
First-Order Rewritability of Frontier-Guarded Ontology-Mediated Queries

Pablo Barceló1, Gerald Berger2, Carsten Lutz3 and Andreas Pieris4
1 Millennium Institute for Foundational Research on Data & DCC, University of Chile

2 Institute of Logic and Computation, TU Wien
3 Department of Mathematics and Computer Science, University of Bremen

4 School of Informatics, University of Edinburgh

Abstract
We focus on ontology-mediated queries (OMQs)
based on (frontier-)guarded existential rules and
(unions of) conjunctive queries, and we investi-
gate the problem of FO-rewritability, i.e., whether
an OMQ can be rewritten as a first-order query.
We adopt two different approaches. The first ap-
proach employs standard two-way alternating par-
ity tree automata. Although it does not lead to a
tight complexity bound, it provides a transparent
solution based on widely known tools. The second
approach relies on a sophisticated automata model,
known as cost automata. This allows us to show
that our problem is 2EXPTIME-complete. In both
approaches, we provide semantic characterizations
of FO-rewritability that are of independent interest.

1 Introduction
Ontology-based data access (OBDA) is a successful appli-
cation of KRR technologies in information management sys-
tems [Poggi et al., 2008]. One premier goal is to facilitate
access to data that is heterogeneous and incomplete. This
is achieved via an ontology that enriches the user query, typi-
cally a union of conjunctive queries, with domain knowledge.
It turned out that the ontology and the user query can be seen
as two components of one composite query, called ontology-
mediated query (OMQ) [Bienvenu et al., 2014]. The problem
of answering OMQs is thus central to OBDA.
Building ontology-aware database systems from scratch,

with sophisticated optimization techniques, is a non-trivial
task that requires a great effort. An important route towards
practical implementation of OMQ answering is thus to use
conventional database management systems. The problem
that such systems are unaware of ontologies can be addressed
by query rewriting: the ontology O and the database query
q are combined into a new query qO, the so-called rewriting,
which gives the same answer as the OMQ consisting of O
and q over all input databases. It is of course essential that
the rewriting qO is expressed in a language that can be han-
dled by standard database systems. The typical language that
is considered in this setting is first-order (FO) queries.

Although in the OMQ setting description logics (DLs) are
often used for modeling ontologies, it is widely accepted that
for handling arbitrary arity relations in relational databases it
is convenient to use tuple-generating dependencies (TGDs),
a.k.a. existential rules or Datalog± rules. It is known, how-
ever, that evaluation of rule-based OMQs is undecidable [Calı̀
et al., 2013]. This has led to a flurry of activity for identifying
restrictions on TGDs that lead to decidability. The main de-
cidable classes are (i) (frontier-)guarded TGDs [Baget et al.,
2011; Calı̀ et al., 2013], which includes linear TGDs [Calı̀ et
al., 2012a], (ii) acyclic sets of TGDs [Fagin et al., 2005], and
(iii) sticky sets of TGDs [Calı̀ et al., 2012b]. There are also
extensions that capture Datalog; see the same references.

For OMQs based on linearity, acyclicity, and stickiness,
FO-rewritings are always guaranteed to exist [Gottlob et al.,
2014]. In contrast, there are (frontier-)guarded OMQs that
are inherently recursive, and thus not expressible as a first-
order query. This brings us to our main question: Can we
check whether a (frontier-)guarded OMQ is FO-rewritable?
Notice that for OMQs based on more expressive classes of
TGDs that capture Datalog, the answer to the above question
is negative, since checking whether a Datalog query is FO-
rewritable is an undecidable problem. Actually, we know that
a Datalog query is FO-rewritable iff it is bounded [Ajtai and
Gurevich, 1994], while the boundedness problem for Datalog
is undecidable [Gaifman et al., 1993].

The above question has been studied for OMQ languages
based on Horn DLs, including EL and ELI , which (up to a
certain normal form) are a special case of guarded TGDs [Bi-
envenu et al., 2013; 2016; Lutz and Sabellek, 2017]. More
precisely, FO-rewritability is semantically characterized in
terms of the existence of certain tree-shaped ABoxes, which
in turn allows the authors to pinpoint the complexity of the
problem by employing automata-based procedures. As usual
in the DL context, schemas consist only of unary and binary
relations. However, in our setting we have to deal with re-
lations of higher arity. This indicates that the techniques de-
vised for checking the FO-rewritbility of DL-based OMQs
cannot be directly applied to rule-based OMQs; this is further
explained in Section 3. Therefore, we develop new semantic
characterizations and procedures that are significantly differ-
ent from those for OMQs based on description logics.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1707

Our analysis aims to develop specially tailored techniques
that allow us to understand the problem of checking whether
a (frontier-)guarded OMQ is FO-rewritable, and also to pin-
point its computational complexity. Our plan of attack and
results can be summarized as follows:
I We first focus on the simpler OMQ language based on

guarded TGDs and atomic queries, and, in Section 3, we pro-
vide a characterization of FO-rewritability that forms the ba-
sis for applying tree automata techniques.
IWe then exploit, in Section 4, standard two-way alternat-

ing parity tree automata. In particular, we reduce our problem
to the problem of checking the finiteness of the language of
an automaton. The reduction relies on a refined version of the
characterization of FO-rewritability established in Section 3.
This provides a transparent solution to our problem based on
standard tools, but it does not lead to an optimal result.
I Towards an optimal result, we use, in Section 5, a more

