Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Finite Model Reasoning in Hybrid Classes of Existential Rules

Georg Gottlob!, Marco Manna® and Andreas Pieris®

!Department of Computer Science, University of Oxford
?Department of Mathematics and Computer Science, University of Calabria
3School of Informatics, University of Edinburgh

georg.gottlob@cs.ox.ac.uk, manna@mat.unical.it, apieris @inf.ed.ac.uk

Abstract

Two paradigmatic restrictions that have been stud-
ied for ensuring the decidability of query answering
under existential rules are guardedness and sticki-
ness. With the aim of consolidating these restric-
tions, a flexible condition, called tameness, has
been proposed a few years ago, which relies on hy-
brid reasoning, i.e., a combination of forward and
backward procedures. The complexity of query an-
swering under this hybrid class of existential rules
is by now well-understood. However, the complex-
ity of finite query answering, i.e., query answering
under finite models, has remained an open problem.
Closing this problem is the main goal of this work.

1 Introduction

Rule-based languages lie at the core of knowledge representa-
tion and databases. In knowledge representation they are used
for declarative problem solving, and, more recently, to model
and reason about ontological knowledge, while in database
applications they usually serve as expressive query languages
that go beyond standard first-order queries. A prominent rule-
based formalism is Datalog [Abiteboul et al., 1995]. Even
though Datalog is quite powerful, with a variety of differ-
ent applications, it is widely agreed that its inability to in-
fer the existence of new values that are not already in the in-
put database is a crucial limitation [Patel-Schneider and Hor-
rocks, 2007]. Existential rules (a.X.a. tuple-generating depen-
dencies and Dattalogi rules), overcome this limitation by en-
riching Datalog with existential quantification in rule-heads.
However, this leads to the undecidability of the main algo-
rithmic tasks, and, in particular, of conjunctive query (CQ)
answering [Beeri and Vardi, 1981; Cali et al., 2013], i.e., the
problem of checking whether a CQ is entailed by every model
of an extensional database and a set of existential rules.

This negative outcome has led to a flurry of research ac-
tivity for identifying restrictions on existential rules that en-
sure the decidability of query answering. Two such restric-
tions, which are of central importance for the present work,
are guardedness [Baget et al., 2011; Cali et al., 2013] and
stickiness [Cali et al., 2012]. It is well-known that guarded-

1831

ness is well-suited for forward reasoning, which in turn relies
on the fact that guarded rules admit tree-like universal mod-
els. However, stickiness does not enjoy the above tree model
property, and instead it relies on backward reasoning.

As one might expect, there are useful statements that can
be expressed via guarded rules, but not with sticky rules, and
vice versa. For example, using guarded rules we can state that
the supervisor of a senior employee is also a senior employee,
which is provably not expressible via sticky rules:

SeniorEmp(z), HasSupervisor(z, y) — SeniorEmp(y).

This rule is guarded since it has an atom in its body, called a
guard, that contains z and y. However, using guarded rules
we cannot say, e.g., that senior employees earn more money
than junior employees. This is expressible via the sticky rule:

SeniorEmp(z), JuniorEmp(y) — MoreThan(z, y).

The goal of stickiness is to capture joins that are not express-
ible via guarded rules. This is done by forcing the join vari-
ables to be propagated to the inferred atoms. The above rule
is trivially sticky since there are no join variables in its body.
It is a natural question to ask whether the above two in-
herently different classes of existential rules can be consoli-
dated into a single formalism. This has been thoroughly in-
vestigated in [Gottlob et al., 2013]. It has been observed that
the naive combination of guardedness and stickiness leads to
the undecidability of query answering. This led to the notion
of tameness, which provides an elegant and flexible way for
taming the interaction between guarded and sticky rules. The
essence of tameness is as follows: sticky rules are not allowed
to trigger the guard of a guarded rule. 1t is easy to verify that
the above two rules jointly satisfy the tameness condition.
Conjunctive query answering under the tamed combination
of guardedness and stickiness is by now well-understood. A
sophisticated hybrid query answering algorithm, which relies
on a combination of forward and backward reasoning, has
been devised in [Gottlob et al., 2013], which led to optimal
complexity results: 2EXPTIME-complete in combined com-
plexity, and PTIME-complete in data complexity. Notice that
the analysis performed in [Gottlob er al., 2013] considers un-
restricted models. However, in many KR applications the do-
main of interest is actually finite, and thus it is more realistic

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

to reason over finite models. This has been already observed
in the KR community, and there are several works that focus
on finite model reasoning; see, e.g., [Amendola et al., 2017,
Calvanese, 1996; Ibafiez-Garcia et al., 2014; Rosati, 2008].
Moreover, for intelligent database applications, the finiteness
of the models is a key assumption. The question that comes
up is whether finite query answering, i.e., query answering fo-
cussing on finite models, under tameness remains decidable,
and, if this is the case, what is the exact complexity. Closing
this non-trivial open problem is the main goal of this work.

