
Pseudo-Boolean Constraints from a Knowledge Representation Perspective

Daniel Le Berre1,2, Pierre Marquis1,2,3, Stefan Mengel1, Romain Wallon1,2

1CRIL-CNRS UMR 8188, Lens, France
2Université d’Artois

3 Institut Universitaire de France
leberre@cril.fr, marquis@cril.fr, mengel@cril.fr, wallon@cril.fr

Abstract
We study pseudo-Boolean constraints (PBC) and
their special case cardinality constraints (CARD)
from the perspective of knowledge representation.
To this end, the succinctness of PBC and CARD
is compared to that of many standard propositional
languages. Moreover, we determine which queries
and transformations are feasible in polynomial time
when knowledge is represented by PBC or CARD,
and which are not (unconditionally or unless P =
NP). In particular, the advantages and disadvan-
tages compared to CNF are discussed.

1 Introduction
Many applications in AI are based on propositional informa-
tion. When dealing with such applications, an important issue
is thus choosing a representation from a given language, for
the information that is suited to the way that the information
is processed [Gogic et al., 1995]. However there exist dozens
of languages for representing propositional information.

The large number of candidate languages is explained by
the fact that there is no single language that is the best for all
potential tasks to be achieved on propositional information.
Indeed, the “right” choice typically depends on the way the
information is primarily reported and on the efficiency of the
computations which must be made on it for the application at
hand. Thus, one needs to consider selection criteria to make
an informed choice [Darwiche and Marquis, 2002].

In many cases, propositional information represents laws
or constraints which must be aggregated conjunctively. In
such cases, the language CNF consisting of conjunctions of
propositional clauses is often used. Thus, many benchmarks
corresponding to various AI applications (and many applica-
tions outside the AI area as well) are encoded as CNF formu-
lae, most often in the standard DIMACS format [DIMACS,
1993]. The focus on CNF is justified by the fact that clauses
are basic objects, which can be interpreted as very simple
if-then rules, and encoded and handled in a straightforward
way (as lists of literals). Moreover, there is a rich ecosystem
around CNF formulae with preprocessors, solvers and bench-
mark instances from many fields, see e.g. [SATLIB, 1999;
Biere et al., 2009]. However, CNF suffers from some weak-
nesses. Clauses are somewhat too simple to express some

important constraints. For instance, it is shown in [Dixon,
2004] that stating that, in a given set of m variables, at least
n of them must be set to true cannot be carried out using a
number of clauses that is polynomial in n in general with-
out adding any new variables, which is undesirable in some
settings (see the conclusion of the paper). In order to en-
code such constraints in a compact way, generalizations of
the clause representation have been considered, in particular
the so-called pseudo-Boolean constraints (linear equations or
inequalities over literals), strongly related to threshold func-
tions [Crama and Hammer, 2011], and their special case car-
dinality constraints (pseudo-Boolean constraints where each
literal has a coefficient equal to one). These two constraints
regularly arise naturally in many settings. Obviously enough,
any clause

∨k
i=1 li can be turned in linear time into an equiv-

alent cardinality constraint of the form
∑k
i=1 li ≥ 1 so all in-

formation represented by a CNF formula can easily be trans-
formed into a cardinality constraint representation.

Pseudo-Boolean constraints have also attracted attention
due to associated proof systems, like the cutting planes sys-
tem, that have been introduced for proving the inconsis-
tency of a conjunction of such constraints [Cook et al., 1987;
Hooker, 1988; Nordström, 2015]. The cutting planes proof
system is known to p-simulate the well-known resolution
proof system, the underlying of modern SAT solvers, which
means that there exists a fixed polynomial p such that every
refutation of size l in the latter proof system can be turned
into a refutation of size ≤ p(l) in the former proof sys-
tem. However, the converse does not hold: there are fami-
lies of inconsistent CNF formulae over n variables for which
any resolution proof of a contradiction is of size exponen-
tial in n, while when the formulae are encoded in a natu-
ral way as pseudo-Boolean constraints, cutting planes refu-
tations of size linear in n exist. This is the case for the
family of inconsistent pigeonhole instances [Haken, 1985;
Krishnamurthy, 1985]. This explains why several dedicated
solvers that aim to take advantage of the strength of the
cutting planes system have been implemented [Barth, 1995;
Dixon and Ginsberg, 2002; Chai and Kuehlmann, 2003;
Sheini and Sakallah, 2006; Le Berre and Parrain, 2010].