sophisticated automata model, known as cost automata. This
allows us to show that FO-rewritability for OMQs based on
guarded TGDs and atomic queries is in 2EXPTIME, and in
EXPTIME for predicates of bounded arity. Our application of
cost automata is quite transparent, which, as above, relies on
a refined version of the characterization of FO-rewritability
established in Section 3. However, the complexity analysis
relies on an intricate result on the boundedness problem for a
certain class of cost automata from [Benedikt et al., 2015].
I Finally, in Section 6, by using the results of Section 5,

we obtain our main results. We show that FO-rewritability
is 2EXPTIME-complete for OMQs based on guarded TGDs
and on frontier-guarded TGDs, no matter whether the actual
queries are conjunctive queries, unions thereof, or the sim-
ple atomic queries. This remains true when the arity of the
predicates is bounded by a constant, with the exception of
guarded TGDs and atomic queries, for which the complexity
then drops to EXPTIME-complete.
In principle, the procedure based on tree automata also pro-

vides concrete FO-rewritings when they exist, but it is not
tailored towards doing this in an efficient way. Efficiently
constructing rewritings is beyond the scope of this work.

2 Preliminaries
Basics. Let C, N, and V be disjoint, countably infinite sets
of constants, (labeled) nulls, and (regular) variables, respec-
tively. A schema S is a finite set of relation symbols. The
width of S, denoted wd(S), is the maximum arity among all
relation symbols of S. We write R/n to denote that the rela-
tion symbol R has arity n ≥ 0. A term is either a constant,
null, or variable. An atom over S is an expression of the form
R(v̄), where R ∈ S is of arity n ≥ 0 and v̄ is an n-tuple of
terms. A fact is an atom whose arguments are constants.

Databases. An S-instance is a (possibly infinite) set of atoms
over the schema S that contain only constants and nulls, while
an S-database is a finite set of facts over S. The active do-
main of an instance J, denoted adom(J), consists of all terms
occurring in J. For X ⊆ adom(J), we denote by J[X] the
subinstance of J induced by X , i.e., the set of all facts R(ā)
with ā ⊆ X . A tree decomposition of an instance J is a tu-
ple δ = (T , (Xt)t∈T), where T = (T,E) is a (directed) tree

with nodes T and edgesE, and (Xt)t∈T is a collection of sub-
sets of adom(J), called bags, such that (i) if R(ā) ∈ J, then
there is v ∈ T such that ā ⊆ Xv , and (ii) for all a ∈ adom(J),
the set {v ∈ T | a ∈ Xv} induces a connected subtree of
T . The width of δ is the maximum size among all bags Xv

(v ∈ T) minus one. The tree-width of J, denoted tw(J), is
min{n | there is a tree decomposition of width n of J}.
Conjunctive queries. A conjunctive query (CQ) over S is a
first-order formula of the form q(x̄) := ∃ȳ φ(x̄, ȳ), where x̄
and ȳ are tuples of variables, and φ is a conjunction of atoms
R1(v̄1) ∧ · · · ∧ Rm(v̄m) over S that mention variables from
x̄ ∪ ȳ only. The variables x̄ are the answer variables of q(x̄).
If x̄ is empty then q is a Boolean CQ. Let var(q) be the set
of variables occurring in q. As usual, the evaluation of CQs
over instances is defined in terms of homomorphisms. A ho-
momorphism from q to J is a mapping h : var(q) → adom(J)
such that Ri(h(v̄i)) ∈ J for each 1 ≤ i ≤ m. We write
J |= q(ā) to indicate that there is such a homomorphism h
such that h(x̄) = ā. The evaluation of q(x̄) over J, denoted
q(J), is the set of all tuples ā such that J |= q(ā). A union
of conjunctive queries (UCQ) q(x̄) over S is a disjunction∨n
i=1 qi(x̄) of CQs over S. The evaluation of q(x̄) over J,

denoted q(J), is the set of tuples
∪

1≤i≤n qi(J). We write
J |= q(ā) to indicate that J |= qi(ā) for some 1 ≤ i ≤ n. Let
CQ be the class of conjunctive queries, and UCQ the class of
UCQs. We also write AQ0 for the class of atomic queries of
the form P (), where P is a 0-ary predicate.

Tuple-generating dependencies. A tuple-generating depen-
dency (TGD) (a.k.a. existential rule) is a first-order sentence
of the form τ : ∀x̄, ȳ (φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), where φ and
ψ are conjunctions of atoms that mention only variables. For
brevity, we write φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and use comma in-
stead of ∧ for conjoining atoms. We assume that each vari-
able of x̄ is mentioned in ψ. We call φ and ψ the body and
head of the TGD, respectively. The TGD τ is logically equiv-
alent to the sentence ∀x̄ (qφ(x̄) → qψ(x̄)), where qφ(x̄) and
qψ(x̄) are the CQs ∃ȳ φ(x̄, ȳ) and ∃z̄ ψ(x̄, z̄), respectively.
Thus, an instance J satisfies τ if qφ(J) ⊆ qψ(J). Also, J sat-
isfies a set of TGDs O, denoted J |= O, if J satisfies every
τ ∈ O. Let TGD be the class of finite sets of TGDs.