The main outcome of our analysis is that finite query an-
swering under tameness has the same complexity as (unre-
stricted) query answering. This is obtained by showing that
the tamed combination of guardedness and stickiness enjoys
finite controllability, i.e., finite and unrestricted query an-
swering coincide. This exploits the fact that both guardedness
and stickiness enjoy finite controllability [Bérény et al., 2014,
Gogacz and Marcinkowski, 2017]. At this point, let us
say that, in general, combining guardedness with unguarded
classes of existential rules that are finitely controllable, by
following the same approach as tameness, does not guaran-
tee finite controllability. As we show later, there exist finitely
controllable classes that their tamed combination with guard-
edness leads to classes that are not finitely controllable. Thus,
to establish the above result, we need to perform a detailed
model-theoretic analysis based on guardedness and sticki-
ness. Our results can be summarized as follows:

» We first focus on a subclass of tame rules, obtained by
posing a stratification condition on guarded and sticky rules,
and show that is finitely controllable.

» We then establish that a tame set of guarded and sticky
rules can be rewritten as a stratified one that preserves fi-
nite answers, and thus tameness ensures finite controllability.
This result immediately implies that finite query answering
under tame guarded and sticky rules is 2EXPTIME-complete
in combined complexity, and PTIME-complete in data com-
plexity. The stratification relies on the fact that sticky rules
are UCQ-rewritable. To establish the correctness of the strat-
ification, we isolate a well-behaved family of finite models,
called sticky-supported, that is a universal finite model set.

» Finally, triggered by the above construction, we study
the relative expressive power among stratification and tame-
ness. Interestingly, tame rules are more expressive than strat-
ified rules w.r.t. the program expressive power [Arenas et al.,
2014]. This essentially says that there is a tame set of guarded
and sticky rules that cannot be expressed as a stratified set that
gives the same answer for every database and CQ.

2 Preliminaries

Basics. Let C, N and V be disjoint countably infinite sets
of constants, (labeled) nulls, and (regular) variables, respec-
tively. The elements of (CUNUV) are also called terms. An
atom is an expression of the form R(%), where R is an n-ary
predicate, and ¢ = (t1,...,t,) are terms. A fact is an atom
that contains only constants from C. A homomorphism from
a set of atoms A to a set of atoms B is a mapping h from the
terms in A to the terms in B, which is the identity on C, such
that R(t) € A implies h(R(t)) = R(h(t)) € B.

Databases and conjunctive queries. An instance is a (pos-
sibly infinite) set of atoms with constants and nulls, while a
database is a finite set of facts. The active domain of an in-
stance I, denoted dom(7), is the set of all terms in I.

A conjunctive query (CQ) is a formula of the form ¢(z) :=
Jy(R1(01) A -+ A Ry (D)), where each R;(;) is an atom
without nulls, each variable mentioned in the v;’s appears ei-
ther in Z or g, and Z are the free variables of ¢. If = is empty,
then q is a Boolean CQ. As usual, the evaluation of CQs is de-
fined in terms of homomorphisms. Let I be an instance, and
q(z) a CQ as above. The evaluation of q(z) over I, denoted
q(I), is defined as the set of tuples ¢ € CI?! for which there
is a homomorphism A such that h(g(z)) C I and h(Z) = ¢.
Notice that, by abuse of notation, we sometimes treat a con-
junction of atoms as a set of atoms. A union of conjunctive
queries (UCQ) is a formula ¢(z) := \/,,~,, ¢(T), where
each ¢;(z) is a CQ. The evaluation of q(Z) over I, denoted
q(I), is the set of tuples of constants | J; -, ., ¢:(]).

Tuple-generating dependencies. A fuple-generating depen-
dency (TGD) (a.k.a. existential rule) is a sentence of the form
vZvy(o(z,§) — 3% (T, 2)), where ¢, 1 are (non-empty)
conjunctions of atoms without constants and nulls. We write
this TGD as ¢(Z,y) — Iz (&, Z), and use comma instead
of A for joining atoms. We call ¢ and 1 the body and head
of the TGD, respectively. An instance [satisfies the TGD o
above, written I = o, if, whenever there is a homomorphism
h such that h(¢(Z, 7)) C I, then there is A’ that agrees with
h on Z such that h'(1)(Z, z)) C I. The instance I satisfies a
set X of TGDs, written I |= X, if I |= o foreach o € X. Let
TGD be the class of finite sets of TGDs. Let us clarify that in
the rest of the paper we work only with finite sets of TGDs.

Query answering under TGDs. For a database D and a set
Y of TGDs, a model of D and ¥ is an instance I O D such
that I = 3. Let fmods(D,) and mods(D, X)) be the set
of finite and unrestricted models of D and Y. The finite cer-
tain answers to a CQ ¢ w.r.t. D and ¥ is certgn(q, D, X) =
Nrefmods(n,x) 4(1). We also define the certain answers to

g w.rt. D and 3, denoted cert(q, D,), where we consider
models from mods(D,X). Recall that cert(q, D,X) coin-
cides with the evaluation of ¢ over chase(D, ¥), i.e., the (pos-
sibly infinite) instance constructed by the well-known chase
procedure on D and X; see, e.g., [Cali et al., 2013].

Our main problem in this work is to compute the finite cer-
tain answers to a CQ w.r.t. a database and a set of TGDs that
falls in a certain class C, i.e., C C TGD; concrete classes of
TGDs are given below. As is customary when studying the
complexity of this problem, we focus on its decision version:

PROBLEM : FinQAns(C)

INPUT : A database D, a set ¥ € C of TGDs,
aCQ ¢(7), and a tuple ¢ € dom(D)7l.