In this paper, we do not consider issues about proof sys-
tems but instead analyse the properties of the language PBC
of pseudo-Boolean constraints and those of its subset, the lan-

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1891

guage CARD of cardinality constraints, concerning the repre-
sentation of propositional information. In this direction, sev-
eral questions have to be considered concerning the spatial
efficiency of the two languages (i.e., their ability to repre-
sent propositional information using little space) as well as
their temporal efficiency (i.e., the ability to exhibit a num-
ber of queries and transformations which are tractable when
the information used is encoded in the language). Of spe-
cific interest are the advantages and disadvantages of PBC
and CARD compared to CNF. For instance, it is known that
the language CNF is not more succinct than the language
FBDD of free binary decision diagrams. Does this also hold
for PBC or CARD? It is also known that deciding whether
a consistent conjunction of literals implies a CNF formula
can be done in polynomial time. Does this still hold for
PBC or CARD representations? Addressing those issues in
a principled way amounts to considering the criteria used in
the knowledge compilation map for comparing target com-
pilation languages [Darwiche and Marquis, 2002]. Though
neither PBC nor CARD can be considered as compilation
languages (since none of them offers a polynomial-time al-
gorithm for deciding consistency), we argue that the criteria
(succinctness, polynomial-time queries and transformations)
used to compare compilation languages are meaningful for
other propositional languages since they provide a systematic
approach to the questions above.

Thus, in the following, the relative succinctness of PBC
and CARD compared to many standard propositional lan-
guages (CNF, NNF, OBDD, etc.) is determined. Then, we
examine whether the queries and transformations which are
considered in the knowledge compilation map are supported
efficiently by PBC and CARD or not (which amounts to de-
ciding whether a polynomial-time algorithm for carrying out
the query or the transformation exists or not – unconditionally
or unless P = NP). Our results show that, on the one hand, de-
spite the extra succinctness of CARD and PBC compared to
CNF, their relation to standard propositional languages like
DNF, OBDD, FBDD is the same: those languages which are
incomparable to CNF w.r.t. succinctness are also incompara-
ble to PBC w.r.t. succinctness. On the other hand, the im-
provement w.r.t. spatial efficiency which results from such a
switch does not imply the loss of many tractable queries or
transformations: all the queries and all the transformations,
offered by CNF except SFO and ∨BC are preserved.

2 Preliminaries
We consider a propositional setting based on a finite set of
propositional variables. A literal is a variable or its negation
and a clause is a disjunction of literals. All the representa-
tions considered in the following are interpreted in the clas-
sical way, so that the notions of consistency, validity, entail-
ment, equivalence are the standard ones. |= denotes entail-
ment and≡ denotes equivalence. The size of a representation
ϕ, denoted |ϕ|, is the number of elementary symbols used in
ϕ (integers are represented in binary notation).

2.1 Pseudo-Boolean Constraints
Among all the propositional representations considered in the
following we are specifically interested in pseudo-Boolean

constraints.

Definition 2.1 (Pseudo-Boolean constraint). A pseudo-
Boolean constraint is of the form

∑n
i=1 aili M k, where n

is some non-negative integer, ∀i ∈ {1, . . . , n}, ai ∈ Z, li is a
literal, M ∈ {<,≤,=,≥, >} and k ∈ Z. Each ai is called a
weight and k is called the degree of the constraint.

A normalized pseudo-Boolean constraint is a pseudo-
Boolean constraint of the form

∑n
i=1 aili ≥ k, where ∀i ∈

{1, . . . , n}, ai ∈ N, k ∈ N and each variable appears
only once in the constraint, either positively or negatively.
From now on, we assume that all the pseudo-Boolean con-
straints under consideration are normalized. This assumption
is harmless, computationally speaking:

Proposition 2.2 ([Barth, 1995; Roussel and Manquinho,
2009]). Any pseudo-Boolean constraint can be turned in
polynomial time into an equivalent, normalized pseudo-
Boolean constraint, or a conjunction of such constraints.

In the following, we also focus on a specific family of
pseudo-Boolean constraints, consisting of cardinality con-
straints. A cardinality constraint is a normalized pseudo-
Boolean constraint of the form

∑n
i=1 li ≥ k where n is some

non-negative integer.

Definition 2.3 (PBC, CARD). PBC (resp. CARD) is the
language of conjunctions of normalized pseudo-Boolean con-
straints (resp. cardinality constraints).

In this paper, we use the following inference rules to reason
with pseudo-Boolean constraints:

• Saturation. Let κ be a (normalized) pseudo-Boolean
constraint κ =

∑n
i=1 aili ≥ k where for some i0 in

{1, . . . , n}, ai0 > k. Then, ai0 can be replaced by k
without changing the models of the constraint.

• Division. Let κ be a (normalized) pseudo-Boolean con-
straint κ =

∑n
i=1 aili ≥ k and an integer α > 0. κ

entails the constraint
∑n
i=1d

ai
α eli ≥ d

k
αe, where dxe

denotes the smallest integer greater or equal to x. More-
over, if α is a divisor of each ai, then κ is equivalent to
the latter constraint.

Note that, in the division rule, we do not require k to be
divisible by α. This property allows the proof system to be
more powerful than resolution [Cook et al., 1987]. For exam-
ple, the constraint 2x+ 2y+ 2z ≥ 3 becomes x+ y+ z ≥ 2,
which eliminates some non-integral solutions.