Ontology-mediated queries. An ontology-mediated query
(OMQ) is a triple Q = (S,O, q(x̄)), where S is a (non-
empty) schema (the data schema), O is a set of TGDs (the
ontology), and q(x̄) is a UCQ over S ∪ sig(O), where sig(O)
is the set of relation symbols in O. Notice that the ontology
O can introduce relations that are not in S; this allows us to
enrich the schema of q(x̄). We include S in the specification
of Q to emphasize that Q will be evaluated over S-databases,
even thoughO and q(x̄)may use additional relation symbols.
The semantics of Q is given in terms of certain answers.

The certain answers to a UCQ q(x̄) w.r.t. an S-database D,
and a set O of TGDs, is the set of all tuples ā of constants,
where |ā| = |x̄|, such that (D,O) |= q(ā), i.e., J |= q(ā) for
every instance J ⊇ D that satisfies O. We write D |= Q(ā)
if ā is a certain answer to q w.r.t. D and O. Moreover, we set
Q(D) := {ā ∈ adom(D)|x̄| | D |= Q(ā)}.
Ontology-mediated query languages. We write (C,Q) for

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1708

the class of OMQs (S,O, q), where O falls in the class of
TGDs C, and q in the query languageQ. The evaluation prob-
lem for (TGD,UCQ), i.e., given a query Q ∈ (TGD,UCQ)
with data schema S, an S-database D, and ā ∈ adom(D)|x̄|,
to decide whetherD |= Q(ā), is undecidable; this holds even
for (TGD,AQ0) [Calı̀ et al., 2013]. Here we deal with one of
the most paradigmatic decidable restrictions, i.e., guarded-
ness. A TGD is guarded if it has a body atom, called guard,
that contains all the body variables. Let G be the class of
all finite sets of guarded TGDs. A TGD τ is called frontier-
guarded if its body contains an atom, called frontier-guard,
that contains the frontier of τ , i.e., the body variables that ap-
pear also in the head. We write FG for the class of all finite
sets of frontier-guarded TGDs. Roughly, the evaluation prob-
lem for (G,UCQ) and (FG,UCQ) is decidable since G and
FG admit tree-like universal models [Calı̀ et al., 2013].

First-order rewritability. A first-order (FO) query over a
schema S is a (function-free) FO formula φ(x̄), with x̄ being
its free variables, that uses only relations from S. The evalua-
tion ofφ over an S-databaseD, denotedφ(D), is the set of tu-
ples {ā ∈ adom(D)|x̄| | D |= φ(ā)}; |= denotes the standard
notion of satisfaction for FO. An OMQ Q = (S,O, q(x̄)) is
FO-rewritable if there exists a (finite) FO query φQ(x̄) over
S that is equivalent toQ, i.e., for every S-databaseD it is the
case thatQ(D) = φQ(D). We call φQ(x̄) an FO-rewriting of
Q. A fundamental task for an OMQ language (C,Q), where
C is a class of TGDs and Q is a class of queries, is deciding
first-order rewritability:

PROBLEM : FORew(C,Q)
INPUT : An OMQ Q ∈ (C,Q).
QUESTION : Is it the case that Q is FO-rewritable?

First-order rewritability of (FG,UCQ)-queries. As
shown by the following example, there exist (G,CQ) queries
(and thus, (FG,UCQ) queries) that are not FO-rewritable.

Example 1. Consider the OMQ Q = (S,O, q) ∈ (G,CQ),
where S = {S/3, A/1, B/1}, O consists of

S(x, y, z), A(z) → R(x, z),
S(x, y, z), R(x, z) → R(x, y),

and q = ∃x, y, z (S(x, y, z) ∧ R(x, z) ∧ B(y)). Intuitively,
an FO-rewriting of Q should check for the existence of a set
of atoms {S(c, ai, ai−1)}1≤i≤k, among others, for k ≥ 0.
However, since there is no upper bound for k, this cannot be
done via a finite FO-query, and thus, Q is not FO-rewritable.
A proof that Q is not FO-rewritable is given below.

On the other hand, there are (frontier-)guarded OMQs that
are FO-rewritable; e.g., the OMQ obtained from the query
Q in Example 1 by adding A(z) to q is FO-rewritable with
∃x, y, z (S(x, y, z) ∧B(y) ∧A(z)) being an FO-rewriting.

3 Semantic Characterization
We proceed to give a characterization of FO-rewritability of
OMQs from (G,AQ0) in terms of the existence of certain

tree-like databases. Our characterization is related to, but dif-
ferent from characterizations used for OMQs based on DLs
such as EL and ELI [Bienvenu et al., 2013; 2016].
The characterizations in [Bienvenu et al., 2013; 2016] es-

sentially state that a unary OMQ Q is FO-rewritable iff there
is a bound k such that, whenever the root of a tree-shaped
databaseD is returned as an answer to Q, then this is already
true for the restriction of D up to depth k. The proof of the
(contrapositive of the) “only if” direction uses a locality argu-
ment: if there is no such bound k, then this is witnessed by an
infinite sequence of deeper and deeper tree databases that es-
tablish non-locality of Q. For guarded TGDs, we would have
to replace tree-shaped databases with databases of bounded
tree-width. However, increasing depth of tree decompositions
does not correspond to increasing distance in the Gaifman
graph, and thus, does not establish non-locality. We therefore
depart from imposing a bound on the depth, and instead we
impose a bound on the number of facts, as detailed below.
It is also interesting to note that, while it is implicit in [Bi-

envenu et al., 2016] that an OMQ based on ELI and CQs
is FO-rewritable iff it is Gaifman local, there exists an OMQ
from (G,CQ) that is Gaifman local, but not FO-rewritable.
Such an OMQ is the one obtained from the query Q given in
Example 1, by removing the existential quantification on the
variable x in the CQ q, i.e., converting q into a unary CQ.