QUESTION : Does ¢ € certgin(g, D, 3)?

We also refer to QAns(C), which is defined as above with
the difference that we ask whether ¢ belongs to cert(q, D, X).
For both problems, we use the standard complexity measures,
i.e., combined complexity and data complexity.

1832

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Concrete classes of TGDs. It is well-known that both
FinQAns(TGD) and QAns(TGD) are undecidable problems.
This has led to a flurry of activity for identifying restrictions
on TGDs that make the above problems decidable. Here, we
concentrate on a class obtained by combining two of the main
decidability paradigms, i.e., guardedness and stickiness.

Guardedness: A TGD is called guarded if it has a body atom,
called guard, that contains all the body variables [Cali et al.,
2013]. Let G be the class of sets of guarded TGDs.

Stickiness: The goal of stickiness is to capture joins that are
not expressible via guarded TGDs. The key idea can be de-
scribed as follows: variables that appear more than once in the
body of a TGD should be inductively propagated (or “stick’)
to the head atoms. The definition is based on an inductive pro-
cedure that marks the variables that violate the above prop-
erty. Consider a set 3 of TGDs. During the base step, a vari-
able that appears in the body of a TGD of ¥ but not in its head
is marked. Now, if a variable x in the head of a TGD o € X
appears at position RJ[¢] (i.e., the i-th attribute of the predicate
R), and there exists some ¢’ € ¥ that has in its body at posi-
tion R[i] a marked variable, then in the body of ¢ is marked.
We say that X is sticky if every marked variable appears only
once in the body of a TGD. For more details see [Cali et al.,
2012]. Let S be the class of sticky sets of TGDs.

Guardedness + Stickiness: The notion of fameness has been
introduced in [Gottlob et al., 2013], with the aim of taming
the interaction between guarded and sticky TGDs. The idea
is to allow guarded and sticky TGDs to co-exist as long as
none of the sticky TGDs triggers the guard of a guarded TGD.
Before we give the formal definition, we need to recall two
auxiliary notions. A set 2 of TGDs belongs to the union of G
and S, denoted G|S, if there is a partition {¥,, ¥} of ¥ such
that ¥, € G and X € S. A guard function of aset ¥ € G
is a function g from X to the set of atoms in X such that: for
each o € ¥, g(0) is an atom in the body of ¢ that contains all
its body variables. In other words, a guard function specifies
which body atom plays the role of the guard.

We can now recall tameness. A set X of TGDs is GS-tame
if ¥ € G|S, and there exists a partition {3/, X} of 3, with
Y4 € Gand X, € S, such that: there exists a guard function g
of ¥, such that, for every o € X, the predicate of g(o) does
not occur in the head of a TGD of ;. In simple words, ¥ is
GS-tame if it can be partitioned into a guarded component 33,
and a sticky component ¥, and, in addition, we can choose
the guards of X, in such a way that none of their predicates
appears in the head of a sticky TGD. The obtained class is
denoted G[S, where |; denotes the fact that we consider the
union of G and S, but with tamed interaction. It is known that
QAns(G|:S) is 2EXPTIME-complete in combined complex-
ity, and PTIME-complete in data complexity [Gottlob et al.,
2013]. However, the complexity of FinQAns(G|:S) is still
open. Closing this problem is the main goal of this work.

3 Finite Controllability

A key notion for our analysis is finite controllability [Rosati,
2011]. We say that a class C of TGDs is finitely controllable
if, for every database D, set ¥ € C of TGDs, and CQ g,

1833

certsin(q, D,) = cert(q, D, X). This suggests that, for pin-
pointing the complexity of FinQAns(C), where C is finitely
controllable, it suffices to focus on QAns(C). As already said,
the complexity of QAns(G|.S) is known. Therefore, our goal
is to show that G|;S is finitely controllable, which will im-
mediately give us the complexity of FinQAns(G/|S). To this
end, we are going to exploit the fact that both G and S are
finitely controllable. For G, this has been shown in [Bérdny et
al., 2014], while for S in [Gogacz and Marcinkowski, 2017].

Tameness vs. finite controllability. At this point, one may
be tempted to think that, since both G and S are finitely con-
trollable, it is straightforward to show that also G|.S is finitely
controllable. In other words, one may claim that tameness
preserves finite controllability, no matter which finitely con-
trollable class of TGDs we consider in the place of stickiness.
We proceed to show that this is not the case.

It should be clear by now that tameness provides a generic
way for combining guardedness with other unguarded classes
of TGDs. Thus, in the same way as G|;S, we can define G|,C,
where C is some arbitrary class of TGDs. We now show that
there is a finitely controllable class C of TGDs such that G|.C
is not finitely controllable. To achieve this, we are going to
consider the class of full TGDs, i.e., TGDs without existen-
tially quantified variables; we denote this class by F. It is
immediate that I is finitely controllable, since the chase pro-
cedure terminates; see, e.g., [Fagin er al., 2005]. However:

Proposition 1 G|.F is not finitely controllable.

Proof (sketch). Let D = {P(a,b), R(a,b)}, and ¥ € G|,F
the set of TGDs consisting of

o1 = P(x,y),R(x,y) - EIZP(yVZ)vR(va)
oy = R(z,y),R(y,w),R(z,w) — R(z,2).