2.2 Knowledge Compilation Map
The knowledge compilation map reported in [Darwiche and
Marquis, 2002] is a systematic, multi-criteria comparative
analysis of propositional representation languages. The
choice of a language L is then guided by its spatial efficiency
(its succinctness) and its temporal efficiency (the queries and
transformations it offers, viewed as properties of L).

Succinctness. Succinctness captures the (relative) ability of
a language to represent information using little space, and
yields a pre-order ≤s. A propositional language L1 is said
to be at least as succinct as another language L2, denoted

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1892

L1 ≤s L2, if and only if there exists a polynomial p such that
for every formula α ∈ L2, there exists an equivalent formula
β ∈ L1 where |β| ≤ p(|α|). When L1 ≤s L2 and L2 6≤s L1,
we write L1 <s L2.

Queries. A query takes as input one or more representa-
tions from L, and some other inputs can be also required,
such as clauses, terms, etc. It typically returns a Boolean
value or a number. A language L satisfies a given query when
a polynomial-time algorithm exists for answering the query,
i.e., returning the expected result.

For example, let us consider clausal entailment, a query
which returns a Boolean value stating whether or not a given
clause is entailed by a representation from L:
Definition 2.4 (CE). L satisfies CE (Clausal Entailment) if
and only if there exists a polynomial-time algorithm that de-
cides whether ϕ |= γ where ϕ ∈ L and γ is a clause.

Other queries, such as CO (consistency), VA (validity), IM
(implication by a term), EQ (equivalence), SE (sentential en-
tailment), CT (model counting) and ME (model enumera-
tion), that have been considered in the knowledge compila-
tion map, are also taken into account in the following. For
space reasons, the reader is referred to [Darwiche and Mar-
quis, 2002] for some formal definitions.

Transformations. A transformation takes as input one or
more representations from L, and some other inputs can be
also required, such as variables, terms, etc. The result is a
representation from L.

For example, let us consider the closures under ∧ and ∨:
Definition 2.5 (∧C, ∨C). L satisfies ∧C (resp. ∨C) if and
only if there exists a polynomial-time algorithm which com-
putes a representation from L that is equivalent to ϕ1 ∧ · · · ∧
ϕn (resp. ϕ1 ∨ · · · ∨ ϕn) given a set of formulae ϕ1, . . . , ϕn
from L as input.

The other transformations considered in the knowledge
compilation map, namely CD (conditioning), FO (forgetting),
SFO (singleton forgetting), ∧BC (bounded closure under ∧),
∨BC (bounded closure under ∨) and ¬C (closure under ¬),
are also considered in the following. Again, formal defini-
tions can be found in [Darwiche and Marquis, 2002].

3 Succinctness of Pseudo-Boolean Constraints
In this section, PBC and CARD are compared in terms of
succinctness with many languages considered in the knowl-
edge compilation map, namely NNF, CNF, DNF, IP, DNNF,
FBDD, OBDD, OBDD<, and MODS. Special attention is
devoted to the language of (DAG-based) Negation Normal
Form representations (NNF) [Darwiche, 1999; 2001], the
language of Ordered Binary Decision Diagram (OBDD<)
[Bryant, 1986], and the language of Prime Implicants (IP)
[Quine, 1952] since all the new succinctness results which
have been identified actually are by-products of the suc-
cinctness results involving PBC, CARD and those three lan-
guages. The results obtained are summarized by the diagram
in Figure 1.

Let us now detail the claimed results:

NNF

PBC

CARD

CNF

DNF

IP

DNNF

FBDD

OBDD

OBDD<

MODS

Figure 1: Succinctness of various propositional languages. In this
diagram, an arrow L1 → L2 means that L1 is strictly more succinct
than L2, i.e. L1 ≤s L2 and L2 6≤s L1. No arrow between two
languages means that they are incomparable. The grayed area high-
lights the results we claim in this paper (including incomparability).

Proposition 3.1. PBC <s CARD.

Proof. First, since CARD is a subset of PBC, we get that
PBC ≤s CARD.

Now, let us prove that CARD 6≤s PBC. Let κ be the
pseudo-Boolean constraint defined by κ = kx +

∑2k
i=1 xi ≥

k. Let κ′ =
∑m
i=1 li ≥ k′ be a non-valid pseudo-Boolean

constraint such that κ |= κ′, and Var(κ′) ⊆ Var(κ). We first
show that, necessarily, k′ = 1, i.e., κ′ is a clause.

Let us suppose that k′ > 1, and let us consider M the
model of κ such that x is satisfied, and any literal which is in
κ′ is falsified, except x. In this interpretation, we necessarily
have

∑m
i=1 li ≤ 1, since only x is satisfied by construction.

Indeed, if x positively appears in κ′, then
∑m
i=1 li = 1. Oth-

erwise,
∑m
i=1 li = 0. In both cases, since we have assumed

k′ > 1, κ′ is not satisfied, so M is not a model of κ′. This
contradicts that κ |= κ′, so k′ ≤ 1. Since κ′ is supposed to be
non-valid, k′ cannot be equal to 0, so k′ = 1.

