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Abstract

Models based on rules that express local and het-
erogeneous mechanisms of stochastic interactions
between structured agents are an important tool for
investigating the dynamical behavior of complex
systems, especially in molecular biology. Given a
simulated trace of events, the challenge is to con-
struct a causal diagram that explains how a phe-
nomenon of interest occurred. Counterfactual anal-
ysis can provide distinctive insights, but its stan-
dard definition is not applicable in rule-based mod-
els because they are not readily expressible in terms
of structural equations. We provide a semantics of
counterfactual statements that addresses this chal-
lenge by sampling counterfactual trajectories that
are probabilistically as close to the factual trace as
a given intervention permits them to be. We then
show how counterfactual dependencies give rise to
explanations in terms of relations of enablement
and prevention between events.

1 Introduction

Rule-based modeling languages for molecular biology, such
as Kappa [Danos er al., 2007a] and BioNetGen [Harris et al.,
2016], or organic chemistry, such as Mgd [Andersen er al.,
2016], can be used to write mechanistic models of complex
reaction systems. These approaches consider entities that
have a structure, and make a distinction between the transfor-
mation of a structure fragment (a pattern) specified by a rule
and the reaction resulting from the application of the rule to
a combination of entities contextualizing the fragment. The
structure of bio-molecular entities is represented as a graph
and a rule is a graph-rewrite directive with a rate constant
that determines its propensity to apply. The stochastic sim-
ulation of a rule collection generates a time series of rule
applications—henceforth events—that might reach a state of
interest in processes like the assembly of a molecular ma-
chine, the activation of a transcription factor, or the synthesis
of a specific compound.

While rule-based models provide compactness, trans-
parency, and the ability of handling combinatorial complex-
ity, the perhaps most significant advantage lies in their suit-
ability for causal analysis. This is because such analysis pro-
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ceeds at the level of rules, not reactions, thereby avoiding
contamination with context that defines a reaction yet is ir-
relevant to the application of the underlying rule. Due to the
concurrent nature of events, it is typically far from obvious
how a sequence attained a particular outcome. Biologists of-
ten refer to a causal account or explanation as a “pathway”,
but have no formal framing for it.

Prior work in causal analysis [Danos er al., 2012; Danos et
al., 2007a] takes advantage of rule structure to (i) compress a
simulation trace into a minimal subset of events that are nec-
essary and jointly sufficient to replicate the outcome of inter-
est and (ii) highlight causal influences between events, expos-
ing the extent of concurrency. Such analysis is performed on
a sample of traces to the outcome, thus recovering the salient
pathways as those that are statistically favored by the dynam-
ics. This approach, however, suffers from two drawbacks.
First, the focus on necessity in step (i) neglects events that
are kinetically critical (in that they dramatically increase the
probability of observing the outcome), yet are not logically
necessary for achieving it. Second, step (ii) is limited to a
narrow notion of causal influence that we may call enable-
ment. Put simply, an event a (directly) enables event b, if a
modifies the state of the world so as to satisfy the require-
ments for b to occur. This positively tinted version of influ-
ence is blind to the ubiquitous role of inhibitory interactions
in molecular biology. Indeed, an event ¢ may cause an event
b without (transitively) enabling it, but instead by preventing
another event ¢ that would have prevented b. Clearly, uncov-
ering such an explanatory narrative is challenging because it
involves an event, ¢ in this case, that did not occur in a simu-
lation trace.

We here propose an approach that complements the exist-
ing causal analysis of event series generated from rule-based
models by using counterfactual reasoning to answer questions
of the kind: Had event e1 not occurred, would event ea have
happened? Our contributions may be summarized as follows.

1. We provide a semantics for counterfactual statements in
the context of rule-based models, where the standard def-
inition of counterfactuals based on structural equations
[Pearl, 2009; Halpern, 2016] does not apply.

2. We show how such statements can be evaluated by sam-
pling counterfactual traces that are meant to probabilisti-
cally “hug” a given (factual) trace as much as an external
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intervention permits them to. To this end, we introduce
an algorithm to generate counterfactual traces and pro-
vide an efficient implementation for the Kappa language.

3. We show how counterfactual dependencies between
events can be systematically explained in terms of en-
ablement and prevention relations that are more in line
with biological reasoning.

2 Motivating Example

We provide some background on Kappa and introduce a toy
example motivating the need for counterfactual reasoning in
analyzing the causal structure of simulation traces.

2.1 Some Background on Kappa

Proteins are complex molecular machines that reversibly tag
one another with molecular flags and reversibly bind each
other to form transient associations. In this way, proteins
come to have “state” that can control the interactions they en-
gage in. In Kappa, a protein is modeled as an abstract agent
with a name that designates its fype and a signature of distin-
guishable sifes at which it can be tagged or bound by other
agents. A site can bind at most one agent at a time and must
be in a definite state.

In our illustrative example, we consider two types of agents
for which we use biological nomenclature. One type, S, is a
substrate that receives a tag known as a phosphate group in
a phosphorylation interaction. The other, K, is a kinase that
phosphorylates S. Agents of both types feature a binding site
at which they can bind one another and a site that can be in
one of two possible states: unphosphorylated or phosphory-
lated. Thus, agents of type K also have a phosphorylation
state, but for the sake of simplicity we will have them acquire
it “spontaneously”.