Every I € fmods(D, X) contains an atom of the form R(¢, a),
where ¢ is some term. However, chase(D, X) does not con-
tain such an atom. Therefore, assuming that ¢ is the Boolean
CQ 3zR(x,a), () € certsin(q, D,X) and () & cert(q, D, X);
() is the empty tuple. The claim follows. O

The above result suggests that using blindly the fact that
both G and S are finitely controllable, without exploiting any
additional property, it is not enough for establishing that G|.S
is finitely controllable. This indicates that a detailed analysis
is required. The next two sections are devoted to performing
this analysis, and showing that G|,S is finitely controllable.

4 The Stratified Case

We first focus on a simpler class of TGDs and show that is
finitely controllable. This result is interesting in its own right,
but, more crucially, it provides a useful tool that we are going
to exploit for showing that G|,S is finitely controllable.

This simpler class of TGDs is obtained by limiting the in-
teraction between guardedness and stickiness via stratifica-
tion. A set X of TGDs is GS-stratified if ¥ € G|S, and there
exists a partition {¥,,¥,} of 3, where ¥, € G and £, € S,
such that: for every o € g4, none of the predicates in the
body of o occurs in the head of a TGD of X;. We write G|sS
for the obtained class. Clearly, G|sS C G|:S. We show that:

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Theorem 2 G|S is finitely controllable.

Before giving the proof, we need to recall that S is UCQ-
rewritable [Cali et al., 2012]. This means that, foraset>® € S
of TGDs and a CQ ¢, we can always construct a (finite) UCQ
gs, such that, for every database D, cert(q, D, ¥) = ¢s(D).

Proof. Consider a set & € G|sS. We need to show that, for
every database D and CQ ¢, certsin(q, D, X) = cert(q, D, X).
It is clear that cert(q, D, ¥) C certsn(q, D, X); thus, it re-
mains to show that certsi (¢, D,) C cert(q, D, X).

Let {¥,, %X}, where ¥, € G and X, € S, be a partition of
¥ that witnesses the fact that 3 € G|sS. We are going to show
that, for an arbitrary tuple ¢ of constants, ¢ & cert(q, D, X)
implies ¢ & certqn(q, D, X). Before we proceed further, let
us state an auxiliary lemma, which establishes a useful con-
nection between the models of 3, and X;:

Lemma 3 Fix an instance I € mods(D, ¥,). For every J €
mods(I,X;), there is K C J such that K € mods(D, X).

We are now ready to complete the proof of Theorem 2:
¢ & cert(q, D, Y)
(by hypothesis)
= there exists a UCQ ¢y, such that ¢ & cert(gs,, D, 3,)
(by UCQ-rewritability of S, and GS-stratification)
= ¢ ¢ certin(gs,, D, X,)
(by finite controllability of G)
there exists I € fmods(D, ¥,) such that ¢ & gs;, (1)
¢ & cert(q, I,35)
(since gy, is a UCQ-rewriting of X5 and q)
= ¢ certsin(q, I, %5)
(by finite controllability of S)

vy

= there exists J € fmods(I, ;) such that ¢ & ¢(J)

= there exists K C J such that K’ € fmods(D, X)
(by Lemma 3)

= c¢q(K)

(by monotonicity of CQs)
= ¢ ¢ certhin(q, D, X),

as needed. This completes our proof. O

It is interesting to observe that in the above proof, we only
use the fact that G and S are finitely controllable, and also
the fact that S is UCQ-rewritable. This suggests that actu-
ally Theorem 2 can be extended to any class of TGDs C;|sCs
(defined in the same way as G/|S) as long as C; and C, are
finitely controllable, and C, is UCQ-rewritable. This result is
of independent interest, which can be a useful tool for identi-
fying even more expressive finitely controllable classes.

5 The Tamed Case
We now proceed with our main technical result:
Theorem 4 G|;S is finitely controllable.
As a corollary to Theorem 4 we obtain the following result:

Corollary 5 FinQAns(G|:S) is complete for 2EXPTIME in
combined complexity, and PTIME in data complexity

The rest of this section is devoted to explaining the proof
of Theorem 4. Fix 3 € G|;S. We need to show that, for every
database D and CQ ¢, certin(q, D, X) = cert(q, D, X). Since
cert(q, D, %) C certgin(gq, D, %) holds trivially, it remains to
show that certg, (¢, D, X)) C cert(q, D, 3). Our plan of attack
for showing the latter containment is as follows. We are going
to convert ¥ into a set X* € G|sS, i.e., into a GS-stratified set
of TGDs, and ¢ into a CQ ¢*, such that:

1. certsin(gq, D,X) C certsin(¢*, D, X%).
2. cert(q*,D,¥*) C cert(q,D,X).

It is then easy, by exploiting also the fact that G|S is finitely
controllable, to establish the desired containment:

(1) (Theorem 2)
Certfin(Qa Da Z) g Certfin(q*a D7 Z*) g

(2)
cert(¢*, D, ¥*) C cert(q,D,Y).

In the rest of this section, we explain how >* and ¢* are con-
structed, and show the containments (1) and (2) above.