The only way to represent κ as a conjunction of cardinality
constraints is then to use clauses, since all these constraints
must be implied by κ. However, thanks to Proposition 4.1.4
from [Dixon, 2004], we have that an exponential number
of clauses is required to represent κ, and this completes the
proof.

Proposition 3.2. NNF ≤s PBC.

Sketch of Proof. Let κ =
∑n
i=1 aili ≥ k be a pseudo-

Boolean constraint. It is well known that any pseudo-Boolean
constraint

∑n
i=1 aili ≥ k can be represented by an equivalent

NNF representation of polynomial size (see e.g. [Vollmer,
1999]). Now, when a conjunction of pseudo-Boolean con-
straints is considered, an NNF representation of it consists
of the conjunction of all these “elementary” NNF representa-
tions – one per pseudo-Boolean constraint.

As an immediate consequence of [Dixon, 2004] (Proposi-
tion 4.1.4), we have the following result:

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1893

Proposition 3.3. CARD <s CNF

Let us now show that PBC is not at least as succinct as
OBDD<.

Proposition 3.4. PBC 6≤s OBDD<

Proof. Let ϕ =
⊕n

j=1 xj . ϕ is true if and only if there is an
odd number of satisfied xj .

This formula can be written as an OBDD< representation
of polynomial size [Bryant, 1986]. Let us prove that every
representation of ϕ as a conjunction of pseudo-Boolean con-
straints requires an exponential number of constraints.

Let κ =
∑m
i=1 aili ≥ k be a non-valid pseudo-Boolean

constraint, such that ϕ |= κ, with Var(κ) ⊆ Var(ϕ). Let us
note L+ and L− the sets of positive and negative literals of κ,
respectively.

Claim 3.5. We have Var(κ) = Var(ϕ).

Sketch of Proof. If there is x ∈ Var(ϕ) such that x 6∈ Var(κ),
then any counter-model of κ can be turned into a model M
of ϕ by keeping the same assignment, except for x, which
must be satisfied. M is still a counter-model of κ, which
contradicts ϕ |= κ.

Claim 3.6. |L−| is even.

Proof. Let us suppose that |L−| is odd. Let M be the inter-
pretation given by M = {xj |xj ∈ L−}. M satisfies an odd
number of xj , so it is a model of ϕ. However,M does not sat-
isfy any literal of κ, so it is not a model of κ. This contradicts
ϕ |= κ, so |L−| is even.

Claim 3.7. We have ∀i ∈ {1, . . . ,m}, ai = k.

Proof. With the saturation rule, one can ensure that ai ≤
k for all i ∈ {1, . . . ,m}. Let us assume that ∃i0 ∈
{1, . . . ,m}, ai0 < k and that the variable associated with li0
is xj0 . There are two possible cases: xj0 ∈ L+ or xj0 ∈ L−.
In the case when xj0 ∈ L+, let us consider the interpretation
given by M = {xj0} ∪ {xj |xj ∈ L−}. By Claim 3.6, since
|L−| is even, |M | = |L−|+ 1 is odd, and M is a model of ϕ.
In the remaining case, xj0 ∈ L−, and then let us consider the
interpretation given by M = {xj |xj ∈ L−}\{xj0}. Since
|L−| is even, |M | = |L−| − 1 is odd, and M is a model of ϕ.
In both cases,

∑m
i=1 aili = ai0 < k, so M is not a model of

κ. This contradicts ϕ |= κ, so ∀i ∈ {1, . . . ,m}, ai = k.

So, κ =
∑m
i=1 kli ≥ k, and the division rule gives us that

κ ≡
∑m
i=1 li ≥ 1, i.e., κ is equivalent to clause. Then, the

only way to represent ϕ as a conjunction of pseudo-Boolean
constraints is to use clauses, since all these constraints must
be implied by ϕ. Since ϕ requires an exponential number of
clauses to be represented without introducing new variables
– all the clauses contain all the variables by Claim 3.5 – the
claim follows.

Proposition 3.8. PBC 6≤s IP

Proof. Let ϕ =
∨n
j=1(xj ∧ yj) be a formula from IP [Dar-

wiche and Marquis, 2002]. We now show that representing
ϕ as a conjunction of pseudo-Boolean constraints requires an
exponential number of constraints.

Let κ =
∑m
i=1 aili ≥ k be a pseudo-Boolean constraint

such that ϕ |= κ, with Var(κ) ⊆ Var(ϕ) and k > 0.

Claim 3.9. For all j ∈ {1, . . . , n}, xj or yj appears posi-
tively in κ.

Sketch of Proof. If neither xj nor yj appear in Var(κ), then
the model of ϕ satisfying xj and yj but falsifying all the lit-
erals of κ is not a model of κ, which contradicts ϕ |= κ.

Claim 3.10. For all j ∈ {1, . . . , n}, if xj appears positively
in κ, and yj does not, then the weight of xj is k. Symmet-
rically, for all j ∈ {1, . . . , n}, if yj appears positively in κ,
and xj does not, then the weight of yj is k.