A mixture is a multiset of agents whose state at each site
is fully specified. A mixture represents the state of a system
and can be thought of as a (potentially large) graph consisting
of many connected components. In a mixture, agents of the
same type are distinguished by a unique global identifier.
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Figure 1: A mixture graph. Sites are here identified by their position
on agents instead of a name. A grey site indicates a phosphorylated
state. Numbers are global agent identifiers in the mixture.

Interactions between agents are modeled by local rewriting
rules. A rule r is defined by a triple (L, R, \,), where L,
is the left-hand side specifying a pattern (the pre-condition),
R, the right-hand side (or post-condition), and A, a firing
rate. The basic idea is that the “location” at which the mix-
ture matches L, is rewritten in place by R,, changing the
state of the system. (Technically, a rule also requires a func-
tion from agents in L, to agents in R, to make the rewrite
unambiguous.)

In our toy model, agents are subject to the rules depicted in
Figure 2. Rule b states that kinases and substrates can bind,
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Figure 2: A motivating toy model. Sites not mentioned in a rule
are left unchanged by it. Firing rates are not specified, but dotted
(solid) arrows indicate slow (fast) reactions (A >> Aux = Ap).

provided their requisite binding sites are free (unbound).
Note that L is a pattern: It omits mentioning the sites that
carry phosphorylation state, which are therefore not consid-
ered when matching the mixture to L. Rules » and u* define
unbinding events that depend on the phosphorylation state of
the kinase K. The distinction is motivated by kinetics: Rule
u fires at a much faster rate than u*. Rule p specifies that a
substrate can be phosphorylated when it is bound to a kinase.
For the sake of simplicity, we model the phosphorylation of a
kinase as a spontaneous process (rule pk).

By virtue of the A, the rules of a model, together with
an initial mixture, constitute a dynamical system that we de-
scribe shortly. We do so in a slightly nonstandard way by
introducing the auxiliary concept of an event template. This
is to prepare for the insight in section 3.1 that the stochas-
tic and deterministic aspects of a model’s dynamics can be
cleanly separated, thus enabling counterfactual analysis.

An event template is a pair (r, &) where r is a rule and &
a function from agents in L.. to global identifiers. We say
that (r, £) is realizable in mixture m if the global identifiers
assigned by ¢ exist in m and the agents bearing them match
L,.. In this case, we write m = (r,£) and call £ an embedding
of L, into m: EMB,(m) 2 {¢ : m I (r,&)}. Whenever
m F (r,£), we write m - (r,€) the mixture obtained by re-
alizing (r,€), i.e. by rewriting the agents with identifiers in
the codomain of ¢ into R,. The realization of an event tem-
plate at a particular time creates an (actual) event, formally
defined as a pair (e, t) with e an event template and ¢ its time
of realization.

A model induces a continuous-time Markov chain (CTMC)
over the set of reachable mixtures, where state m transitions
to state m - (r,&) at rate A, for every event template (r,¢)
that is realizable in m. The rate of leaving state m by an
application of rule r is called the activity c.(m) of rule r
in mixture m and is equal to the product of the rule’s firing
rate by the number of embeddings of L, into m: a,.(m) =
Ar-|EMB,.(m)|. For example, in Figure 1, rule b has activity
2)\p and rule u has activity 0. The total activity of a mixture
is defined as a(m) = Y, a,(m) = Y, A|[EMB,.(m)].
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The CTMC induced by a model can be simulated with
the Doob-Gillespie algorithm [Gillespie, 19771, which loops
over the following steps: (1) draw a time interval § to the next
event from an exponential distribution with parameter a,(m)
and increment the simulated system time by 4, (2) draw a rule
r with probability a,.(m)/a(m) and (3) pick uniformly an
embedding £ € EMB,.(m) of L, into m and realize the event
template (r,£). This algorithm is efficiently implemented
for rule-based models in Kappa as described in [Danos et
al., 2007b; Boutillier er al., 2017]. Tt outputs a sequence of
events, called a trace.

2.2 Where Existing Analysis Falls Short

Consider our toy model and assume, for the sake of illustra-
tion, an initial mixture I with only a single kinase and a single
substrate whose sites are unbound and unphosphorylated. We
then ask: Starting from I, how is p typically achieved? We
are not merely looking for an account of reachability but for
a causal explanation, i.e. a collection of events connected by
causal influences.

For example, a simulation might produce the following
trace (events are labeled by the rules that induced them):

ba Uu, pka ba D, U'*7 (1)

Current techniques [Danos e al., 2012; Danos et al., 2007a]
generate a causal account by first computing a sub-trace of
(1) that is (i) valid in the sense that each of its events can be
triggered in turn starting from the initial mixture and (ii) min-
imal in the sense that none of its valid sub-traces features
p. The relations of enablement among events in the mini-
mal sub-trace yield a directed acyclic graph. Although triv-
ial in our toy example, minimization is an NP-hard problem.
Carrying out this approach on (1), one notes that the first oc-
curence of b sets the necessary conditions for p, but these
are subsequently undone by u only for the second occurrence
of b to re-introduce them. This illustrates why minimiza-
tion compresses a trace into events that are necessary for the
outcome—which requires eliminating futile cycles. In our
case, the causal account for p starts with the initial condition,
symbolized by the inif event, and skips to the last b before the
u. Figure 3 depicts the resulting explanation graph, whose
arrows denote enablement as defined informally in section 1
and formally in section 4.