Constructing >* and ¢*

The construction of the set X* proceeds in three main steps.
Let {X,, X}, where X, € G and X € S, be the partition of
¥ that witnesses the fact that > € G/[,S:

Enriching step. We enrich the set 3, in such a way that we
obtain a set X € G that is powerful enough to entail all
the atoms that are entailed by X, and affect ¥,. This is
the most crucial and complex step in the construction of
>*, for which details are given below.

Copying step. We construct a set 3. of “copy” TGDs, which
essentially copies each predicate P occurring in Z; into
a fresh predicate P*. Formally, for each n-ary predicate
P occurring in E;r, 3. contains the TGD:

P(xh..

Itis clear that . € G.

Stratification step. We construct the set of TGDs X* by tak-
ing the union ¥ U X, U X%, where X} is obtained from
¥, by renaming each predicate P to P*.

G Tn) = P(x1,..0 1)

It is clear that X* falls in G|sS since none of the “star” predi-
cates in the head of a TGD of ¥% € S occurs in the body of a
TGD of (Z; UX.) € G. Now, having ¥* in place, it should
be clear that ¢* is the CQ obtained from ¢ by renaming each
predicate P to P*. Let us now formalize the enriching step.

Formalization of the enriching step. This step relies on the
notion of embedding of 3, into a TGD o € X, which hinges
on the fact that S is UCQ-rewritable. Roughly, we see the
body of o as a CQ ¢, and we consider the UCQ-rewriting of
q° with 2. Each partial rewriting gives rise to a new TGD,
which in turn can be transformed into linearly many guarded
TGDs. The obtained set of guarded TGDs is the embedding
of 3 into o, denoted Embed (X, o). Having this in place, we
can then construct the enriched version of >, by embedding
Y, into every TGD o € 34, ie.,

Sy = |J Embed(Z,,0).

o€,

1834

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

It remains to formalize the embedding of >, into o. Let us as-
sume that the TGD o € X is of the form R(Z, §), ¢(Z,7) —
3zy(z,), where R(Z,7) is the guard of o provided by the
guard function g of 3,. Let ¢7 () be the CQ

I (R(z,9) A o(2,7)).

By employing the resolution-based query rewriting algorithm
from [Gottlob et al., 2014], we can construct a finite UCQ-
rewriting of ¢° and ¥,, denoted qgg, such that, each CQ q
of g5 enjoys two useful syntactic properties: (i) q is answer-
guarded, i.e., it has an atom that contains all the free variables
of ¢, while the answer-guard is p, (R(Z, 7)), where p, is some
mapping that maps the variables in ¢ to variables in ¢, and (ii)
for each variable x in ¢, if « does not occur in ¢?, then x
occurs only once in g. Having ¢¥, in place, we define

U {a = 3z0(n(@), 2)},

q€qT,

T, =

i.e., each CQ ¢ in ¢¥; becomes the body of a TGD 7, while
the head of 7, is the head of the input TGD o after applying
the mapping p, to the variables of Z. Notice that the TGDs of
T are not guarded. However, since each ¢ in ¢5;_ is answer-
guarded, with p,(R(Z, y)) being the answer-guard, 7, enjoys
the following property: the body atom p,(R(Z,)) of 7, con-
tains all the variables that appear both in the body and in the
head of 7, while each other variable that appears in the body
but not in the head, occurs only once in the body of 7,. No-
tice that the set of body variables of a TGD that occur also in
the head is known as the frontier of the TGD. Thus, in what
follows, we refer to the atom p,(R(Z, §)) in the body of 7, as
the frontier-guard of ;. The above property of 7, allows us
to convert it into linearly many guarded TGDs.

Consider a TGD 7 € Ty, and an atom o = S(z1,...,Z,)
in its body with z;,, ..., z;, being the variables in « that oc-
cur also in the frontier-guard of 7. We write p(«) for the
atom S%(z;,,...,x;,), where S is an auxiliary predicate,
and p(7) for the TGD obtained from 7 after replacing each
body atom « of 7, other than the frontier-guard, with p(a).
We also denote by o2 the TGD

5(1‘1,.. .,Z‘ik),

which simply computes the projection of S over i1, ..., .
For brevity, we say that an atom in the body of a TGD 7 € T},
is a side-atom if it is not the frontier-guard of 7. We can now
easily convert T, into a set of guarded TGDs, which gives us
the embedding of Y into o

Embed(3;,0) := U p(T) U U o

T7€Ts . TET,
« is a side-atom of T

This completes the formalization of the enriching step.

.,xn) — S?(J)il,..

S Q

Establishing the crucial containments
We proceed to show the crucial containments that, together
with Theorem 2, allow us to conclude Theorem 4.

Containment 1: certs, (¢, D,X) C certsin(¢*, D, %)

Consider a tuple of constants ¢. We proceed to show that if
¢ & certgn(g*, D, X*), then € ¢ certsin(q, D, X). Our plan of
attack for showing this is as follows:

e We isolate a class of finite models of D and X*, the so-
called sticky-supported (or s-supported), and show that
it forms a universal finite model set, i.e., for every I €
fmods(D, X*), there exists J € fmods(D, X*) that is
s-supported and can be homomorphically mapped to 1.

e Since ¢ ¢ certsin(¢*, D, %), there exists an s-supported
I € fmods(D, ¥*) such that ¢ & ¢*(I). We finally show
that the instance J obtained from I by renaming each
predicate P* into P, is a finite model of D and X such
that ¢ ¢ q(J). Thus, ¢ ¢ certsin(q, D, 3).