Sketch of Proof. If only xj appears positively in κ, say xj =
lj0 , and aj0 < k, then the model of ϕ satisfying both xj and
yj but falsifying all the other literals of κ is not a model of κ,
which contradicts ϕ |= κ. The proof for the case when only
yj appears positively in κ is similar.

Claim 3.11. For all j ∈ {1, . . . , n}, if xj and yj appear
positively in κ, then the sum of their weights is at least equal
to k.

Sketch of Proof. If both xj and yj appear positively as lj0 and
lj1 in κ, respectively, and aj0 + aj1 < k, then the model of ϕ
satisfying these two literals but falsifying all the others of κ
is not a model of κ, which contradicts ϕ |= κ.

Claim 3.12. Without loss of generality, κ can contain only
positive literals.

Sketch of Proof. If yj appears in κ, let κ′ be the pseudo-
Boolean constraint obtained by removing the literal yj from
κ. The case where xj appears in κ follows symmetrically.

Any model M of ϕ is a model of κ′. Indeed, if M satisfies
yj , then it is obviously a model of κ′. Otherwise, there exists
i 6= j such that M satisfies xi and yi, and by Claims 3.9, 3.10
and 3.11, κ′ is also satisfied by M .

So, ϕ |= κ′, and since we obviously have that κ′ |= κ,
it is possible to replace κ by κ′ without losing information.
All negative literals can be removed by repeating the same
argument.

Let K =
∧m
j=1 κj be any conjunction of pseudo-Boolean

constraints such that ϕ ≡ K. Thanks to the previous results,
we have: ∀j ∈ {1, . . . ,m}, κj =

∑n
i=1 a0,i,jxi + a1,i,jyi ≥

kj , with, ∀i ∈ {1, . . . , n}, a0,i,j + a1,i,j ≥ kj by applying
Claim 3.11.

Any counter-model of ϕ must be a counter-model of K.
It remains to show, in the rest of this proof, that a subset of
these counter-models requires the use of an exponential num-
ber of pseudo-Boolean constraints to get a formula logically
equivalent to ϕ.

Any interpretation satisfying for all i ∈ {1, . . . , n} exactly
one of xi or yi cannot be a model ofK, since it is not a model
of ϕ. Then, it must not satisfy at least one of the constraints

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1894

κj . Formally, this means that the following property must be
satisfied.

Property (∗). For any function f : {1, . . . , n} → {0, 1},
there exists j ∈ {1, . . . ,m} such that

∑n
i=1 af(i),i,j < kj

For each of the inequalities induced by (∗), we define a tu-
ple (f(1), . . . , f(n)) ∈ Bn. We claim that two inequalities
associated with such tuples which have a Hamming distance
at least equal to 2 cannot be satisfied for a same j. Other-
wise, let (f1(1), . . . , f1(n)) and (f2(1), . . . , f2(n)) be two
tuples with a Hamming distance at least equal to 2 for a same
j. Their associated inequalities are (1)

∑n
i=1 af1(i),i,j < kj

and (2)
∑n
i=1 af2(i),i,j < kj . Since the Hamming distance

between the two tuples is at least equal to 2, there exists
α, β ∈ {1, . . . , n}, with α 6= β, such that f1(α) 6= f2(α)
and f1(β) 6= f2(β). By adding (1) and (2), since f1 and f2
take their values in {0, 1}, we get:

a0,α,j + a1,α,j + a0,β,j + a1,β,j

+
n∑
i=1

i6∈{α,β}

(af1(i),i,j + af2(i),i,j) < 2kj

However, this is impossible since Claim 3.11 gives us
a0,α,j + a1,α,j ≥ kj and a0,β,j + a1,β,j ≥ kj , so a0,α,j +
a1,α,j + a0,β,j + a1,β,j ≥ 2kj . So, we need two distinct con-
straints to satisfy the inequalities of (∗) associated with these
tuples.

Claim 3.13. There exists a set of 2n−1 tuples of Bn having
pairwise Hamming distance at least 2.

Sketch of Proof. Consider the set S of solutions over {0, 1}
of
∑n
i=1 zi is equivalent to 0 mod 2. The elements of S have

pairwise Hamming distance at least 2. Finally, S contains
2n−1 elements since any assignment to z1, . . . , zn−1 can be
extended to a solution in S.

Hence, to get satisfied, the system of inequalities as-
sociated with these tuples requires at least 2n−1 dis-
tinct constraints. So, representing ϕ as a conjunction
of pseudo-Boolean constraints requires exponentially many
constraints.

The remaining succinctness results reported in Figure 1 are
easy consequences of the previous one, taking advantage of
the transitivity of ≤s and of the succinctness results given in
[Darwiche and Marquis, 2002; Bova et al., 2016].

4 Querying Pseudo-Boolean Constraints
We now present the results about the queries offered by PBC
and CARD summarized in Table 1.