Figure 3: A causal explanation for p in trace (1). Events are la-
belled by the rules that induced them. The init node corresponds to
a special event that sets the mixture to its initial state.

The problem is that the explanation depicted in Figure 3
fails to recognize the critical role of pk in the original trace.
Given the rules of the model, one notes that p is slow and the
average time that & remains bound to S depends on the phos-
phorylation state of K. The kinase K is phosphorylated in
event pk, causing the complex between K and S to be sticky,
giving the slow phosphorylation p a chance to occur. It seems

reasonable to assert that p would probably not have happened
had pk not happened, since the opportunity for p would have
been curtailed by a fast unbinding event. Thus, pk should be
part of the explanation, although it neither enables b nor p
directly (both rules are independent of K’s phosphorylation
state). Reasoning of this kind is counterfactual [Lewis, 1974;
Pearl, 2009].

In section 3, we give a rigorous semantics to this line of
reasoning and introduce an algorithm for simulating counter-
factual scenarios. In section 4, we show how counterfactual
dependencies between events can be systematically explained
in terms of a combination of enablement and prevention ar-
rows, leading to the explanation shown in Figure 4.

3 Evaluating Counterfactual Statements

In our example, the counterfactual statement to be assessed
is: “Had pk not happened, p would not have happened.” Our
account in the previous section suggests that pk played a role,
but it is also clear that given the stochastic nature of rule firing
p could well have happened even in the absence of pk; it just
is unlikely. In a stochastic setting, counterfactual statements
are not either true or false, but have degrees of likelihood. To
assess that likelihood is our task.

Given an original (factual) trace 7, a naive approach might
be to sample counterfactual traces, each of which starts with
the state of the system attained in 7 just before event pk hap-
pened, but in which we skip over pk and then run an uncon-
strained simulation from that point onward. In this approach
traces would quickly diverge from the original, distorting the
causal role that pk played specifically in it. The question here
is not what causal role pk can play in principle, but what role
it actually did play in 7. Counterfactual statements are unde-
tachable from the context in which they are formulated.

Pearl’s standard account of counterfactuals [Pearl, 2009]
is based on performing “surgical interventions” on a struc-
tural equation model (SEM). A SEM features a finite se-
quence (z1,...,x,) of variables, each associated to a func-
tional equation of the form x; = f;(x1,...,2;—1,u;), where
fi is a deterministic function and w; a random variable. Ide-
ally, each f; defines an independent and autonomous physical
mechanism. This is partially enforced by the requirement that
the u; must be mutually independent. Given some observa-
tion e, the probability of the counterfactual statement “had
x; been equal to a, 1 would have been true” is evaluated
following a three-step process: (abduction) compute the dis-
tribution p,. of values for « given observation e, then (action)
intervene in the model by replacing the defining equation for
x; by “x; = a” and finally (prediction) compute the proba-
bility that ¢ is true in this new model when « is distributed
according to pe.

Because of their dynamic nature, rule-based models are not
readily expressible in terms of structural equations. How-
ever, Pearl’s construction generalizes to our setting, assum-
ing a structural refinement of Kappa’s probabilistic semantics
where deterministic causal mechanisms are separated from
stochastic aspects.
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3.1 A Refined Semantics for Kappa

The factual trace to which a counterfactual statement is tied
includes random contingencies. These contingencies reflect
the stochasticity underlying the specific sequence of events
and its timing. Executing a counterfactual experiment re-
quires that we separate this randomness from the determin-
istic action of rules in order to properly condition on the ran-
domness of the factual trace. We propose such a decomposi-
tion, which is motivated by a standard construction in physics
that justifies the Doob-Gillespie algorithm used in simulating
reaction systems [Gillespie, 1977].

Our refined semantics reconceptualizes the CTMC induced
by a model as follows: (i) Consider all possible event tem-
plates (r, &), where £ maps into a large enough set of global
identifiers. For each event template, imagine an independent
Poisson process in which a bell rings at time intervals drawn
independently from an exponential distribution with parame-
ter \,.. These Poisson processes are all gathered in a random
variable Y. A realization of X is called a schedule and it fea-
tures a sequence of ringing times for every bell. (ii) With ev-
ery schedule o, we associate a unique trace 7 (o) that is gen-
erated as follows: starting with the initial mixture and moving
through time, whenever a bell rings, its associated event tem-
plate e is realized (by transforming the current mixture m into
m - e) if and only if m F e. For example, if the current mix-
ture m is given as in Figure 1 and the bell linked to “apply
rule b on substrate 3 and kinase 4” rings, a bond is created
between these two agents. In contrast, the bell linked to “ap-
ply rule b on substrate 1 and kinase 2”° would have no effect.
(iii) Finally, the dynamic behavior of our model is captured
by the random trace 7' = 7(X), which can also be sampled
efficiently using the Doob-Gillepsie algorithm introduced in
section 2.1. Note that the assumption underlying this whole
construction is entirely contained in the existence and defini-
tion of 7. Given 7, the statistical properties of ¥ (including
the independence of our metaphorical bells) are consequences
of Kappa’s original probabilistic semantics.

Intuitively, 2 determines when the opportunity for a reac-
tion happens and between which molecules. It plays the same
role as the random vector « in a SEM. In contrast, 7 is a de-
terministic function that controls whether a reaction can occur
when given the opportunity and what it does when it occurs.
It corresponds to the f; in a SEM and is likewise the target of
interventions.