We proceed to formalize the above description.

Sticky-supported models. The definition of s-supported
models relies on the disjunctive chase introduced in [Deutsch
and Tannen, 2003], an extension of the chase procedure that
is able to deal with disjunctive TGDs (DTGD), i.e., TGDs ex-
tended with disjunction in the head. Each disjunctive chase
step “branches” out several instances, each satisfying one of
the disjuncts of the DTGD that is applied. Thus, the result
of the disjunctive chase is, in general, a set of instances (and
not a single instance as in the classical chase). For a set of
DTGDs X/, we write dchase(D, X,) for the result of the dis-
junctive chase of D w.r.t. 3,. Before introducing s-supported
models, we need some auxiliary terminology.

We assume that the TGDs of X% have only one atom in the
head, which contains at most one occurrence of an existen-
tially quantified variable. This does not affect the generality
of our proof, since the normalization procedure from [Cali ez
al., 2012], which converts a TGD into linearly many TGDs
with the above properties, preserves finite certain answers.
For a (finite) set of nulls N = {Ly,...,1,} C N, where
n > 1, we define Vy(3¥) as the set of DTGDs obtained
from 2% by instantiating the existentially quantified variables
using nulls from N. For example, if N = {L;, 1o}, the TGD
R*(z,y) — 32 5*(y, z) will be transformed into the DTGD
R*(x,y) = S*(y, L1) V S*(y, La). For I € fmods(D, ¥*),

G(I) = {R(t) € I| Risapredicate in X}
G (1) = {R*(t)|R(t) € G(I)}
S*(I) = I\ (GU)UG*(1)).

We now define s-supported models.

Definition 6 We say that I € fmods(D, ¥*) is s-supported if
S*(I) € dchase(G*(I),Vn(Z3))

for a set of nulls N C N such that |N| > |dom(G*(I))| and
N Ndom(G*(I)) = @. "

Intuitively speaking, I is s-supported if S*(I) can be ob-
tained starting from G*(I) and executing the TGDs of X% in
a chase-like manner, but the existentially quantified variables
are satisfied by nulls of dom(I) that do not occur in G*(I).
Notice the crucial difference with the standard chase proce-
dure, where an existentially quantified variable is always sat-
isfied by a “fresh” null, which may lead to an infinite instance.
We now show the following crucial result:

Lemma 7 The set {I € fmods(D,X*) | I is s-supported} is
a universal finite model set of D and ¥*.

1835

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Proof (sketch). Fix an arbitrary I € fmods(D, ¥*). We have
to show that there exists an instance from fmods(D, ¥*) that
is s-supported, and it can be homomorphically mapped to 1.
To this end, we first show that there exists an instance J from
dchase(G*(I), \/N(Z:)), with N = {J_l, ceey J—|dom(1)|} and
N N dom(G*(I)) = &, and a homomorphism % such that
h(J) C (G*(I)US*(I)). Letdom(G*(I)) = {t1,...,tn},
and dom(I) \ dom(G*(I)) = {uq, ..., um}. We define h as

{ti = tihi<icn U{Li = tihi<i<n U{Llnti = ui1<i<m.

We can show, by induction on the number of disjunctive chase
steps, that indeed there exists J € dchase(G*(I),Vn(X3))
such that A(.J) C (G*(I)US*(I)). Observe now that (G(I)U
J) € fmods(D, ¥*), is s-supported, and A(G(I)UJ) C 1.0

The countermodel of D and >. Lemma 7 implies that there
exists an s-supported I € fmods(D, ¥*) such that ¢ & ¢*(I).
We claim that GS(I) = (G(I) U S(I)), where S(I) is ob-
tained from S*(I) after renaming each predicate P* to P, is
the desired countermodel of D and Y. More precisely:

Lemma 8 GS(I) € fmods(D, ¥), and ¢ & q(GS(I)).

Proof (sketch). Itis clear that GS(I) 2 D and GS(I) &= %;.
Moreover, since g is ¢* after renaming each predicate P* to
P, ¢ & q(GS(I)). Thus, it remains to show that GS(I) = X,.
Consider an arbitrary TGD ¢ € X, of the form ¢(Z,7) —
3z (Z, Z), and assume there is a homomorphism / such that
h(e(Z,9)) € GS(I). We need to show that there is &' that
agrees with h on T such that A'(¢(Z,z)) € GS(I). Due to
tameness, the guard of o provided by the guard function of
¥, is mapped by h to G(I). This implies that h(¢(Z, 7)) con-
tains only terms from dom(G([)). Let us consider h(¢(Z, 7))
as a Boolean CQ, denoted g7 ; by abuse of terminology, g7
contains null values from dom(G(I)), which should be inter-
preted as constants. We proceed to establish a crucial claim:

Claim 1 () € cert(q7,G(I),Xy).