Proposition 4.1. CARD does not satisfy CO, CE, EQ, SE,
CT and ME, unless P = NP.

Proof. Since the translation of any CNF formula into a con-
junction of cardinality constraints can be done in polynomial
time, and since CNF does not satisfy any of these properties,
unless P = NP, the claim follows.

CO VA CE IM EQ SE CT ME
CARD ◦ X ◦ X ◦ ◦ ◦ ◦
PBC ◦ X ◦ X ◦ ◦ ◦ ◦

Table 1: Properties of CARD and PBC about queries. A X means
that the query is offered by the language, and a ◦ means that it is not
the case, unless P = NP.

CD FO SFO ∧C ∧BC ∨C ∨BC ¬C
CARD X ◦ ? X X • • •
PBC X • • X X • • •

Table 2: Properties of CARD and PBC about transformations. A
X means that the language offers the transformation, whereas a ◦
means that it does not unless P = NP and a • means that it does not
unconditionally.

Since CARD is a sublanguage of PBC, we get:
Corollary 4.2. PBC does not satisfy CO, CE, EQ, SE, CT
and ME, unless P = NP.

We also have that:
Proposition 4.3. PBC and CARD satisfy VA.

Proof. A conjunction of pseudo-Boolean constraints is valid
if and only if all of its constraints are valid. This is the case if
and only if all the constraints have a degree equal to 0, which
can be checked in polynomial time.

Since PBC and CARD satisfy VA and CD (cf. Section 5),
the following corollary follows immediately by Lemma A.7
from [Darwiche and Marquis, 2002].
Corollary 4.4. PBC and CARD satisfy IM.

5 Transforming Pseudo-Boolean Constraints
Finally, we present the results we have obtained about the
transformations offered by PBC and CARD. They are sum-
marized in Table 2.
Proposition 5.1. PBC and CARD satisfy CD.

Proof. Computing the conditioning of any formula from
PBC (resp. CARD) is easily done by replacing, in each con-
straint, every literal of the conditioning term by a Boolean
constant. This produces, after a trivial normalization step
made in polynomial time, a conjunction of pseudo-Boolean
constraints (resp. cardinality constraints).

Proposition 5.2. CARD and PBC satisfy both ∧BC and ∧C.

Proof. Given a conjunctively-interpreted set of formulae
from CARD (resp. PBC), computing the conjunction of
these formulae can trivially be done in polynomial time.

Proposition 5.3. CARD does not satisfy ∨BC.

Proof. Let ϕ be the disjunction of the two cardinality con-
straints κ = y ≥ 1 (κ ≡ y) and κ′ =

∑2n
i=1 xi ≥ n. It

is easy to see that ϕ is equivalent to ny +
∑2n
i=1 xi ≥ n.

As shown in the proof of Proposition 3.1, a representation of
this constraint using only cardinality constraints requires ex-
ponentially many constraints. Hence, the claim follows.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1895

Proposition 5.4. PBC does not satisfy ∨BC.

Proof. To prove this result, we show that any representation
of the inequality ∆ =

∑2n
i=1 xi 6= n, which is equivalent to

the disjunction of
∑2n
i=1 xi ≥ n+1 and

∑2n
i=1 xi ≥ n+1, re-

quires an exponential number of pseudo-Boolean constraints
when n ≥ 2.

Let us consider a non-valid pseudo-Boolean constraint κ =∑m
i=1 aili ≥ k, such that ∆ |= κ, with Var(κ) ⊆ Var(∆).

Let us note L+ and L− the sets of positive and negative liter-
als of κ, respectively.

Claim 5.5. We have Var(κ) = Var(∆).

Sketch of Proof. Consider I a counter-model of κ. Since
∆ |= κ, I satisfies n of the xi. If x in Var(∆) but x 6∈ Var(κ),
then the interpretation I ′ defined by I ′ = I ∪ {x} satisfies
n + 1 of the xi, so it is a model of ∆, but not a model of κ,
which contradicts ∆ |= κ.

Claim 5.6. We have |L+| = |L−|.

Proof. If |L+| < |L−|, then by Claim 5.5, we necessarily
have |L−| > n. The interpretation M = {xi|xi ∈ L−}
satisfies strictly more than n of the xi, so it is a model of ∆,
but not a model of κ. If |L−| < |L+|, then by Claim 5.5, we
necessarily have |L+| > n. The interpretationM = {xi|xi ∈
L−} satisfies strictly less than n of the xi, so it is a model of
∆, but not a model of κ. In both cases, ∆ |= κ is contradicted,
so |L+| = |L−|.

Claim 5.7. We have ∀i ∈ {1, . . . ,m}, ai = k.

Proof. Let us suppose that ∃i0 ∈ {1, . . . ,m}, ai0 < k and
that the variable associated with li0 is xi′0 .