3.2 A Semantics for Counterfactuals

We define an intervention ¢ as a predicate BLOCKED, [-| rang-
ing over events. The purpose of the predicate is to act as a
filter preventing the occurrence of selected events. Given a
predicate ¢ over traces, we write the statement “Had inter-
vention 1 happened in trace T, ¥ would have been true” as
7 = [t] 9, borrowing a notation from [Halpern, 2016].

For an intervention ¢ and a schedule o, we define the al-
tered trace 7,(c) much in the same way as 7(c), but also
requiring BLOCKED, [(e, t)] to be false for e to be realized
when its bell rings at time t. Then, we define 7, £ 7,(X).
Given an observed trace 7, an intervention ¢ and a predicate
1), the probability of 7 |= [¢] ¢ can now be defined according

to Pearl’s three-step strategy: (abduction) condition the dis-
tribution of X by the observation that 7 (3) =7, then (action)
alter the behavior of 7 with intervention ¢ and (prediction)
consider the probability that ¢) holds on 7, (X). This results
in the following definition.

Definition 1 (Semantics of counterfactual statements). For
T an observed trace, . an intervention and ) a predicate on
traces, the probability of the counterfactual statement “had
intervention 1 happened in trace T, predicate 1 would have
been true” is defined as:

P(rE]w) 2 P(H(T)|T=r).
Following Definition 1, we estimate the probability of the
counterfactual statement 7 |= [¢] ¢ by sampling instances of
the random variable T, | {T = 7}. These are called counter-
factual traces. Intuitively, they give an account of what else
trace 7 could have been, had intervention ¢ happened.

3.3 An Example

Let us illustrate our definitions by manually sampling a coun-
terfactual trace for the example trace 7 given in (1) and the
intervention ¢ that consists in blocking every application of
rule pk: BLOCKED, [((r,&),t)] = (r =pk). For this, we must
draw an instance of T,, conditioned on the observation T'=7.

Let us assume that 7'= 7. Then, the first event of 7, has to
coincide with the first event of 7 (namely b). Indeed, suppose
that (e, t) belongs to T,, with ¢ prior to the time of the first
event of 7. Thus, e is scheduled in X at time ¢ and realizable
in the initial mixture, which is shared between 7, and 1. As
a consequence, (e,t) also belongs to 7" and therefore to 7,
which is a contradiction. Continuing this line of reasoning,
T, and T must coincide until an event of 7 is blocked by ¢.

After pk is blocked in T,, the current mixtures in 7" and
T, start diverging (the kinase is phosphorylated in the former
and unphosphorylated in the latter). We call these mixtures
factual mixture and counterfactual mixture, respectively. The
next event to happen in 7 is the second binding event b. We
argue that it also has to be the next event to happen in 7. In-
deed, the only way an event (e, t) can happen in T, before b
while not happening in 7" is if e is realizable in the counter-
factual mixture and not in the factual one. This is only true
if e is an instance of rule pk and applications of this rule — if
scheduled — would be blocked by ¢ anyway.

After b happens in both 7, and 7, the event template asso-
ciated with rule u (fast unbinding) becomes realizable in the
counterfactual mixture, but not in the factual one. Therefore,
the observation 1" = 7 provides no useful information about
whether or not u is scheduled in X before p happens in 7. In
fact, the probability that this is not the case is exactly equal
to exp(—A,9), where 0 is the length of the time interval be-
tween b and p in 7. Given the rates in our model, ¢ is typically
of the order of (A, + A,)~!. Therefore, A\, 6 > 1 and it is
very likely that a fast unbinding event happens in 7, before p
happens in 7, preventing p to happen in 7,. This gives us the
following counterfactual trace:

ba u, }/"‘/'a ba u, ///a /a (2)

where events that are striked out are events of 7 that do not
appear in T, and events in bold are proper to 7.
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3.4 The Counterfactual Resimulation Algorithm

We introduce Algorithm 1, a variation of the Doob-Gillespie
algorithm, to sample a counterfactual trace efficiently given
a reference trace 7 and an intervention ¢. We call it counter-
factual resimulation, since it works by going through every
event of 7, resimulating only those parts of 7 that are af-
fected by ¢. In particular, when ¢ is the trivial intervention
(BLOCKED, [-] = false), it returns .

This algorithm relies on a modified notion of activity we
call divergent activity. We define the set of divergent embed-
dings of the left-hand side of a rule r into mixture m and
relative to mg as EMB!.(m,mg) = EMB,.(m) \ EMB,.(mo).
Equivalently, a divergent embedding is an embedding whose
codomain features a divergent site, that is, a site whose
state differs across m and mgy. The divergent activity of
a rule r in mixture m relative to mg is then the product
Ar|EMB..(m,mg)|. The total divergent activity of the sys-
tem, o’ (m, my), is the sum of all divergent activities. Finally,
we use the notation 7[¢] to refer to the mixture at time ¢ in 7.