Proof (sketch). The claim is equivalent to h(p(Z,y)) C
chase(G(I),Xs). Let ©*(Z,7) be the conjunction of atoms
obtained from ¢ (Z, §) by renaming each predicate P to P*.
It is clear that h(¢*(Z,y)) C (G*(I) U S*(I)), which im-
plies that there exists J € dchase(G*(I),Vn(X?%)), where
N = {Ll1,..., Lidom(r)|} and N N dom(G*(I)) is empty,
such that h(o*(Z,y)) C J. Therefore, there exists a finite
sequence of disjunctive chase steps, starting from G*(I) and
applying the DTGDs of V (X%), that generates h(¢*(Z, 7)).
Crucially, none of these steps performs a join over a null of
N, i.e., at each step, the variables that occur more than once
in the body of the applied DTGD are mapped to terms of
dom(G*(I)); otherwise, 3% is not sticky. This allows us to
extract from the above sequence of disjunctive chase steps, a
finite sequence of standard chase steps, starting from G*(7)
and applying TGDs of X%, that generates h(¢*(Z,)). There-
fore, h(p*(Z,y)) C chase(G*(I),X¥), which immediately
implies that h(¢(Z, 7)) C chase(G(I),%;), as needed. [

The above claim implies that there exists a partial rewriting
g of gy and X, and a homomorphism g that extends £, such
that p(q) € G(I). This fact allows us to show that there is

1836

ot € Embed(Z;,0) such that i maps the body of o™ to
G(I). Since G(I) = Embed(X,, o), there exists h’, which
agrees with h on Z, that maps the head of o to G(I). Thus,
R (¢(Z, 2)) C GS(I), and the claim follows. dJ

It is clear that Lemma 8 implies that ¢ ¢ certgn(q, D,),
and containment (1) follows.

Containment 2: cert(¢*, D,¥*) C cert(q, D, X)

Consider a tuple ¢ of constants. We proceed to show that,
if ¢ € cert(¢*,D,X*), then ¢ € cert(q, D,Y). Although
the proof of this implication is not straightforward, it is sim-
pler than the proof of containment (1) since we deal with cer-
tain answers (not finite certain answers). This allows us to
exploit the soundness of the UCQ-rewritings underlying the
construction of X* in a direct way.

Let chase(D,X*)™* be the chase instance of D and X*
after renaming each predicate P* to P. Then:

Lemma 9 There exists a homomorphism h such that
h(chase(D,X*)™*) C chase(D,).

By hypothesis, ¢ € ¢*(chase(D, ¥*)), which in turn im-
plies that ¢ € g(chase(D, ¥*)~*). By Lemma 9 we get that
¢ € q(chase(D, X)), and containment (2) follows.

6 Relative Expressive Power

We have seen that, given a set ¥ € G|:S and a CQ ¢, it is al-
ways possible to construct a set X* € G|sS and a CQ ¢* such
that, for every database D, cert(q, D, X) = cert(¢*, D, ¥*).
Let us clarify that in this section we focus on (arbitrary) cer-
tain answers since G|;S and G|sS are finitely controllable. At
this point, one may be tempted to think that G|;S and G|S
are equally expressive. However, whenever we refer to the
expressive power of a class of existential rules, we are usually
interested in the so-called program expressive power [Arenas
et al., 2014], which aims at the decoupling of the set of TGDs
from the CQ. Let us recall the formal definition.

Consider a set 2 of TGDs. The program expressive power
of 3, denoted pep(X), is the set of triples (D, g, ¢), where D
is a database, ¢(Z) is a CQ, and ¢ belongs to cert(q, D, X).
Then, the program expressive power of a class C is defined as
pep(C) = {pep(X) | ¥ € C}. A class C is more expressive
than a class C’, written C' < C, if pep(C’) C pep(C). It is
not difficult to show that C is more expressive than C’ iff:

1. For every X/ € C/, there exists ¥ € C such that, for
every D and g, cert(q, D, X) = cert(q, D, ¥').

2. There exists 3 € C such that, for every ¥’ € C’, there
exists D and ¢ such that cert(q, D, X)) # cert(q, D, X').

It is clear that the construction given in the previous section
does not show that G|S and G|sS have the same program
expressive power since we modify the CQ (we rename each
predicate P to P*). Even though this is a mild modification,
it turned out that is unavoidable. We can show that:

Theorem 10 G|S < G|:S.

Proof (sketch). We need to show pep(G|sS) C pep(G|:S).
Clearly, pep(G|sS) C pep(G|:S) since G|sS C G:S. It re-
mains to show that there exists & € G|tS such that pep(X) ¢

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

pep(G|sS), or, equivalently, for every 3’ € G/,S, there exists
D and ¢ such that cert(q, D, X)) # cert(q, D,Y’). Let ¥ be
the set consisting of the TGDs

P(z,y,2),R(z,y) — R(y,2),5(y),S(2)
S(x),S(y) — R(z,y).