Theorem 1. Consider an OMQ Q ∈ (G,AQ0) with data
schema S. The following are equivalent:

1. Q is FO-rewritable.

2. There is a k ≥ 0 such that, for every S-database D of
tree-width at most wd(S)− 1, if D |= Q, then there is a
D′ ⊆ D with at most k facts such that D′ |= Q.

For (1) ⇒ (2) we exploit the fact that, if Q ∈ (G,AQ0) is
FO-rewritable, then it can be expressed as a UCQ qQ. This
follows from the fact that OMQs from (G,AQ0) are preserved
under homomorphisms [Bienvenu et al., 2014], and Ross-
man’s Theorem stating that an FO query is preserved under
homomorphisms over finite instances iff it is equivalent to a
UCQ [Rossman, 2008]. It is then easy to show that (2) holds
with k being the size of the largest disjunct of the UCQ qQ.
For (2) ⇒ (1), we use the fact that, if there is an S-database
D that entails Q, then there exists one of tree-width at most
wd(S)− 1 that entails Q, and can be mapped to D. The next
example illustrates Theorem 1.

Example 2. Consider the OMQ Q = (S,O, P) ∈ (G,AQ0),
where S = {S/3, A/1, B/1}, and O consists of the TGDs
given in Example 1 plus the guarded TGD

S(x, y, z), R(x, z), B(y) → P,

which is essentially the CQ q from Example 1. It is easy to
verify that, for an arbitrary k ≥ 0, the S-database

Dk = {A(a0), S(c, a1, a0), . . . , S(c, ak−1, ak−2), B(ak−1)}

of tree-width wd(S) − 1 = 2 is such that Dk |= Q, but for
every D′ ⊂ Dk with at most k facts, D′ ̸|= Q. Thus, by
Theorem 1, Q is not FO-rewritable.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1709

4 Alternating Tree Automata Approach
In this section, we exploit the well-known algorithmic tool of
two-way alternating parity tree automata (2ATA) over finite
trees of bounded degree (see, e.g., [Cosmadakis et al., 1988]),
and prove that FORew(G,AQ0) can be solved in elementary
time. Although this result is not optimal, our construction
provides a transparent solution to FORew(G,AQ0) based on
standard tools. This is in contrast with previous studies on
closely related problems for guarded logics, in which all el-
ementary bounds heavily rely on the use of intricate results
on cost automata [Blumensath et al., 2014; Benedikt et al.,
2015]. We also apply such results later, but only in order to
pinpoint the exact complexity of FORew(G,AQ0).
The idea behind our solution to FORew(G,AQ0) is, given

a query Q ∈ (G,AQ0), to devise a 2ATA BQ such that Q is
FO-rewritable iff the language accepted by BQ is finite. This
is a standard idea with roots in the study of the boundedness
problem for monadic Datalog (see e.g., [Vardi, 1992]). In
particular, our main result establishes the following:

Theorem 2. LetQ ∈ (G,AQ0) with data schema S. There is
a 2ATA BQ on trees of degree at most 2wd(S) such that Q is
FO-rewritable iff the language of BQ is finite. The state set of
BQ is of double exponential size in wd(S), and of exponential
size in |S ∪ sig(O)|. Furthermore, BQ can be constructed in
double exponential time in the size of Q.

As a corollary to Theorem 2 we obtain the following result:

Corollary 3. FORew(G,AQ0) is in 3EXPTIME, and in 2EX-
PTIME for predicates of bounded arity.

From Theorem 2, to check whether a query Q ∈ (G,AQ0)
is FO-rewritable, it suffices to check that the language of BQ
is finite. The latter is done by first converting BQ into a non-
deterministic bottom-up tree automaton B′

Q; see, e.g., [Vardi,
1998]. This incurs an exponential blowup, and thus, B′

Q has
triple exponentially many states. We then check the finiteness
of the language of B′

Q in polynomial time in the size of B′
Q by

applying a standard reachability analysis; see [Vardi, 1992].
For predicates of bounded arity, a similar argument as above
provides a double exponential time upper bound.
In the rest of Section 4 we explain the proof of Theorem 2.

The intuitive idea is to construct a 2ATA BQ whose language
corresponds to suitable encodings of databasesD of bounded
tree-width that “minimally” satisfy Q, i.e., D |= Q, but if we
remove any atom from D, then Q is no longer satisfied.

A refined semantic characterization. In order to apply an
approach based on 2ATA, it is essential to revisit the semantic
characterization provided by Theorem 1. To this end, we need
to introduce some auxiliary terminology.
Let D be a database, and δ = (T , (Xv)v∈T), where T =

(T,E), a tree decomposition ofD. An adornment of the pair
(D, δ) is a function η : T → 2D such that η(v) ⊆ D[Xv] for
all v ∈ T , and