Algorithm 1 Counterfactual resimulation

Input: a model, a reference trace 7 and an intervention ¢
Output: an instance of T, | {T = 7} (counterfactual trace)
. t<0

2. m <4 initial mixture

3. while t < teq do

4, mo < T[t]

5. (er, tg) < first event of 7 in time interval (¢, 00)
6. o Y, A\|[EMB.(m,mg)|

7. draw 6 ~ EXP(a)

8. te<t+0
9. if t. < t; then

10. draw a rule r with prob. oc \.|EMB/.(m, my)|
11. draw a divergent embedding & € EMB!.(m, mg)
12. e+ (r,¢)

13. t <+t

14. else

15. € < er

16. t < t¢

17. if “BLOCKED,[(e,t)] and m I- e then

18. update m to m - e and log event (e, t)

The role and relevance of the concept of divergent activity
in counterfactual resimulation is summarized by the follow-
ing proposition, where 7 N I = () is a shortcut for “no event
of trace T occurs in the time interval I”.

Proposition 1 (Property of the divergent activity). For 7 a
trace and v an intervention, let I = (t,t+0) be a time interval
such that T N I = ) and mqo = 7[t]. Then, we have

P{T,NI=0|T=7 Tt]=m} = e *(mmos,

Atevery iteration of Algorithm 1, the divergent activity o de-
termines the probability that an event happens in the counter-
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factual trace prior to the next event in the factual trace 7 (test
of line 9). A proof of Proposition 1 is given in Appendix A.
It is the main step in establishing:

Theorem 1. The counterfactual resimulation algorithm cor-
rectly samples instances of T, | {T = 7}.

3.5 Implementation

There are two challenges in efficiently implementing counter-
factual resimulation. The first is a suitable representation for
the sets of divergent embeddings EMB!.(m) to minimize the
cost of their update at each iteration. Since the Kappa simu-
lator solves exactly that problem for the sets of embeddings
EMB,.(m) [Danos et al., 2007b], we leverage most of that
infrastructure. The second consists in avoiding excessively
many iterations of Algorithm 1 in which time is advanced in
tiny increments and the proposed event is rejected. Suppose,
for example, that in our toy model pk has a very high fir-
ing rate and we wish to block, from a specific time onward,
all events in which the sole kinase becomes phosphorylated.
Upon blocking one occurrence of the event, the same event
would want to happen again, and we would keep rejecting
it a huge number of times until a different rule fires. More
generally, event templates whose realization is bound to be
blocked should be removed efficiently before their realiza-
tion is attempted and not be counted in the system’s divergent
activity. We solve this problem for a class of interventions we
call regular. Specifically, an intervention ¢ is regular if the
predicate BLOCKED, [((r,&),t)] can be expressed as a finite
disjunction of formulae of the form (r=7") AF(£[.)A(t€1)
or G(r,§)A(t=t"), where ' is arule, t’ a time, I a time inter-
val, £[. the restriction of £ to a single connected component
¢ of L,+, and F, GG arbitrary predicates. For regular interven-
tions, our implementation is guaranteed to either produce or
consume an event at each iteration.

Proposition 2. Sampling a counterfactual trace for a regular
intervention can be done in time O(n - rlog |m|), where n is
the sum of the number of events in the reference trace and in
the resulting counterfactual trace, v is the number of rules in
the model and |m)| the size of the reaction mixture.

For non-regular interventions, there is an additional time-
complexity term of O(Ny - r log |m|), where Ny denotes the
number of non-productive iterations of Algorithm 1. In Ap-
pendix C, we provide a benchmark of our implementation on
a scaled-up version of our toy model. The average slowdown
per event compared to the Kappa simulator does not exceed
50% for a variety of interventions. Also, we observe that Ny
is typically small for the type of non-regular intervention that
we expect to be most useful in practice.

Returning to our running example, sampling counterfac-
tual traces repeatedly for trace 1 would reveal that, with very
high probability, “event p would not have happened, had pk
not happened”. However, we can go further by using coun-
terfactual traces to explain this observation using enablement
and prevention arrows.

4 Counterfactuals And Prevention

The diagram shown Figure 4 extends the one in Figure 3 and
explains the counterfactual dependency between pk and p in
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Figure 4: A graphical explanation of the counterfactual dependency
between pk and p in trace 1, in terms of enablement and prevention
arrows. It is based on the (compressed) counterfactual experiment
(1,t,7") where 7 = (pk, b, p), ¢ blocks pk and 7" = (b, u).

trace 1. The dotted node corresponds to a counterfactual
event, which is absent from trace 1. It is related to factual
events by prevention arrows, shown in red. These arrows can
be read as follows: “pk prevents u, which prevents p”. In this
section, we give a precise semantics to such diagrams and
discuss how they can be generated systematically.

As discussed in section 2.2, a causal narrative like in Fig-
ure 3 results from a trace after causal compression. Its events
are organized in a directed acyclic graphs whose edges are
enablement arrows. While enablement is straightforward to
define, prevention is trickier because it relates events that hap-
pened to events that did not. Our insight is to use counter-
factual traces to define prevention as connecting events from
a factual trace to events in a cognate counterfactual trace or
vice versa.

Notation and diction We use the symbol e, which in previ-
ous sections referred to an event template, to directly denote
an event. Moreover, when we say that an event fests or modi-
fies a site, we really mean the tests and actions involved when
matching and rewriting, respectively, the underlying rule in
the mixture 7[t]. For example, event p in trace 1 tests three
sites and modifies one. Finally, an event e occurring at time ¢
is said to be executable in trace T if the associated template is
realizable in mixture 7t].