There are two possible cases: either xi′0 ∈ L+ or xi′0 ∈
L−. If xi′0 ∈ L+, let us consider the interpretation M =

{xi′0} ∪ {xi|xi ∈ L−}. Then, by Claims 5.5 and 5.6, M
satisfies n + 1 of the xi, so it is a model of ∆. Other-
wise, xi′0 ∈ L− and let us consider the interpretation M =

{xi|xi ∈ L−}\{xi′0}. Then, M satisfies (n− 1) of the xi, so
it is a model of ∆. In both cases,

∑n
i=1 aili = ai′0 < k,

so M is not a model of κ. ∆ |= κ is contradicted, so
∀i ∈ {1, . . . ,m}, ai = k.

Thus, the division rule gives that κ =
∑m
i=1 kli ≥ k ≡∑m

i=1 li ≥ 1, in other words, κ is equivalent to a clause. The
only way to represent ∆ as a conjunction of pseudo-Boolean
constraints is then to use clauses, since all the constraints
must be implied by ∆.

However, ∆ requires an exponential number of clauses to
be represented without introducing any new variable. Indeed,
a clause as the ones we have produced in this proof can only
eliminate a single counter-model of ∆, since all those clauses
contain all the variables, and there exist

(
2n
n

)
counter-models.

Hence, the claim follows.

Corollary 5.8. CARD and PBC satisfy neither ∨C nor ¬C.

We also have that:

Proposition 5.9. PBC does not satisfy SFO.

Proof. Let κ and κ′ be the two pseudo-Boolean constraints
defined by

∑2n
i=1 xi ≥ n + 1 and

∑2n
i=1 xi ≥ n + 1, re-

spectively. Let us consider, for s a newly introduced vari-
able, the formulae κs = (n + 1)s +

∑2n
i=1 xi ≥ n + 1 and

κ′s = (n+ 1)s+
∑2n
i=1 xi ≥ n+ 1, which are obtained from

κ and κ′ in polynomial time.
Let ϕ = κs ∧ κ′s. By construction, ϕ|s ≡ κ′ and ϕ|s̄ ≡ κ.

So, ∃xϕ ≡ κ ∨ κ′. If an algorithm existed to forget a sin-
gle variable in a set of pseudo-Boolean constraints, then one
could use it to compute in polynomial time the disjunction of
κ and κ′. However, we have proven that it is not possible (cf.
Proposition 5.4). Then, so it is for the forgetting of a single
variable in a conjunction of pseudo-Boolean constraints.

Corollary 5.10. PBC does not satisfy FO.

We also have that:

Proposition 5.11. CARD does not satisfy FO, unless P =
NP.

Proof. As for CNF, if CARD satisfied FO, then it would be
possible to compute CO on a formula from CARD in poly-
nomial time. Indeed, a formula is consistent precisely when
the representation obtained by forgetting all its variables in it
evaluates to true (which can be tested easily since the set of
variables of the resulting formula is empty).

6 Conclusion
We have studied the language PBC of pseudo-Boolean con-
straints and the language CARD of cardinality constraints
from a knowledge representation perspective. Our results
show that switching from CNF to CARD and then to PBC
increases the succinctness of the representations but does not
lead to languages that would be at least as succinct as other
propositional languages, like DNF, OBDD, or FBDD. In-
terestingly, such a switch does not lead to the loss of any
tractable query that is supported by CNF. As to the trans-
formations, both PBC and CARD lose ∨BC, and PBC loses
SFO as well. No transformation is gained w.r.t. CNF.

Accordingly, when dealing with applications involving
propositional representations but not requiring to perform any
transformation among SFO and ∨BC, we now know that the
languages PBC and CARD are valuable alternatives to CNF
due to the succinctness increase they may lead to. Of course,
every PBC representation Σ can be turned in linear time
into a CNF representation Φ which is not equivalent to it,
but has the same logical consequences over the variables oc-
curring in Σ. The translations used to go from Σ to Φ (es-
pecially those reported in [Plaisted and Greenbaum, 1986;
Tseitin, 1968]) consist in introducing in Φ additional vari-
ables not occurring in Σ (in fact, Σ is equivalent to the for-
mula we get by forgetting those variables in Φ). Since such
translations can be achieved in linear time, the size of Φ is
also linear in that of Σ. While using Φ instead of Σ is a fea-
sible alternative for answering certain queries over the vari-
ables occurring in Σ, it must be noted that Φ cannot be sub-
stituted to Σ in every setting, i.e., for answering any query
or achieving any transformation. For instance, Φ and Σ do

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1896

not have the same implicants in the general case. In addi-
tion the queries and transformations offered by the language
of CNF with some existentially quantified variables (alias the
existential closure of CNF) do not coincide with those of-
fered by PBC and CARD [Fargier and Marquis, 2008]. All
this explains why the extra succinctness of PBC and CARD
compared to CNF can be considered as a decisive advantage
for some applications.

Acknowledgements
The authors are grateful to the anonymous reviewers for their
numerous comments. These comments greatly helped to im-
prove the presentation of the paper. Part of this work was
supported by the French Ministry for Higher Education and
Research, the Hauts-de-France Regional Council through the
“Contrat de Plan État Région (CPER) DATA” and an EC
FEDER grant.

