenzerini, and Moshe Y. Vardi. Reason-
ing on regular path queries. SIGMOD Record, 32(4):83–
92, 2003.

[Calvanese et al., 2005] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Dl-lite: Tractable description logics for on-
tologies. In In AAAI/IAAI 2005, USA, 2005.

[Calvanese et al., 2008] Diego Calvanese, Giuseppe De Gi-
acomo, and Maurizio Lenzerini. Conjunctive query
containment and answering under description logic con-
straints. ACM Trans. Comput. Log., 9(3), 2008.

[Calvanese et al., 2014] Diego Calvanese, Thomas Eiter, and
Magdalena Ortiz. Answering regular path queries in ex-
pressive description logics via alternating tree-automata.
Inf. Comput., 237:12–55, 2014.

[Eiter et al., 2012a] Thomas Eiter, Magdalena Ortiz, and
Mantas Šimkus. Conjunctive query answering in the de-
scription logic SH using knots. J. Comput. Syst. Sci., (1),
2012.

[Eiter et al., 2012b] Thomas Eiter, Magdalena Ortiz, Man-
tas Šimkus, Trung-Kien Tran, and Guohui Xiao. Query
rewriting for Horn-SHIQ plus rules. AAAI Press, 2012.

[Gebser et al., 2011] Martin Gebser, Benjamin Kaufmann,
Roland Kaminski, Max Ostrowski, Torsten Schaub, and
Marius Thomas Schneider. Potassco: The potsdam answer
set solving collection. AI Commun., 24(2):107–124, 2011.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Proc. of ICLP/SLP 1988, pages
1070–1080. MIT Press, 1988.

[Glimm et al., 2014] Birte Glimm, Ian Horrocks, Boris
Motik, Giorgos Stoilos, and Zhe Wang. Hermit: An OWL
2 reasoner. J. Autom. Reasoning, 53(3):245–269, 2014.

[Glimm et al., 2017] Birte Glimm, Yevgeny Kazakov, and
Trung-Kien Tran. Ontology materialization by abstraction
refinement in horn SHOIF. In In AAAI 2017, USA, 2017.

[Gutiérrez-Basulto et al., 2015] Vı́ctor Gutiérrez-Basulto,
Yazmin Angélica Ibáñez-Garcı́a, Roman Kontchakov, and
Egor V. Kostylev. Queries with negation and inequalities
over lightweight ontologies. J. Web Sem., 35:184–202,
2015.

[Hustadt et al., 2004] Ullrich Hustadt, Boris Motik, and Ul-
rike Sattler. A decomposition rule for decision procedures
by resolution-based calculi. In LPAR 2004, Uruguay,
2004.

[Lutz, 2008] Carsten Lutz. The complexity of conjunctive
query answering in expressive description logics. volume
5195 of LNCS, pages 179–193. Springer, 2008.

[Ortiz et al., 2011] Magdalena Ortiz, Sebastian Rudolph,
and Mantas Simkus. Query answering in the Horn frag-
ments of the description logics SHOIQ and SROIQ. In
IJCAI 2011, Spain, 2011.

[Pérez-Urbina et al., 2010] Héctor Pérez-Urbina, Boris
Motik, and Ian Horrocks. Tractable query answering and
rewriting under description logic constraints. J. Applied
Logic, 8(2):186–209, 2010.

[Rodriguez-Muro et al., 2013] Mariano Rodriguez-Muro,
Roman Kontchakov, and Michael Zakharyaschev.
Ontology-based data access: Ontop of databases. volume
8218 of LNCS, pages 558–573. Springer, 2013.

[Rosati and Almatelli, 2010] Riccardo Rosati and Alessan-
dro Almatelli. Improving query answering over dl-lite on-
tologies. In KR 2010, Canada. AAAI Press, 2010.

[Sirin et al., 2007] Evren Sirin, Bijan Parsia,
Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. J. Web Sem.,
5(2):51–53, 2007.

[Stefanoni et al., 2014] Giorgio Stefanoni, Boris Motik,
Markus Krötzsch, and Sebastian Rudolph. The complex-
ity of answering conjunctive and navigational queries over
OWL 2 EL knowledge bases. J. Artif. Intell. Res. (JAIR),
51:645–705, 2014.

[Steigmiller et al., 2014] Andreas Steigmiller, Thorsten
Liebig, and Birte Glimm. Konclude: System description.
J. Web Sem., 27:78–85, 2014.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1698