4.1 Prevention in Counterfactual Experiments

A counterfactual experiment is a triple (7,¢,7’) for which
there exists a schedule o such that 7 = 7(¢) and 7/ = 7, (o).
Such triples are produced by counterfactual resimulation.

To formalize enablement and prevention, we need to define
some terms used in Kappa to talk about events. Without loss
of generality, we shall assume that a site on an agent carries
either binding state or tagging state but not both. The value
of a tagged site in a mixture is its current tag and the value
of a binding site is either FREE or BOUND-TO(s), where s
identifies another site in the mixture.

Definition 2 (Enablement). Let T be a trace and e, e’ € T two
events. We say that e enables €' if e is the last event before ¢’
that modifies some site to the value it is tested for by ¢’

Definition 3 (Prevention). Let (7,t,7") be a counterfactual
experiment. An event e that occurs at time t in T is said to
prevent an event ¢’ that occurs at time t' in 7' if all of the
following hold: (1) t < t' ; (2) there exists a site s such
that e is the last event in T before t' that modifies the value
of s away from what €’ tests it for ; (3) there are no events
in 7' that modify s during the time interval (t,t'). The same
definition holds switching T and 7'.

Counterfactual experiments can be represented as directed
acyclic graphs like the one in Figure 4. Such a graph features
three kinds of nodes: events that are proper to the factual trace
(thick solid nodes), events that are proper to the counterfac-
tual trace (dotted nodes) and events that are common to both
traces (thin solid nodes).

As illustrated Figure 4, the influence of pk on p in our ex-
ample is mediated by the counterfactual event u. Such medi-
ating events always exist, as stated by the following theorem.

Theorem 2 (Completeness of enablement and prevention).
Let (7,1,7") be a counterfactual experiment and e an event
that belongs only to T. Then, there exists an event é € T that
is blocked by v and such that there is a directed path from é to
e with an even number of prevention arrows.

This theorem states that counterfactual dependencies can al-
ways be explained in terms of enablement and prevention re-
lations between individual events. A proof is in Appendix B.
This result establishes a bridge between two different visions
of causality: the vision dominant in the concurrency commu-
nity, in which causality is defined predominantly in terms of
enablement, in opposition to concurrency [Winskel, 19861,
and the vision based on counterfactuals, which is dominant in
the causal inference community [Pearl, 2009].

4.2 Compression of Counterfactual Experiments

Counterfactual experiments produced with counterfactual
resimulation are usually very large. They typically feature
a lot of redundancy, including events that are irrelevant to
the outcome of interest or futile cycles as discussed in sec-
tion 2.2. A compression step is usually necessary before
concise causal narratives can be extracted from such exper-
iments. However, the two traces of a counterfactual experi-
ment cannot be compressed separately following the proce-
dure described in section 2.2, as there is no guarantee that
the compressed traces can still be generated from a unique
schedule to form a valid counterfactual experiment. Instead,
compressing a counterfactual experiment consists in extract-
ing a minimal valid sub-experiment.

A counterfactual experiment (71, ¢, 77) is said to be a sub-
experiment of (1o,t,74) if 71 is a sub-trace of 75 and 77 is a
sub-trace of 75. Also, valid counterfactual experiments can
be characterized as follows.

Proposition 3. A triple (7,1, ') is a valid counterfactual ex-
periment if and only if all of the following hold: (1) both T
and 7' are valid traces ; (2) no event of 7' is blocked by . ;
(3) for every event e € T such that e ¢ 7', then either e is
not executable in ' or e is blocked by v ; (4) for every event
e’ € 7/ such that ¢’ ¢ T, then €' is not executable in .

Compressing a counterfactual experiment consists in finding
a minimal valid sub-experiment such that (i) the outcome
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of interest appears in the factual trace but not in the coun-
terfactual trace and (ii) events that are blocked by ¢, or on
which the outcome of interest was shown to be counterfac-
tually dependent in previous analyses, are kept in the factual
trace. Because these constraints along with the properties fea-
tured in Proposition 3 can be encoded as boolean satisfiability
constraints, compressing a counterfactual experiment can be
done using standard SAT-solving techniques.

5 Conclusions and Future Work

In this paper, we propose a method for giving meaning to
counterfactual statements in mechanistic models of complex
physical processes. We modify the continuous-time Monte
Carlo algorithm that is used to generate traces in these mod-
els so as to sample counterfactual trajectories that stay prob-
abilistically as close to the original (factual) trajectory as an
intervention permits them to be. We then construct causal
diagrams that explain counterfactual dependencies in terms
of enablement and prevention relations between events. En-
ablement is a standard causal relation between events within
factual or within counterfactual traces, whereas prevention
shows up as a relation between pairs of events, one in the
factual and the other in the counterfactual trace. In particular,
prevention can involve events that were not observed in the
factual trace. This results in explanatory diagrams that res-
onate more with the ubiquitous presence of inhibitory inter-
actions in biology and that can capture subtle kinetic aspects
of rule-based models. Our completeness result, according to
which any counterfactual dependency can be “explained” in
terms of enablement and prevention, increases our confidence
in this approach to counterfactuals and connects two visions
of causality that are typically treated disjointly.

Despite a sound theoretical foundation and an effective
implementation, our technique is in need of rigorous practi-
cal assessment using large-scale models. Moreover, difficult
practical questions remain. Most notably, which counterfac-
tual experiments are worth trying? It is unclear a priori which
interventions are informative for traces that include many mil-
lions of events. At present, we can only offer tentative direc-
tions for future study.