References
[Barth, 1995] Peter Barth. A Davis-Putnam based Enumer-

ation Algorithm for Linear Pseudo-Boolean Optimization.
Technical Report MPI-I-95-2, Max-Planck Institut Für In-
formatik, 1995.

[Biere et al., 2009] Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook of Satisfi-
ability, volume 185 of Frontiers in Artificial Intelligence
and Applications. IOS Press, 2009.

[Bova et al., 2016] Simone Bova, Florent Capelli, Stefan
Mengel, and Friedrich Slivovsky. Knowledge Compilation
Meets Communication Complexity. In IJCAI’16, pages
1008–1014, 2016.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms
for boolean function manipulation. IEEE Trans. Comput.,
35(8):677–691, 1986.

[Chai and Kuehlmann, 2003] Donald Chai and Andreas
Kuehlmann. A fast pseudo-Boolean constraint solver. In
DAC’03, pages 830–835, 2003.

[Cook et al., 1987] William Cook, Collette R. Coullard, and
György Turán. On the Complexity of Cutting-plane
Proofs. Discrete Appl. Math., 18(1):25–38, 1987.

[Crama and Hammer, 2011] Yves Crama and Peter L. Ham-
mer. Boolean Functions: Theory, Algorithms, and Appli-
cations. Cambridge University Press, 2011.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A Knowledge Compilation Map. Journal of Ar-
tificial Intelligence Research, 17(1):229–264, 2002.

[Darwiche, 1999] Adnan Darwiche. Compiling knowledge
into decomposable negation normal form. In IJCAI’99,
pages 284–289, 1999.

[Darwiche, 2001] Adnan Darwiche. Decomposable negation
normal form. J. ACM, 48(4):608–647, 2001.

[DIMACS, 1993] DIMACS. Satisfiability: Suggested For-
mat. DIMACS Challenge. DIMACS, 1993.

[Dixon and Ginsberg, 2002] Heidi E. Dixon and Matthew L.
Ginsberg. Inference methods for a pseudo-boolean satisfi-
ability solver. In AAAI’02, pages 635–640, 2002.

[Dixon, 2004] Heidi Dixon. Automating Pseudo-Boolean In-
ference Within a DPLL Framework. PhD thesis, University
of Oregon, 2004.

[Fargier and Marquis, 2008] Hélène Fargier and Pierre Mar-
quis. Extending the knowledge compilation map: Closure
principles. In ECAI’08, pages 50–54, 2008.

[Gogic et al., 1995] Goran Gogic, Henry Kautz, Christos Pa-
padimitriou, and Bart Selman. The comparative linguistics
of knowledge representation. In IJCAI’95, pages 862–869,
1995.

[Haken, 1985] Armin Haken. The intractability of resolu-
tion. Theoretical Computer Science, 39:297 – 308, 1985.

[Hooker, 1988] John N. Hooker. Generalized resolution and
cutting planes. Annals of Operations Research, 12(1):217–
239, 1988.

[Krishnamurthy, 1985] Balakrishnan Krishnamurthy. Short
proofs for tricky formulas. Acta Informatica, 22:253–275,
1985.

[Le Berre and Parrain, 2010] Daniel Le Berre and Anne Par-
rain. The SAT4J library, Release 2.2, System Description.
Journal on Satisfiability, Boolean Modeling and Compu-
tation, 7:59–64, 2010.

[Nordström, 2015] Jakob Nordström. On the Interplay Be-
tween Proof Complexity and SAT Solving. ACM SIGLOG
News, 2(3):19–44, 2015.

[Plaisted and Greenbaum, 1986] David A. Plaisted and
Steven Greenbaum. A structure-preserving clause
form translation. Journal of Symbolic Computation,
2(3):293–304, 1986.

[Quine, 1952] Willard V. Quine. The problem of simplify-
ing truth functions. The American Mathematical Monthly,
59(8):521–531, 1952.

[Roussel and Manquinho, 2009] Olivier Roussel and
Vasco M. Manquinho. Pseudo-Boolean and Cardinality
Constraints. In Handbook of Satisfiability, pages 695–733.
2009.

[SATLIB, 1999] SATLIB. The Satisfiability Library, 1999.
http://www.cs.ubc.ca/ hoos/SATLIB/index-ubc.html.

[Sheini and Sakallah, 2006] Hossein M. Sheini and
Karem A. Sakallah. Pueblo: A Hybrid Pseudo-Boolean
SAT Solver. JSAT, 2(1-4):165–189, 2006.

[Tseitin, 1968] Gregory S. Tseitin. On the complexity of
derivation in propositional calculus, chapter Structures in
Constructive Mathematics and Mathematical Logic, pages
115–125. 1968.

[Vollmer, 1999] Heribert Vollmer. Complexity Measures and
Reductions. In Introduction to Circuit Complexity: A Uni-
form Approach. Springer-Verlag New York, Inc., 1999.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1897