Assume there exists ¥’ € GJsS such that cert(q, D, %) =
cert(q, D, ') forevery D and q. If {3, ¥}, where ¥, € G
and X/, € S, is the partition of ¥/ that witnesses the fact that
Y € G|sS, we can show that X/, ¢ S, which is a contradic-
tion. To show this, we employ the database

D = {R(Clac2)>P(cl702703)aP(C2aCSaC4)aP(C37C4705)}

and the CQ ¢ = R(cz, c5). The proof exploits the fact that,
during the chase, guarded TGDs cannot propagate in an atom
two constants that are not already together in a database atom,
which implies that R(cq, c5) is generated by a TGD of X/,.
We also use the fact that S is UCQ-rewritable, and, in partic-
ular, the fact that in each partial rewriting of ¢ and X7, “fresh”
variables occur only once due to stickiness. 0

7 Future Work

Although the problem of checking whether a tuple is a cer-
tain answer has attracted considerable attention, the problem
of checking whether a tuple is not a certain answer has re-
ceived far less attention. By exploiting the ideas underlying
s-supported models, we are planning to devise algorithms that
will try to refute a candidate certain answer, assuming that
the input set of TGDs is finitely controllable, by first explor-
ing finite models with only one null, and then incrementally
explore finite models with more nulls. If a candidate is not
certain, then this procedure will recognize it since it explores
a universal finite model set. Such an algorithm can be exe-
cuted in parallel with the chase procedure, which can be used
for checking whether a candidate answer is entailed. There-
fore, we obtain a sound and complete procedure for query
answering under finitely controllable classes of TGDs. We
believe that such a parallel procedure can lead to practical al-
gorithms since in real-life scenarios the entailment or refuta-
tion of a candidate answer can be recognized quickly without
introducing a prohibitively large number of nulls.

Acknowledgements

Gottlob and Pieris have been supported by the EPSRC Pro-
gramme Grant “VADA” EP/M025268/. Manna has been par-
tially supported by the Italian Ministry for Economic De-
velopment under PON project “S2BDW” (n. F/050389/01-
03/X32), and by Regione Calabria under POR project “DLV
Large Scale” (CUP J28C17000220006).

References

[Abiteboul e al., 1995] Serge Abiteboul, Richard Hull, and
Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Amendola et al., 2017] Giovanni Amendola, Nicola Leone,
and Marco Manna. Finite model reasoning over existential
rules. TPLP, 17(5-6):726-743, 2017.

1837

[Arenas er al., 2014] Marcelo Arenas, Georg Gottlob, and
Andreas Pieris. Expressive languages for querying the se-
mantic web. In PODS, pages 14-26, 2014.

[Baget et al., 2011] Jean-Francois Baget, Michel Leclere,
Marie-Laure Mugnier, and Eric Salvat. On rules with ex-
istential variables: Walking the decidability line. Artif. In-
tell., 175(9-10):1620-1654, 2011.

[Barany et al., 2014] Vince Barany, Georg Gottlob, and Mar-
tin Otto. Querying the guarded fragment. Logical Methods
in Computer Science, 10(2), 2014.

[Beeri and Vardi, 1981] Catriel Beeri and Moshe Y. Vardi.
The implication problem for data dependencies. In ICALP,
pages 73-85, 1981.

[Cali er al., 2012] Andrea Cali, Georg Gottlob, and Andreas
Pieris. Towards more expressive ontology languages: The
query answering problem. Artif. Intell., 193:87-128, 2012.

[Cali et al., 2013] Andrea Cali, Georg Gottlob, and Michael
Kifer. Taming the infinite chase: Query answering un-
der expressive relational constraints. J. Artif. Intell. Res.,
48:115-174, 2013.

[Calvanese, 1996] Diego Calvanese. Finite model reasoning
in description logics. In KR, pages 292-303, 1996.

[Deutsch and Tannen, 2003] Alin Deutsch and Val Tannen.
Reformulation of XML queries and constraints. In /ICDT,
pages 225-241, 2003.

[Fagin ef al., 2005] Ronald Fagin, Phokion G. Kolaitis,
Renée J. Miller, and Lucian Popa. Data exchange: Seman-
tics and query answering. Theor. Comput. Sci., 336(1):89—
124, 2005.

[Gogacz and Marcinkowski, 2017] Tomasz Gogacz and
Jerzy Marcinkowski. Converging to the chase - A tool for
finite controllability. J. Comput. Syst. Sci., 83(1):180-206,
2017.

[Gottlob et al., 2013] Georg Gottlob, Marco Manna, and An-
dreas Pieris. Combining decidability paradigms for exis-
tential rules. TPLP, 13(4-5):877-892, 2013.

[Gottlob er al., 2014] Georg Gottlob, Giorgio Orsi, and An-
dreas Pieris. Query rewriting and optimization for ontolog-
ical databases. ACM Trans. Database Syst., 39(3):25:1—
25:46, 2014.

[Ibéfez-Garcia ef al., 2014] Yazmin Angélica Ibafiez-
Garcia, Carsten Lutz, and Thomas Schneider. Finite
model reasoning in horn description logics. In KR, 2014.

[Patel-Schneider and Horrocks, 2007] Peter F. Patel-
Schneider and lan Horrocks. A comparison of two
modelling paradigms in the semantic web. J. Web
Semantics, 5(4):240-250, 2007.

[Rosati, 2008] Riccardo Rosati. Finite model reasoning in
DL-Lite. In ESWC, pages 215-229, 2008.

[Rosati, 2011] Riccardo Rosati. On the finite controllability
of conjunctive query answering in databases under open-
world assumption. J. Comput. Syst. Sci., 77(3):572-594,
2011.