∪
v∈T η(v) = D. Therefore, the pair (δ, η) can

be viewed as a representation of the database D along with a
tree decomposition of it. For the intended characterization, it
is important that this representation is free of redundancies,
formalized as follows. We say that δ is η-simple if |η(v)| ≤ 1

for all v ∈ T , and non-empty η-labels are unique, that is,
η(v) ̸= η(w) for all distinct v, w ∈ T with η(v) and η(w)
non-empty. Nodes v ∈ T with η(v) empty, called white from
now on, are required since we might not have a (unique!) fact
available to label them. Note, though, that white nodes v are
still associated with a non-empty set of constants from D via
Xv . All other nodes are called black. While δ being η-simple
avoids redundancies that are due to a fact occurring in the
label of multiple black nodes, additional redundancies may
arise from the inflationary use of white nodes. We say that
a node v ∈ T is η-well-colored if it is black, or it has at
least two successors and all its successors are η-well-colored.
We say that δ is η-well-colored if every node in T is η-well-
colored. For example, δ is not η-well-colored if it has a white
leaf, or if it has a white node and its single successor is also
white. Informally, requiring δ to be η-well-colored makes it
impossible to blow up the tree by introducing white nodes
without introducing black nodes. For i ∈ {1, 2}, let Di be
a database, δi a tree decomposition of Di, and ηi an adorn-
ment of (Di, δi). We say that (D1, δ1, η1) and (D2, δ2, η2)
are isomorphic if the latter can be obtained from the former
by consistenly renaming constants inD1 and tree nodes in δ1.
We are now ready to revisit the characterization of FO-

rewritability for OMQs from (G,AQ0) given in Theorem 1.

Theorem 4. Consider an OMQ Q ∈ (G,AQ0) with data
schema S. The following are equivalent:
1. Condition 2 from Theorem 1 is satisfied.
2. There are finitely many non-isomorphic triples (D, δ, η),

where D is an S-database, δ a tree decomposition of
D of width at most wd(S) − 1, and η an adornment of
(D, δ), such that
(a) δ is η-simple and η-well-colored,
(b) D |= Q, and
(c) for every α ∈ D, it is the case that D \ {α} ̸|= Q.

Devising automata. We proceed to discuss how the 2ATA
announced in Theorem 2 is constructed. Consider an OMQ
Q = (S,O, P) from (G,AQ0). Our goal is to devise an au-
tomaton BQ whose language is finite iff Condition 2 from
Theorem 4 is satisfied. By Theorems 1 and 4, Q is then FO-
rewritable iff the language of BQ is finite.
The 2ATA BQ will be the intersection of several automata

that check the properties stated in item 2 of Theorem 4. But
first we need to say a few words about tree encodings. Let Γ
be a finite alphabet, and let (N \ {0})∗ denote the set of all
finite words of positive integers, including the empty word. A
finite Γ-labeled tree is a partial function t : (N \ {0})∗ → Γ
such that the domain of t is finite and prefix-closed. More-
over, if v · i belongs to the domain of t, then v · (i − 1) also
belongs to the domain of t. In fact, the elements in the domain
of t identify the nodes of the tree. It can be shown that an S-
databaseD, a tree decomposition δ ofD of width w− 1, and
an adornment η of (D, δ), can be encoded as a ΓS,w-labeled
tree t of degree at most 2w, where ΓS,w is an alphabet of size
double exponential in w and exponential in S, such that each
node of δ corresponds to exactly one node of t and vice versa.
Although every D can be encoded into a ΓS,w-labeled tree t,
the converse is not true in general. However, it is possible to

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1710

define certain syntactic consistency conditions such that every
consistent ΓS,w-labeled t can be decoded into an S-database,
denoted JtK, whose tree-width is at most w. We are going to
abbreviate the alphabet ΓS,wd(S) by ΓS.

Lemma 5. There is a 2ATA CS that accepts a ΓS-labeled tree
t iff t is consistent. The number of states of CS is constant. CS
can be constructed in polynomial time in the size of ΓS.

Since a ΓS-labeled tree incorporates the information about
an adornment, the notions of being well-colored and simple
can be naturally defined for ΓS-labeled trees. Then:

Lemma 6. There is a 2ATARS that accepts a consistent ΓS-
labeled tree iff it is well-colored and simple. The number of
states of RS is exponential in wd(S) and linear in |S|. RS

can be constructed in polynomial time in the size of ΓS.

Concerning property 2(b) of Theorem 4, we can devise a
2ATA that accepts those trees whose decoding satisfies Q:

Lemma 7. There is a 2ATAAQ that accepts a consistent ΓS-
labeled tree iff JtK |= Q. The number of states of AQ is ex-
ponential in wd(S) and linear in |S ∪ sig(O)|. AQ can be
constructed in double exponential time in the size of Q.

The crucial task is to check condition 2(c) of Theorem 4,
which states the key minimality criterion. Unfortunately, this
involves an extra exponential blowup:

Lemma 8. There is a 2ATA MQ that accepts a consistent
ΓS-labeled tree t iff JtK \ {α} ̸|= Q for all α ∈ JtK. The
state set of MQ is of double exponential size in wd(S), and
of exponential size in |S∪ sig(O)|. Furthermore,MQ can be
constructed in double exponential time in the size of Q.