One way to identify interventions worth making without
relying on expert knowledge is by developing heuristics, such
as recognizing correlations between events in samples of fac-
tual traces (or in a single long trace). In our toy model, the
occurrence of p is often preceded by the occurrence of pk.
This correlation, together with the absence of pk from some
initial causal account—such as the one presently achievable
in a fully automated fashion based on enablement alone, (Fig-
ure 3)—suggests to try a counterfactual experiment on pk.
More generally, if (i) a context C in which an event e occurs
is frequently more specific than is required by the left-hand
side of the underlying rule and (ii) this observation cannot
be explained by the current causal narrative, then a counter-
factual experiment in which we block the last event respon-
sible for at least part of C seems worthwhile in order to as-
sess whether the current causal narrative needs to be updated.
Another important practical question is whether interventions
should block single events or “knock out” related event tem-
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plates for a defined timeframe. Our framework accomodates
both approaches, as exemplified in Appendix C.

On a more conceptual side, we are investigating principled
ways of “gluing” together all explanatory accounts (such as
Figure 4) that correspond to different counterfactual experi-
ments. This would summarize the causal structure of a system
relative to an outcome of interest. One wonders whether such
a summary diagram might constitute a basis for obtaining ap-
proximate structural equations for complex mechanistic mod-
els. Replacing a rule-based model with such equations could
enable targeted statistical analysis to estimate model parame-
ters, for which simulations would be too expensive.
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A Proof of Proposition 1

Proposition (Property of the divergent activity). For T a
trace and v an intervention, let I = (t,t+0) be a time interval
such that 7 N I = () and mgy = T[t]. Then, we have

P{T,NI=0|T=rTJft]=m} = e @ mm)d
Proof. Given that T,[t] = m, no counterfactual event hap-

pens in time interval [ if and only if no event template that is
realizable in mixture m is scheduled in I. Therefore,

P{T,NI=0|T=rTlt]=m}

P{/\(egéEﬂIHT:T} 3

mbe

[[ Ple¢snI|T=r}.

mbe

Let e an event template such that m  e. The probability
that e has not been scheduled for tentative realization in [
given that 7" = 7 depends on whether or not e is realizable in
mixture mog = 7[t]. Indeed, we assumed that 7 contains no
event in time interval I. Therefore, if mg F e, then e cannot
be scheduled in I, without which it would have been realized
in 7. Thus,

mobe = P{e¢EnNI|T=7}=1. 4)

In addition, if mg I/ e, then the observation {T' = 7} gives no
information on whether or not e has been scheduled in /. Be-
cause event templates are scheduled for tentative realization
according to Poisson processes, we have:

moltfe = Ple¢SnI|T=1}=e° (5
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where )\ is the rate of the rule associated with event template
e. Combining (4) and (5) with equation (3),

P{T,NI=0|T=rT]=m)= exp<— 3 /\6-5>
mbe, molfe

Finally, we can recognize the divergent activity in the expo-
nential above:

DA = D A mb (1,6), mo t (r,6)}

mle, molfe (r,€)

YA Hmb (r€), mo t (r,6)}
r 3

Z Ar[EMB! (m, mo)| = & (m, mg).

T

This concludes the proof. O

B Proof of Theorem 2

It is convenient to prove the following result instead, which is
slightly more general.

Theorem. Let (7,t,7") be a counterfactual experiment. If e
is an event that belongs only to T or 7', then there exists an
event é in T that is blocked by v and there is a directed path
from € to e.

Proof. We prove this theorem by induction on the number
of events before e in both 7 and 7/. Let’s consider ¢ € 7
such that e ¢ 7’. If BLOCKED,[¢] is true, then we are done.
Otherwise, by item (3) of Proposition 3, e is not executable
in 7/. Therefore, there exists a site s such that event e tests
s to a different value than it has in 7/[t]. Let ¢ the time of
occurrence of e. Moreover, let’s define e the last event in
7 modifying s that occurs strictly before time ¢, and e, the
last event in 7/ modifying s that occurs strictly before time ¢.
These events modify s to different values so they cannot be
the same. Therefore, writing ¢y and t{, their respective time
of occurrence, we have t # t(, with probability one.

o If ty < t{,, then we have ey ¢ 7’ and so we can apply
the induction hypothesis on eg. As a consequence, there
exists a path from an event € in 7 which is blocked by ¢
to eg. Moreover, eg enables e. Therefore, there is a path
from é to e.

o If t{ < to, then we have e, ¢ 7 and so we can apply
the induction hypothesis on e{,. As a consequence, there
exists a path from an event é in 7 which is blocked by
L to e(. Moreover, e, prevents e. Therefore, there is a
path from é to e.

The same proof holds for when e € 7/ and e ¢ 7, using
item (4) of Proposition 3 instead of item (3). O

This result implies Theorem 2. Indeed, we only need to
prove that the constructed path from é to e contains an even
number of prevention arrows, which is true for any such path
as prevention arrows always go from 7 to 7’ or the other way
around but cannot “stay” within a single trace.
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C Benchmark

We assessed the performance of our implementation of coun-
terfactual resimulation using the toy model of Figure 2, but
with an initial mixture consisting of a large number of kinase
and substrate instances. Although such a simple model is not
of biological significance, it is adequate for an initial assess-
ment of performance.