Let us briefly explain how MQ is constructed. This will
expose the source of the extra exponential blowup, which pre-
vents us from obtaining an optimal complexity upper bound
for FORew(G,AQ0). We first construct a 2ATA DQ that runs
on ΛS-labeled trees, where ΛS is an alphabet that extends ΓS

with auxiliary symbols that allow us to tag some facts in the
input tree. In particular, DQ accepts a tree t iff t is consis-
tent, there is at least one tagged fact, and JtK− |= Q whereJtK− is obtained from JtK by removing the tagged facts. Hav-
ing DQ in place, we can then construct a 2ATA ∃DQ that
accepts a ΓS-labeled tree t if there is a way to tag some of
its facts so as to obtain a ΛS-labeled tree t′ with Jt′K− |= Q.
This is achieved by applying the projection operator on DQ.
Since for 2ATAs projection involves an exponential blowup
andDQ already has exponentially many states, ∃DQ has dou-
ble exponentially many. It should be clear now that MQ is
the complement of ∃DQ, and we recall that complementation
of 2ATAs can be done in polynomial time.
The desired automaton BQ is obtained by intersecting the

2ATAs in Lemmas 5 to 8. Since the intersection of 2ATA is
feasible in polynomial time, BQ can be constructed in double
exponential time in the size of Q.

5 Cost Automata Approach
We proceed to study FORew(G,AQ0) using the more sophis-
ticated model of cost automata. This allows us to improve the

complexity of the problem obtained in Corollary 3 as follows:

Theorem 9. FORew(G,AQ0) is in 2EXPTIME, and in EXP-
TIME for predicates of bounded arity.

As in the previous approach, we develop a semantic char-
acterization that relies on a minimality criterion for trees ac-
cepted by cost automata. The extra features provided by cost
automata allow us to deal with such a minimality criterion in
a more efficient way than standard 2ATA. While our applica-
tion of cost automata is transparent, the complexity analysis
relies on an intricate result on the boundedness problem for
a certain class of cost automata from [Benedikt et al., 2015].
Before we proceed further, let us provide a brief overview of
the cost automata model that we are going to use.

Cost automata models. Cost automata extend traditional au-
tomata by providing counters that can be manipulated at each
transition. Instead of assigning a Boolean value to each in-
put structure (indicating whether it is accepted or not), these
automata assign a value from N∞ := N∪ {∞} to each input.
Here, we focus on cost automata that work on finite trees

of unbounded degree, and allow for two-way movements; in
fact, the automata that we need are those that extend 2ATA
over finite trees with a single counter. The operation of such
an automaton A on each input t will be viewed as a two-
player cost game G(A, t) between players Eve and Adam.
Recall that the acceptance of an input tree for a conventional
2ATA can be formalized via a two-player game as well. How-
ever, instead of the parity acceptance condition for 2ATA,
plays in the cost game between Eve and Adam will be as-
signed costs, and the cost automaton specifies via an objective
whether Eve’s goal is to minimize or maximize that cost. In
case of a minimizing (resp., maximizing) objective, a strategy
ξ of Eve in the cost game G(A, t) is n-winning if any play of
Adam consistent with ξ has cost at most n (resp., at least n).
Given an input tree t, one then defines the value of t in A asJAK(t) := op{n | Eve has an n-winning strategy in G(A, t)},
where op = inf (resp., op = sup) in case Eve’s objective is to
minimize (resp., maximize). Therefore, JAK defines a func-
tion from the domain of input trees to N∞. We call functions
of that type cost functions. A key property of such functions
is boundedness. We say that JAK is bounded if there exists an
n ∈ N such that JAK(t) ≤ n for every input tree t.
We employ automata with a single counter, where Eve’s

objective is to minimize the cost, while satisfying the parity
condition. Such an automaton is known in the literature as
dist ∧ parity-automaton [Benedikt et al., 2015]. To navigate
in the tree, it may use the directions {0, ↕}, where 0 indi-
cates that the automaton should stay in the current node, and
↕ means that the automaton may move to an arbitrary neigh-
boring node, including the parent. For this type of automaton,
we can decide whether its cost function is bounded [Benedikt
et al., 2015; Colcombet and Fijalkow, 2016]. As usual, ∥A∥
denotes the size of A. Then:

Theorem 10. There is a polynomial f such that, for every
dist∧parity-automatonA using priorities {0, 1} for the par-
ity acceptance condition, the boundedness for JAK is decid-
able in time ∥A∥f(m), wherem is the number of states of A.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1711

Our goal is to reduce FORew(G,AQ0) to the boundedness
problem for dist ∧ parity-automata.

A refined semantic characterization. We first need to revisit
the semantic characterization provided by Theorem 1.
Consider an S-database D, and a query Q = (S,O, P) ∈

(G,AQ0). Let kQ := |S ∪ sig(O)| · ww, where w := wd(S ∪
sig(O)). A derivation tree for D and Q is a labeled kQ-ary
tree T , with η being a node labeling function that assigns
facts R(ā), where R ∈ S ∪ sig(O) and ā ⊆ adom(D), to its
nodes, that satisfies the following conditions:

1. For the root node v of T , η(v) = P .

2. For each leaf node v of T , η(v) ∈ D.

3. For each non-leaf node v of T , with u1, . . . , uk being its
children, ({η(u1), . . . , η(uk)},O) |= η(v).

Roughly, T describes how the 0-ary predicate P can be en-
tailed from D and O. In fact, it is easy to show that D |= Q
iff there is a derivation tree forD andQ. The height of T , de-
noted hgt(T), is the maximum length of a branch in T , i.e.,
of a path from the root to a leaf node. Assuming thatD |= Q,
the cost of D w.r.t. Q, denoted cost(D, Q), is defined as

min{hgt(T) | T is a derivation tree for D and Q},

while the cost of Q, denoted cost(Q), is defined as

sup{cost(D, Q) | D |= Q, D is an S-database
with tw(D) ≤ wd(S)− 1}.

In other words, the cost of Q is the least upper bound of the
height over all derivation trees for all S-databases D of tree-
width at most wd(S) − 1 such that D |= Q. If there is no
such a database, then the cost of Q is zero since sup ∅ := 0.
Actually, cost(Q) = 0 indicates thatQ is unsatisfiable, which
in turn means that Q is trivially FO-rewritable.
Having the notion of the cost of an OMQ from (G,AQ0) in

place, it should not be difficult to see how we can refine the
semantic characterization provided by Theorem 1.

Theorem 11. Consider an OMQ Q ∈ (G,AQ0) with data
schema S. The following are equivalent:

1. Condition 2 from Theorem 1 is satisfied.

2. cost(Q) is finite.

Devising automata. We briefly describe how we can use cost
automata in order to devise an algorithm for FORew(G,AQ0)
that runs in double exponential time.
Consider an OMQ Q = (S,O, P) ∈ (G,AQ0). Our goal

is to devise a dist ∧ parity-automaton BQ such that the cost
function JBQK is bounded iff cost(Q) is finite. Therefore,
by Theorems 1 and 11, to check whether Q is FO-rewritable
we simply need to check if JBQK is bounded, which, by The-
orem 10, can be done in exponential time in the size of BQ.
The input trees to our automata will be over the same alphabet
ΓS that is used to encode tree-like S-databases in Section 4.
Recall that for a dist∧parity-automatonA, the cost functionJAK is bounded over a certain class C of trees if there is an
n ∈ N such that JAK(t) ≤ n for every input tree t ∈ C. Then:

Lemma 12. There is a dist∧parity-automatonHQ such thatJHQK is bounded over consistent ΓS-labeled trees iff cost(Q)
is finite. The number of states ofHQ is exponential in wd(S),
and polynomial in |S ∪ sig(O)|. Moreover, HQ can be con-
structed in double exponential time in the size of Q.

The automaton HQ is built in such a way that, on an input
tree t, Eve has an n-winning strategy in G(HQ, t) iff there
is a derivation tree for JtK and Q of height at most n. Thus,
Eve tries to construct derivation trees of minimal height. The
counter is used to count the height of the derivation tree.
Having this automaton in place, we can now complete the

proof of Theorem 9. The desired dist∧parity-automaton BQ
is defined as C′

S∩HQ, where C′
S is similar to the 2ATA CS (in

Lemma 5) that checks for consistency of ΓS-labeled trees of
bounded degree. Notice that C′

S is essentially a dist∧parity-
automaton that assigns zero (resp., ∞) to input trees that are
consistent (resp., inconsistent), and thus, C′

S ∩ HQ is well-
defined. Since the intersection of dist ∧ parity-automata is
feasible in polynomial time, Lemma 5 and Lemma 12 imply
that BQ has exponentially many states, and it can be con-
structed in double exponential time. Lemma 12 implies also
that JBQK is bounded iff cost(Q) is finite. It remains to show
that the boundedness of JBQK can be checked in double ex-
ponential time. By Theorem 10, there is a polynomial f such
that the latter task can be carried out in time ∥BQ∥f(m), where
m is the number of states of BQ, and the claim follows. For
predicates of bounded arity, we provide a similar analysis.

6 Frontier-Guarded OMQs
The goal of this section is to show the following result:

Theorem 13. It holds that:
• FORew(FG,Q) is 2EXPTIME-complete, for each Q ∈

{UCQ,CQ,AQ0}, even for predicates of bounded arity.

• FORew(G,Q) is 2EXPTIME-complete, for each Q ∈
{UCQ,CQ}, even for predicates of bounded arity.

• FORew(G,AQ0) is 2EXPTIME-complete. Moreover, for
predicates of bounded arity it is EXPTIME-complete.

Lower bounds. The 2EXPTIME-hardness in the first and
the second items is inherited from [Bienvenu et al., 2016],
where it is shown that deciding FO-rewritability for OMQs
based on ELI and CQs is 2EXPTIME-hard. For the 2EXP-
TIME-hardness in the third item we exploit the fact that con-
tainment for OMQs from (G,AQ0) is 2EXPTIME-hard, even
if the right-hand side query is FO-rewritable; this is implicit
in [Barceló et al., 2014]. Finally, the EXPTIME-hardness in
the third item is inherited from [Bienvenu et al., 2013], where
it is shown that deciding FO-rewritability for OMQs based on
EL and atomic queries is EXPTIME-hard.

Upper bounds. The fact that for predicates of bounded ar-
ity FORew(G,AQ0) is in EXPTIME is obtained from Theo-
rem 9. It remains to show that FORew(FG,UCQ) is in 2EX-
PTIME. We reduce FORew(FG,UCQ) in polynomial time to
FORew(FG,AQ0), and then show that the latter is in 2EXP-
TIME. This reduction relies on a construction from [Bienvenu
et al., 2016], which allows us to reduce FORew(FG,UCQ) to

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1712

FORew(FG,UBCQ) with UBCQ being the class of union of
Boolean CQs, and the fact that a Boolean CQ can be seen as
a frontier-guarded TGD. To show that FORew(FG,AQ0) is in
2EXPTIME, we reduce it to FORew(G,AQ0), and then apply
Theorem 9. This relies on treeification, and is inspired by
a translation of guarded negation fixed-point sentences into
guarded fixed-point sentences [Bárány et al., 2015]. Our re-
duction may give rise to exponentially many guarded TGDs,
but the arity is increased only polynomially. Since the proce-
dure for FORew(G,AQ0) provided by Theorem 9 is double
exponential only in the arity of the schema the claim follows.