C.1 Experimental Protocol

We consider four kinds of intervention defined in terms of an
event eg = ((’I"o, fo), to):
1. Singular block: This blocks only the specific event eg:

BLOCKED, [e] £ (e = ey).

2. Template block: This blocks every realization of the event

template (19, o) from time ¢y onward. In formal terms:

BLOCKED, [((1,€),1)] £ ((r,€) = (r0,&) A t > to).

3. Agent-dependent rule block: This blocks, from ¢y onward,

every event resulting from rule r( that tests an agent mod-
ified by eg. For example, we might wish to prevent sub-
strate Sgo7 from being phosphorylated by any kinase. In
formal terms:

BLOCKED, [((1,€),t)] & (r=ro AE(L)NMo#D At >1g)

where M is the set of agents modified by eg.

4. Rule block: This outright disables rule rq from ¢g onward:

BLOCKED, [((1,€),)] = (r =710 A t > tg).

All four kinds of intervention might be useful for causal anal-
ysis in different settings.

Our experimental setup consists of the model in Figure 2
comprising 10* substrates and 10* kinases. Every agent starts
out in an unbound and unphosphorylated state. The simula-
tion is stopped as soon as the system contains more phospho-
rylated than unphosphorylated substrates. We then proceed
as follows. (i) We first generate n, = 10 reference traces
and record the CPU time T it took the Kappa simulator to
generate each of them on a personal computer with a 2.7GHz
Intel Core i5 processor and 16GB of random-access memory.
For each trace, we also identify the first application of each
r € {b,u,u*, p, pk} and declare it to be the event e underly-
ing the intervention. (ii) We test the 20 possible interventions,
based on e, that can be formed by combining each of the five
rules r with each of the four intervention types. (iii) For each
such intervention ¢, we generate n,,, = 10 counterfactual
traces 7'. (iv) For every counterfactual trace 7/, we record
the CPU time T’ used by our implementation to generate it.
We also record the number Ny of iterations that neither pro-
duced a counterfactual event nor consumed a factual event
(non-productive cycles). Finally, we define the slowdown S
of counterfactual resimulation relative to simulation as the ra-
tio of 7", normalized by the number of distinct events |7 U 7’|
in the counterfactual experiment (7, ¢,7’), to T, normalized

nr § & Il 1T
by the number |7| of events in 7: S = RO T

age value and standard deviation of these quantities is shown

The aver-
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BRI
b 470 [ 11703 | 20 0 0
Elu || 470 | 117403 | 1.0 10 | 0
8 [wx | 470 | 117+04 | 83 | 51 | 0
@ | p 470 | 117+.03 | 1.0 05 | 0
pk || 468 | 1.17+.03| 80 | 176 | 0
b 4.69 1.17 £ .04 2.0 0 0
£ lu 5.52 | 1.38+.05 | 30.3 2.9 0
S lus| 543 | 135204 303 | 69 | 0
= | p 550 | 1.37+.04 | 1.0 05 | 0
pk || 541 | 135+.04| 80 | 176 | 0
b 562 | 1.40+.04 | 296 | 09 | 0
= |u || 555 | 138+.04| 303 | 29 | 0
:u;o ux || 545 | 1.36+.04 | 30.3 6.9 0
» 552 | 1.38+.04 | 1.0 0 0
pk || 542 | 1.35+.04 | 80 | 176 | 0
b 378 | .94+.03 | l.4eb 0 0
o |u || 443 | 102203 | 1.3e5 | 1.2e4 | 0
Z | ue | 482 | 1.16+.03 | 2.5e4 | 5.3e3 | 0
p || 482 | 1.20+.03 | 5.0e3 0 0
pk || 519 | 1.08+.03 | 1.4ed | 3.0e4 | 0

Table 1: A benchmark of counterfactual resimulation. On average,
T = 4.01 £ .12 s. In addition, |7| = 1.6e5 + 1.5e3.

Table 1. Note that each row of the table corresponds to one
intervention ¢ and to a sample set of n, x n,s, = 100 coun-
terfactual experiments. For every intervention, we also report
a measure of how much counterfactual traces differ from their
cognate factual trace on average: given a counterfactual ex-
periment (7, ¢, 7"), we write |7\ 7’| for the number of events
that are proper to 7 and |7\ 7| the number of events that are
proper to 7’ (also called counterfactual events).

C.2 Results

The observed slowdown S never exceeds 50% on average.
No intervention produced a non-productive cycle. This is not
too surprising, as all the interventions we considered are reg-
ular, with the only exception of the “template block” for rule
b. Although this intervention can produce non-productive cy-
cles in theory, it is highly unlikely for a kinase to bind the
same substrate twice in a large mixture. More generally, an
intervention ¢ that is irregular, because BLOCKED, [((r, £), )]
features a conjunction of terms constraining £ on different
connected components of L,., does not tend to induce many
non-productive cycles for a similar reason and, therefore, can
often be handled efficiently anyway.

As expected, we observe that the “stronger” the interven-
tion, the bigger the divergence of counterfactual traces from
their factual reference trace. Moreover, interventions that
only affect a small number of agents in a large mixture do

not cause major divergences at the population level. In fact,
only the five rule-blocking interventions had a major impact.
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