7 Future Work
The procedure based on 2ATA provides an FO-rewriting in
case the input OMQ admits one, but it is not tailored towards
doing this in an efficient way. Our next step is to exploit the
techniques developed in this work for devising practically ef-
ficient algorithms for constructing FO-rewritings.

Acknowledgements
Barceló is funded by the Millennium Institute for Founda-
tional Research on Data and Fondecyt grant 1170109. Berger
is funded by the FWF project W1255-N23 and a DOC fel-
lowship of the Austrian Academy of Sciences. Lutz is funded
by the ERC grant 647289 “CODA”. Pieris is funded by the
EPSRC programme grant EP/M025268/ “VADA”.

References
[Ajtai and Gurevich, 1994] Miklós Ajtai and Yuri Gurevich.

Datalog vs first-order logic. J. Comput. Syst. Sci.,
49(3):562–588, 1994.

[Baget et al., 2011] Jean-François Baget, Michel Leclère,
Marie-Laure Mugnier, and Eric Salvat. On rules with ex-
istential variables: Walking the decidability line. Artif. In-
tell., 175(9-10):1620–1654, 2011.

[Bárány et al., 2015] Vince Bárány, Balder ten Cate, and Luc
Segoufin. Guarded negation. J. ACM, 62(3):22:1–22:26,
2015.

[Barceló et al., 2014] Pablo Barceló, Miguel Romero, and
Moshe Y. Vardi. Does query evaluation tractability help
query containment? In PODS, pages 188–199, 2014.

[Benedikt et al., 2015] Michael Benedikt, Balder ten Cate,
Thomas Colcombet, and Michael Vanden Boom. The
complexity of boundedness for guarded logics. In LICS,
pages 293–304, 2015.

[Bienvenu et al., 2013] Meghyn Bienvenu, Carsten Lutz,
and Frank Wolter. First-order rewritability of atomic
queries in horn description logics. In IJCAI, 2013.

[Bienvenu et al., 2014] Meghyn Bienvenu, Balder ten Cate,
Carsten Lutz, and Frank Wolter. Ontology-based data ac-
cess: A study through disjunctive datalog, CSP, and MM-
SNP. ACMTrans. Database Syst., 39(4):33:1–33:44, 2014.

[Bienvenu et al., 2016] Meghyn Bienvenu, Peter Hansen,
Carsten Lutz, and Frank Wolter. First order-rewritability
and containment of conjunctive queries in horn description
logics. In IJCAI, pages 965–971, 2016.

[Blumensath et al., 2014] Achim Blumensath, Martin Otto,
and Mark Weyer. Decidability results for the boundedness
problem. Logical Methods in Computer Science, 10(3),
2014.

[Calı̀ et al., 2012a] Andrea Calı̀, Georg Gottlob, and Thomas
Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. J. Web Sem.,
14:57–83, 2012.

[Calı̀ et al., 2012b] Andrea Calı̀, Georg Gottlob, and An-
dreas Pieris. Towards more expressive ontology lan-
guages: The query answering problem. Artif. Intell.,
193:87–128, 2012.

[Calı̀ et al., 2013] Andrea Calı̀, Georg Gottlob, and Michael
Kifer. Taming the infinite chase: Query answering un-
der expressive relational constraints. J. Artif. Intell. Res.,
48:115–174, 2013.

[Colcombet and Fijalkow, 2016] Thomas Colcombet and
Nathanaël Fijalkow. The bridge between regular cost
functions and omega-regular languages. In ICALP, pages
126:1–126:13, 2016.

[Cosmadakis et al., 1988] Stavros S. Cosmadakis, Haim
Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. De-
cidable optimization problems for database logic programs
(preliminary report). In STOC, pages 477–490, 1988.

[Fagin et al., 2005] Ronald Fagin, Phokion G. Kolaitis,
Renée J. Miller, and Lucian Popa. Data exchange: seman-
tics and query answering. Theor. Comput. Sci., 336(1):89–
124, 2005.

[Gaifman et al., 1993] Haim Gaifman, Harry G. Mairson,
Yehoshua Sagiv, and Moshe Y. Vardi. Undecidable op-
timization problems for database logic programs. J. ACM,
40(3):683–713, 1993.

[Gottlob et al., 2014] Georg Gottlob, Giorgio Orsi, and An-
dreas Pieris. Query rewriting and optimization for ontolog-
ical databases. ACM Trans. Database Syst., 39(3):25:1–
25:46, 2014.

[Lutz and Sabellek, 2017] Carsten Lutz and Leif Sabellek.
Ontology-mediated querying with the description logic
EL: trichotomy and linear datalog rewritability. In IJCAI,
pages 1181–1187, 2017.

[Poggi et al., 2008] Antonella Poggi, Domenico Lembo,
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, and Riccardo Rosati. Linking data to ontologies. J.
Data Semantics, 10:133–173, 2008.

[Rossman, 2008] Benjamin Rossman. Homomorphism
preservation theorems. J. ACM, 55(3):15:1–15:53, 2008.

[Vardi, 1992] Moshe Y. Vardi. Automata theory for database
theoreticans. In Theoretical Studies in Computer Science,
pages 153–180, 1992.

[Vardi, 1998] Moshe Y. Vardi. Reasoning about the past with
two-way automata. In ICALP, pages 628–641, 1998.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1713

